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Hydroperoxide lyase E" solubilized with Tween 20 from tea chloroplasts was shown to catalyze 
cleavage reaction of 13-L-hydroperoxy-cz'j-9,fra/w-11-octadecadienoic acid (13-L-hydroper- 
oxylinoleic acid) to hexanal, a CB-compound and 1 l-form yl-m -9-undecenoic acid, a C12-com- 
pound by identification of cleavage products using authentic specimens synthesized through an 
unequivocal route. An oxygen-isotope effect was first observed in the cleavage reaction of l80 -  
labeled 13-L-hydroperoxylinoleic acid by solubilized E'2'. The 180-atom  of hydroperoxide was not 
detected in carbonyl group of hexanal formed from 180-labeled 13-L-hydroperoxylinoleic acid.

Introduction

Leaf alcohol (c/s-3-hexenol) and leaf aldehyde 
(/ram-2-hexenal), which are formed from cis-3- 
hexenal, are widely distributed in fresh leaves, 
vegetables, and fruits and are responsible for “Green 
odor” characteristic of leaves [1-6]. We have 
demonstrated that m-3-hexenal is biosynthesized by 
enzymatic splitting (E2' reaction) of 13-L-hydroper- 
oxylinolenic acid which is produced by stereospecific 
oxygenation (E2 reaction) at C - l3 of linolenic acid 
[7-9] in tea chloroplasts and plant tissues as 
shown in Fig. 1. Also hexanal was shown to be 
produced from linoleic acid by the same system.

A hydroperoxide lyase which catalyzes cleavage of 
13-hydroperoxide into a C6-aldehyde and a C 12-oxo 
acid has been found in alfalfa seeds [10], watermelon 
seedlings [11], tomato fruits [12], bean leaves [13], 
cucumber fruits [14], and cucumber seedlings [10]. 
Recently, a hydroperoxide lyase was partially puri­
fied from pears [15] by differential centrifugation, gel 
chromatography and isoelectric focusing.

In a previous paper [16], solubilization and pro­
perties of hydroperoxide lyase E'2' from tea chloro­
plasts have been reported. However, the mechanism 
of cleavage reaction of 13-l hydroperoxides into C6- 
aldehydes and C12-oxo acid has remained unknown.

This paper describes identification of cleavage 
products of 13-L-hydroperoxy-m-9,/rans-l 1-octa-
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decadienoic acid (13-L-hydroperoxylinoleic acid) by 
solubilized E2' and an oxygen-isotope effect in cleav­
age reaction by solubilized E2',  tea leaves, tea 
chloroplasts, and watermelon seedlings, using r e ­
labeled 13-L-hydroperoxylinoleic acid, whose 180 -  
atom was introduced into C -l3 of linoleic acid.
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Fig. 1. Biosynthetic pathway of c/s-3-hexenal.
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Materials and Methods

Lipoxygenase I was obtained from P. L. Bio­
chemical Inc. (Type I, soybean; activity 50 000 
units/mg). Linoleic acid (purity, 99%) was obtained 
from Wako Pure Chemical Industries Ltd. 180 2 (180 ; 
50.0% atom%) was obtained from Commissariat a 
L’Energie Atomique (CEA), France.

a) Preparation o f  solubilized hydroperoxide lyase 
E"\ Chloroplasts were prepared from fresh leaves of 
tea (Thea sinensis cv. Yabukita) harvested in August 
according to the method reported previously [17]. 
Chloroplasts (2 g wet weight) were suspended in 
chilled 32 m M  citric acid-135 m M  N a2H P 04 (Mcll- 
vaine’s buffer) (20 ml; pH 7.0) containing 0.5% 
Tween 20, and homogenized with a teflon-pestle 
homogenizer for 30 s. The homogenate was cen­
trifuged at 25 000 x.g 10 min and the superna­
tant (20 ml) was used as a solubilized hydroper­
oxide lyase E2' [16].

b) Preparation o f  homogenates containing E" 
activity: Tea leaves (0.5 g) were homogenized in 
Waring blender for 3 min in Mcllvaine’s buffer 
(10 ml; pH 7.0). The homogenate was filtered 
through 4 layers of gauze and the filtrate (10 ml) was 
used as tea homogenate.

The enzyme solution of watermelon seedlings 
(Citrullus lanatus) was prepared by the method of 
Vick and Zimmerman [11]. Six-day-old etiolated 
watermelon seedlings (3 g fresh weight) were ground 
with Mcllvaine’s buffer (10 ml; pH 7.0) at 4 °C. The 
homogenate was filtered through 2 layers of gauze 
and the filtrate was centrifuged at 12 000 x g  for 
10 min. The supernatant was passed through 2 layers 
of gauze to remove lipid-like materials floating at 
the top of tube. The resultant supernatant (10 ml) 
was used as an enzyme solution.

c) Preparation o f  lsO-labeled 13-L-hydroperoxide: 
A suspension of linoleic acid in a 40 m M  N H 4C1- 
NH4OH buffer (pH 9.0) in the reaction vessel was 
evacuated by water pum p and subsequently by 
flashing N2 gas to eliminate the dissolved air. After 
this procedure was repeated three times, soybean 
lipoxygenase I was injected in the suspension. The 
complete reaction mixture was incubated in an 180 2- 
atmosphere (50 atom%) for 90 min at 0 0 C. The 
reaction mixture was carefully acidified with 2 n  HC1 
and then extracted with ether. The solvent of the 
extract was evaporated in vacuo to give a crude 
hydroperoxide, which was purified by silica gel

(Woelm Pharma, W. Germany) column chromatog­
raphy (pet. ether/ether =  1 /1 )  to give pure 13-l- 
hydroperoxylinoleic acid containing 180 -labeled 13- 
L-hydroperoxide in 48% yield. Purities of 180 -C  and 
160-C  of 13-L-hydroperoxide thus obtained were 
34% and 66%, respectively. Isotope compositions 
were calculated from ratios of intensities of the 
peaks at 225 (+  2) and 311 ( +  2) on mass spectrum 
of trimethylsilyl ether derivative of methyl 13-l - 
hydroxylinoleate prepared by reduction of 13-L- 
hydroperoxide with NaBH4 in methanol and esterifi- 
cation with diazomethane at - 2 0  °C, followed by 
trimethylsilylation with £/s-(trimethylsilyl)-trifluoro- 
acetamide according to the method of Boldingh [18]. 
The structure of labeled hydroperoxide was fully 
substantiated by NM R and IR analyses: IR spec­
trum 3440, 1710, 1450, 9 80 , 730 cm -1; NM R spec­
trum (CHClj) <5= 7.3 (1 H d), 4 . 3 - 6 . 6  (4H, m), 4 .0 0  
(1H, m), 3.30 (1 H, s), 2.21 (4H ,m ), 1.7 (2H ,m ), 
1.42 (16 H, s), 0 .90  (3 H, t).

d) Identification o f cleavage products by solubi­
lized E" : A solution of solubilized E2' (4 ml) and 
Mcllvaine’s buffer (6 ml: pH 7.0) were preincubated 
at 35 °C for 1 min and subsequently incubated with 
13-L-hydroperoxylinoleic acid (lOjimol) for 10 min 
at 35 °C. After 2 n  HC1 (2 ml) was added in the 
incubated solution to stop the reaction, the reaction 
mixture was extracted with ether in a N 2 atm o­
sphere. These procedures were repeated 20 times. 
The combined ether extract was concentrated 
in vacuo and the concentrate was esterified with 
diazomethane at - 2 0  °C. The esterified products 
were converted to methoxime derivatives using 
methoxiamine hydrochloride/sodium carbonate 
(pHs8.0 or 12.0) in the usual m anner [19]. The 
methoximes from cleavage products were identified 
as methoximes of hexanal and 1 l-formyl-rra/w-10- 
undecenoic acid by comparison of GLC retention 
times and mass spectra of authentic specimens syn­
thesized through an unequivocal route: [Shimadzu 
GC-6 A gas chromatograph equipped a glass col­
umn ( 0 3 m m x 3 m )  with 5% OV-25 on 60 — 80 
mesh Chromosorb W AW and Shimadzu GC-MS 
7000].

e) Synthesis o f methyl 11-formyl-trans-lO-unde- 
cenoate: Ozonolysis of methyl 10-undecenoate (2.0 g: 
0.01 mol) in dry ethyl acetate at - 2 0  °C for 1.5 h 
and subsequent hydrogenation over 10% Pd-C (1.0 g) 
gave methyl 9-formyl-nonanoate, which was purified 
by silica gel column chromatography in 77% yield
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(1.7 g). The oxo-ester (1.0 g: 0.003 mol) with formyl- 
methylenetriphenylphosphorane [20] (1.0 g: 0.003 mol) 
was refluxed in benzene for 18 h to afford 11-formyl- 
/rans-10-undecenoate in 81% yield (1.2 g). The struc­
ture was substantiated by IR and NM R analyses: IR 
spectrum 2700, 1730, 1690, 980 cm -1; NM R spec­
trum (CHC13) <5=9.6 (1H, d), 6.3 (2H ,m ), 3.55 
(3H, s), 2.2 (4H, m), 1.33 (12H, s) [21].

f) Oxygen-isotope effect during incubation o f  13-l- 
hydroperoxylinoleic acid with solubilized E"

i) GLC analysis o f  form ed hexanal: Solubilized 
E2' (1 ml) or homogenate (4 ml) were brought to
10 ml with Mcllvaine’s buffer (pH 7.0). The mixture 
(10 ml) was preincubated at 35 °C for 1 min in a 
50 ml-Erlenmeyer flask sealed with a rubber stopper 
and then [180]- or [160]-13-L-hydroperoxide (6 nmol) 
was injected into the mixture. After 10 ml of air was 
sucked out of the flask by a syringe, the mixture was 
shaken vigorously for 1 min and subsequently incu­
bated at 35 °C for 10 min with shaking. The head­
space vapor (6 ml) in the flask was quantitatively 
analyzed by the method reported previously [10].

ii) UV analysis o f  cleavage o f  13-L-hydroperoxy- 
linoleic acid: Decrease of absorbance at 234 nm due 
to the conjugated diene of 13-L-hydroperoxide was 
measured photometrically (Hitachi model 124 
spectrophotometer) at 25 °C. The standard reaction 
mixture in 1 cm cuvette contained 13-L-hydroper- 
oxide (0.064 |imol), solubilized hydroperoxide lyase 
E2' (0.1ml) and Mcllvaine’s buffer (pH 7.0) in a 
final volumn of 3 ml. The decrease of absorbance at 
234 nm was followed for 10 min after addition of an 
enzyme solution.

iii) GC-MS analysis o f  recovered 13-hydroperoxide: 
A mixture of 13-L-hydroperoxide (10 nmol), hydro­
peroxide lyase E2' (4 ml) and Mcllvaine’s buffer 
(6 ml) in a 50 ml-Erlenmeyer flask, was incubated 
for 10 min at 35 °C and then the reaction mixture 
was acidified to pH 2.0 with 2 N HC1 (3 ml) to stop 
the reaction. After addition of ammonium sulfate 
(10 g), 13-hydroperoxide was extracted with ether. 
The ether extract was dried over anhydrous sodium 
sulfate, concentrated under reduced pressure and 
reduced with NaBH4 in methanol: Borate buffer, 
pH 9.0, 1/1, V/V to give a hydroxy isomer. The 
hydroxy-acid from the recovered hydroperoxide, 
was esterified with diazomethane in ether at —20 °C. 
The resultant methyl 13-L-hydroxylinoleate was 
converted to the corresponding TMS ether deriva­
tives as described earlier. The TMS ether was sub­

jected to GC-MS analysis: (18.3 min: PEG 20 M 
(BCL) 0  0.3 mm x 30 m, column temp. 180 °C, 
injector and detector temp. 200 °C, N 2 flow rate
20 ml/min). Oxygen isotopic compositions were 
determined by calculations from ratios of relative 
intensities of the fragment ions containing oxygen 
atom on mass spectrum [the parent peaks at m /e  382 
and 384 (its isotope peak) and the prom inent peaks 
at m /e  225 and 227 (its isotope peak)].

Results and Discussion

a) Identification o f cleavage products o f  75-L-hydro- 
peroxylinoleic acid by solubilized E '2' : The mixture of 
products resulting from incubation of 13-L-hydro- 
peroxylinoleic acid with solubilized E2' was con­
verted to methoxime derivatives at pH 8.0 according 
to the usual method. The crude methoximes were 
subjected to GLC analysis w ithout further purifica­
tion. From the GLC-tracings of Fig. 2, cleavage 
products by E2' was found to comprise three oxo- 
compounds (peak A, 5.8 min, peak B, 19.9 min and 
peak C, 22.0 min) accompanied by endogenous 
compounds in E2 solution. Retention times of 
peak A and C were the same as those of authentic 
methoximes of hexanal and methyl 11-formyl-fra/w- 
10-undecenoate synthesized through an unequivocal 
route, respectively. The mass spectra of peak A and 
C were identical with those of methoximes of 
hexanal and methyl 1 l-form yl-frw u-10-undecenoate, 
respectively as shown in Fig. 3. Authentic m etho­
ximes of the synthetic C 12-oxo ester prepared at both

t R [min]

Fig. 2. GLC analysis of cleavage products of 13-L-hy- 
droperoxide by solubilized E". B: methoxime of methyl 11 - 
formyl-cw-9-undecenoate; C: methoxime of methyl 11-for- 
myl-trans-10-undecenoate.
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Fig. 3. Mass spectra of methoximes of C12-oxo acid 
and hexanal (A): methoxime of hexanal; (B): metho- 
xime of methyl 1 l-formyl-/ra/tt-10-undecenoate.
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pH 8.0 and 12.0 showed a single peak on G LC 
analysis, whereas peak B was shifted to peak C, 
being prepared the methoxime derivative at 
pH 12.0, from the cleavage mixture as seen in the 
upper GLC-tracing of Fig. 2. This reflects the iso­
merization of the ß,y-oxo acid ester (peak B) to the 
a,/?-oxo acid ester (peak C) and was in agreement 
with that reported on runner bean pods by Z im m er­
man et al. [22].

Based on these results and findings, peak B was 
shown to be ll-form yl-m -9-undecenoate. W ith 
denatured E'2' , which is prepared by heating at 
95 °C for 10 min, peak A, B and C were not de­
tected under the condition used for the enzymatic 
reaction. Thus, hexanal and 1 l-form yl-m -9-unde- 
cenoic acid, which isomerized to the corresponding 
trans- 10-isomer were enzymatically formed from 
13-L-hydroperoxylinoleic acid by solubilized E2 .

b) Isotope effect

Incubation of unlabeled 13-L-hydroperoxylinoleic 
acid (6 (imol) with solubilized E2 (1 ml) for 10 min at

35 °C, resulted in 1.2 nmol of hexanal formation, 
whereas 0.5 nmol of hexanal was formed from the 
180-labeled 13-L-hydroperoxylinoleic acid. The dif­
ference between an amount of hexanal formed from 
the 180 -labeled hydroperoxide and that from un­
labeled hydroperoxide was also found in the region

Substrate [umol]
Fig. 4. Enzymatic formation of hexanal from 180-labeled  
and unlabeled hydroperoxides by solubilized E'2' ( - • - ) :  
hexanal formation from 180-13-L-hydroperoxide; (-0 -): 
hexanal formation from 160-13-L-hydroperoxide.
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Fig. 5. Decrease in absorbance at 234 nm during E£ re­
action of lsO-labeled and unlabeled 13-hydroperoxides, 
(— ): lsO-13- L-hydroperoxide; (—): 160-13-L-hydroper- 
oxide.

of substrate concentration as indicated in Fig. 4. This 
finding is supported by monitoring the course of 
reaction with decrease at 234 nm due to conjugated 
diene of 13-hydroperoxide; unlabeled hydroperoxide 
cleaved faster ca. 2.6 times than the 180 -labeled 
hydroperoxide did as seen in Fig. 5. Using large 
excess of E^, the labeled hydroperoxide was cleaved 
to hexanal completely. Whereas, a decrease in ab­
sorbance at 234 nm was not detected during incuba­
tion of only the substrate 25 °C for 10 min. Thus,

these differences in reactivity between 180 -labeled 
and unlabeled substrates during the cleavage reac­
tion by Ej' could be interpreted in terms of an 
oxygen-isotope effect.

To demonstrate the isotope effect, use of the dif­
ference in purities of 180 -C  of 13-hydroperoxide 
before or after reaction. A significant difference was 
found between the percentage of 180 -C  of TMS 
ether derivative from recovered 13-L-hydroperoxide 
after incubation of 180-labeled 13-L-hydroperoxy- 
linoleic acid for 10 min at 35 °C and that o f the 
peroxide for the substrate.

The percentages of 13-hydroperoxides were deter­
mined from calculations of relative intensities if frag­
ment ions containing the oxygen atom in mass 
spectra (the parent peaks at m /e  382 and 384 or the 
prominent peaks at m /e  225 and 227). Purity of 180 -  
C of the recovered hydroperoxide increased after 
incubation of 180 -labeled hydroperoxide which had 
34% purity of 180-C , as seen in Fig. 6 and Table I. 
With tea chloroplasts and homogenates of tea leaves 
and watermelon seedlings, hexanal formation from 
the 180-labeled hydroperoxide was 44 — 54% of that 
from unlabeled 13-L-hydroperoxide as Table II in­
dicates. Based on these results and findings, we have 
proposed that an oxygen-isotope effect involves in

130 225

50 100 150 200
[m/e]

250

311

300

382

350

Fig. 6. Mass spectra of TMS derivatives of methyl 13-hydroxylinoleate. (A): 180-13-hydroxylinoleate recovered after the 
E" reaction; (B): authentic methyl 160-13-hydroxylinoleate.
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Table I. Isotopic compositions of the recovered 13-hy­
droperoxide from relative intensities of mass fragment ions.

Condition Relative intensity [%]

Mass ion [m/e]  Mass ion [m/e]

225 227 382 384

Substrate 66.2 33.8 63.6 36.4
Recovered 58.0 42.0 56.9 43.1
hydroperoxide a

a 13-Hydroperoxide recovered at 23% completion of cleav­
age reaction by E".

Table II. Comparison of oxygen-isotope effect in E" re­
action by plant tissues.

Enzyme Hexanal [|imol]

[160 ]5 [180 ] s

T ea leaves1 
Tea chloroplasts2 
Solubilized E'2' 3 
Watermelon seedlings4

2.42 (100)7 
3.68 (100) 
2.70 (100) 
0.83 (100)

1.27 (52) 
1.62 (44) 
1.23 (46) 
0.45 (54)

1 0.5 g fresh weight.
2 0.1 g [corresponded to 0.5 g leaves (fresh weight)].
3 1 mil (see Materials and Methods).
* 10 ml (see Materials and Methods).
5 hexanal formation from 160-13-L-hydroperoxide.
6 hexanal formation from 180-13-L-hydroperoxide.
7 numbers in parenthesis represent relative values (%).
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