Protonenübertragungsreaktionen zweibasischer Säuren in wäßriger Lösung: 3-Hydroxypyridin *

Proton Transfer Reactions of Dibasic Acids in Aqueous Solution: 3-Hydroxypyridine

P. Schuster, K. Tortschanoff

Institut für Theoretische Chemie und Strahlenchemie der Universität Wien

und

H. Winkler

Max-Planck-Institut für Biophysikalische Chemie, Göttingen-Nikolausberg

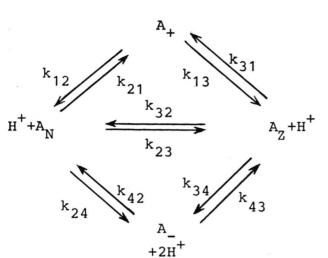
(Z. Naturforsch. 31 c, 219-224 [1976]; eingegangen am 20. Februar 1976)

Proton Transfer, Relaxation Kinetics, Ultrasound Absorption, Temperature-Jump-Method, 3-Hydroxypyridine

Proton transfer in aqueous solutions of 3-hydroxypyridin (3HP) has been studied by temperature jump relaxation and ultrasound absorption techniques. Two chemical relaxations have been observed. In the range $pK_1 \le pH \le pK_2$ the slower of the two processes corresponds to proton transfer between the N and O atoms. A mechanism is proposed which describes the pH and concentration dependence of the relaxation time measured. Proton transfer involves two types of processes which operate in parallel: 1. pseudomonomolecular, by consecutive diffusion-controlled protonation and deprotonation steps, and 2. bimolecular by diffusion-controlled proton transfer between the neutral 3HP molecule and its corresponding cation or anion. There is no evidence for direct monomolecular proton transfer within the hydration shell of the molecule $(k_- \sim k_- \le 2 \times 10^3 \, {\rm sec}^{-1})$.

Kinetische Untersuchungen innermolekularer Protonenübergänge in zweibasischen Säuren wurden mehrfach beschrieben 1-5, 21, 22. Aus Mangel an ausreichendem experimentellen Material konnte jedoch bis jetzt in keinem einzigen Fall eine vollständige Analyse des einfachsten möglichen Reaktionsmechanismus durchgeführt werden. Wir wählten deshalb für unsere Untersuchungen eine Verbindung als Beispiel aus, welche auf Grund ihrer Eigenschaften für die geplanten Messungen besonders geeignet schien: 3-Hydroxypyridin (3-HP; Gleichgewichtskonstanten (s. Abb. 1): $pK_1 = 4.91$, $pK_2 = 8.62$, $pK_I = 6.77$ und $K_T = 1.05$ in 0.2 M wäßrigem Phosphatpuffer 6). Darüber hinaus besitzt 3-HP auch entscheidende Bedeutung als Modellsubstanz, da diese Gruppierung in den Verbindungen der Vitamin-B6-Reihe auftritt. In jüngster Zeit wurde die 3-Hydroxypyridingruppierung auch in Antibiotika, z.B. Virginiamycin S 7 aufgefunden; einige Autoren schreiben dieser Substanz Protonencarriereigenschaften zu 8.

Sonderdruckanforderungen an Prof. Dr. P. Schuster, Institut für Theoretische Chemie und Strahlenchemie der Universität Wien, Währingerstraße 17, A-1090 Wien.


* Diese Arbeit wurde vom Fonds zur Förderung der Wissenschaftlichen Forschung in Österreich, Projekte Nr. 1217 und 2015, unterstützt.

An dieser Stelle berichten wir über relaxationskinetische Messungen an wäßrigen Lösungen von 3-HP, welche mit Hilfe der konventionellen Temperatursprungmethode 1,9, der "Kabel"-Temperatursprungmethode 10, 11 und der Ultraschallabsorptionstechnik 12,13 durchgeführt wurden. Zwei Relaxationsprozesse wurden gefunden, deren Zeitkonstanten und Amplituden stark vom pH-Wert der Lösung und Einwaagekonzentration an 3-HP (c₀) abhängen. Im allgemeinen konnte nur der langsamere Prozeß (Relaxationszeit τ_I in Abb. 3) verfolgt werden. Nur in Ausnahmefällen gelang es, mit den angewendeten Untersuchungsmethoden beide Zeitkonstanten zu bestimmen. Hier analysieren wir daher nur den langsameren Prozeß, welcher im pH-Bereich zwischen den pK-Werten im wesentlichen der Protonenübertragungsreaktion entspricht. Bei konstantem pH-Wert hängt die reziproke Relaxationszeit dieses Prozesses (τ_I⁻¹) linear von der Einwaagekonzentration c₀ ab (Abb. 2 und Gl. (1)).

$$\tau^{-1} = \alpha + \beta \cdot c_0 . \tag{1}$$

Lediglich bei ganz hohen Konzentrationen, $c_0 > 0,1$ M, treten geringe Abweichungen auf, welche unter anderem auf den Einfluß von Aktivitätskoeffizienten zurückgeführt werden können und hier nicht

Monomolekulare Prozesse:

$$A_{+} \xrightarrow{k_{12}} A_{N}^{+H}^{+}$$

$$A_{+}^{+OH} \xrightarrow{k_{12}^{+}} A_{N}$$

(alle anderen Reaktionsschritte
analog)

ì

Bimolekulare Prozesse:

$$A_{N}+A_{N} \xrightarrow{k_{23}^{\circ}} A_{Z}+A_{Z}$$

$$A_{N}+A_{+} \xrightarrow{k_{23}^{+}} A_{+}+A_{Z}$$

$$A_{N}+A_{+} \xrightarrow{k_{32}^{+}} A_{+}+A_{Z}$$

$$A_{N}+A_{-} \xrightarrow{k_{23}^{-}} A_{-}+A_{Z}$$

Gleichgewichtskonstante:

$$K_{T} = \frac{\left[A_{Z}\right]}{\left[A_{N}\right]} v \frac{c_{Z}}{c_{N}}$$

Mikroskopische Dissoziations-konstanten:

$$K_{1N} = \frac{\left[A_{N}\right]\left[H^{+}\right]}{\left[A_{+}\right]} \sim \frac{c_{N} \cdot c_{H}}{c_{+}}$$

$$(K_{1Z}, K_{2N}, K_{2Z} \text{ analog})$$

Thermodynamische Dissoziations-konstanten:

$$K_1 = K_{1N} + K_{1Z}; \frac{1}{K_2} = \frac{1}{K_{2N}} + \frac{1}{K_{2Z}}$$

Abb. 1. Reaktionsmechanismus zur Beschreibung des innermolekularen Protonenüberganges in 3-Hydroxypyridin.

weiter untersucht werden sollen. α und β sind Funktionen des pH-Wertes der Lösungen und werden im folgenden eingehend beschrieben.

Das Reaktionsschema, nach dem die Meßdaten ausgewertet werden sollen, muß gemäß Gl. (1) mono- und bimolekulare Teilschritte in bezug auf 4 3-HP enthalten. Unser Schema (Abb. 1) entspricht im wesentlichen einem für zwischenmolekulare Protonenübergänge vorgeschlagenen Reaktionsmecha- 2 nismus 14, 15, der in vereinfachter Form auch auf den innermolekularen Prozeß angewandt wurde 3. 1 Eine Erweiterung dieses einfachsten Schemas für Dissoziations- und Protonenübertragungsreaktionen einer zweibasischen Säure schlug Ahrens 4 zur Beschreibung der Relaxationsprozesse in 5'-Deoxypyridoxal vor. Ihre Auswertung enthält allerdings einige nicht erfüllbare Näherungsannahmen, auf die zusammen mit den mathematischen Einzelheiten unserer Analyse an anderer Stelle ausführlicher 16, 17 eingegangen werden soll. Für sämtliche Protonierungs-Deprotonierungsschritte wurden Parallelreaktionen entsprechend Protolyse und Hydrolyse 14 an-

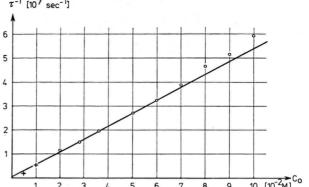


Abb. 2. Konzentrationsabhängigkeit der Relaxationszeit $\tau_{\rm I}^{-1}$ in 3-Hydroxypyridin (pH = 4,3, T = 25 °C, I = 0,1; $\alpha \sim 1 \times 10^6 \, {\rm sec}^{-1}$; $\beta = 5,3 \times 10^8 \, {\rm m}^{-1} \, {\rm sec}^{-1}$, +, Kabeltemperatursprung, \bigcirc , Ultraschallabsorption).

gesetzt. Unter der Annahme stationärer Konzentrationen für das Kation (A₊) und das Anion (A₋) von 3-HP $- |\delta c_+|, |\delta c_-| \leq |\delta c_N| \sim |\delta c_Z|$ — erhält man folgende Ausdrücke für α und β :

$$\alpha = k_{32} + k_{23} + \frac{(k_{12} + k'_{12}c_{OH}) (k_{31} c_{H} + k'_{31}) + (k_{21} c_{H} + k'_{21}) (k_{13} + k'_{13} c_{OH})}{k_{12} + k'_{12} c_{OH} + k_{13} + k'_{13} c_{OH}} + \frac{(k_{42} c_{H} + k'_{42}) (k_{34} + k'_{34} c_{OH}) + (k_{24} + k'_{24} c_{OH}) (k_{34} c_{H} + k'_{43})}{k_{42} c_{H} + k'_{42} + k_{43} c_{H} + k'_{43}}.$$
(2)

$$\beta = \frac{(1 + K_{\mathrm{T}}) \left(4 \, k_{32}^{0} \cdot K_{\mathrm{T}} + k_{32}^{+} \cdot \frac{c_{\mathrm{H}}}{K_{1\mathrm{N}}} + k_{32}^{-} \cdot \frac{K_{2\mathrm{N}}}{c_{\mathrm{H}}} \right)}{1 + K_{\mathrm{T}} + \frac{c_{\mathrm{H}}}{K_{1\mathrm{N}}} + \frac{K_{2\mathrm{N}}}{c_{\mathrm{H}}}} \; . \tag{3}$$

Nur für pH-Werte, die weit vom Neutralpunkt entfernt sind, vereinfachen sich die angegebenen Ausdrücke in dem von Ahrens ⁴ angegebenen Sinne ¹⁸:

pH ≤ 7:

$$\alpha \sim k_{32} + k_{23} + \frac{k_{12} \cdot k_{31} + k_{21} \cdot k_{31}}{k_{12} + k_{13}} c_{H} + \frac{k_{42} \cdot k_{34} + k_{24} \cdot k_{43}}{k_{42} + k_{43}} \sim k_{H} \cdot c_{H}.$$
 (2')

$$\beta \sim k_{32}^+ (1 + K_T)$$
. (3')

pH ≥ 7:

$$\alpha \sim k_{32} + k_{23} + \frac{k'_{12} \cdot k'_{31} + k'_{21} \cdot k'_{13}}{k'_{12} + k'_{21}} + \frac{k'_{42} \cdot k'_{34} + k'_{24} \cdot k'_{43}}{k'_{42} + k'_{43}} \cdot c_{OH} \sim k_{OH} c_{OH}.$$
 (2")

$$\beta \sim k_{32}^{-}(1+K_{\rm T})$$
. (3")

Der wesentliche Unterschied zwischen den pH-Abhängigkeiten von mono- und biomolekularem Prozeß, beschrieben durch die Funktionen α und β , besteht also darin, daß α in den extremen Bereichen proportional zu c_H und c_{OH} zunimmt, während die Geschwindigkeit des bimolekularen, katalysier-

ten Prozesses (β) bei niedrigem und hohem pH konstant wird. Um die Annahme der Stationarität zu rechtfertigen, berechneten wir für einzelne pH-Bereiche (pH < 7 und pH > 7) auch die Relaxationszeiten für die gekoppelten Elementarschritte ($\tau_{\rm I}$ und $\tau_{\rm II}$). Wie Abb. 3 zeigt, ist diese Annahme in den ge-

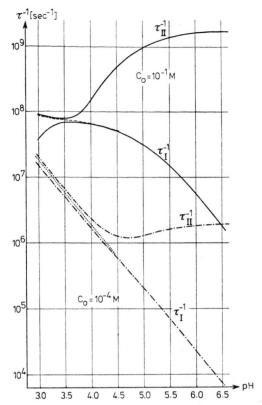


Abb. 3. Gültigkeitsbereich für die Annahme stationärer Konzentrationen an 3-Hydroxypyridinkation (A_+) und -anion (A_-) . $(c_0=0,1 \text{ m}: ---$ stationäre Lösung, —— exakte Lösungen; $c_0=1\times 10^{-4} \text{ m}: \cdots$ stationäre Lösung, $-\cdot-\cdot$ exakte Lösungen).

samten hier betrachteten pH- und Konzentrationsbereichen gut erfüllt. Aus technischen Gründen (pH-Konstanz) gestalten sich Messungen bei hohen Konzentrationen an 3-HP mit Hilfe der Ultraschallabsorptions- und Kabel-Temperatursprungmethode einfacher, und der Kurvenverlauf von $\beta(pH)$ ist dementsprechend auch leichter zugänglich als die Funktion $\alpha(pH)$. In Abb. 4 ist die Kurve $\beta(pH)$ gezeigt, welche durch Anpassung an die Meßpunkte bei hohen und niedrigen pH-Werten erhalten wurde. Die durch die Anpassung ermittelten Geschwindigkeitskonstanten für die beiden bimolekularen katalytischen Reaktionsschritte k₂₃ und k₃₂ (siehe Tabelle) entsprechen sehr gut den Erwartungen für diffusionskontrollierten Protonenaustausch zwischen Molekülen dieser Größe 14, 15. Wie die Meßwerte um den isoelektrischen Punkt herum zeigen, kann der gesamte Kurvenverlauf zufriedenstellend durch die beiden katalytischen Prozesse beschrieben werden. Der synchrone Austausch von

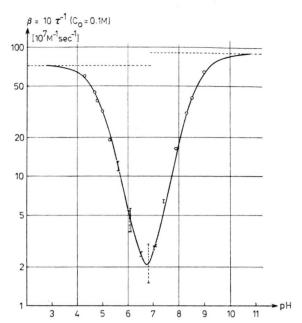


Abb. 4. Konzentrationsabhängiger Anteil der Relaxationszeit in 3-Hydroxypyridin: β (pH), T=25 °C, I=0,1; \bigcirc , Ultraschallabsorption; |---|, Kabeltemperatursprung; |---|, konventioneller Temperatursprung, extrapoliert aus der Konzentrationsabhängigkeit von Messungen bei niedrigeren Konzentrationen.

Tabelle. Katalytische Koeffizienten und Geschwindigkeitskonstanten für den innermolekularen Protonenübergang in 3-Hydroxypyridin ($T=25\,^{\circ}\text{C},\,I=0,1$).

Konstante	Zahlenwert
k_{23}^{+}	$3.7 \times 10^8 \text{ m}^{-1} \text{sec}^{-1}$
\mathbf{k}_{32}^{+}	$3.5 \times 10^8 \text{ m}^{-1} \sec^{-1}$
k_{23}^{-}	$4.6 \times 10^8 \text{ M}^{-1} \text{ sec}^{-1}$
k_{32}^{-}	$4.4 \times 10^8 \text{ M}^{-1} \sec^{-1}$
$k_{\rm H} = \frac{k_{12} \cdot k_{31} + k_{21} \cdot k_{13}}{k_{12} + k_{13}}$	$2 \ \times 10^{10} \ \text{m}^{-1} \ \text{sec}^{-1}$
$k_{\rm OH} = \frac{k'_{42} \cdot k'_{34} + k'_{24} \cdot k'_{43}}{k'_{42} + k'_{43}}$	$1.5 \times 10^{10} \; \mathrm{M^{-1} \; sec^{-1}}$

zwei Protonen zwischen zwei Molekülen 3-HP spielt – wenn überhaupt – nur eine ganz untergeordnete Rolle $(k_{32}^0 \leqslant 10^7 \, {\rm sec}^{-1} \, {\rm M}^{-1})$.

Bei niedriger Konzentration an 3-HP wird die pH-Abhängigkeit der Relaxationszeit weitgehend von der Funktion $\alpha(pH)$ bestimmt. Da eine direkte Extrapolation der Meßwerte auf $c_0 \rightarrow 0$ wegen der großen Fehlerbreiten sehr unsicher ist, korrigierten wir die bei $c_0 = 2 \times 10^{-4} \, \mathrm{M}$ erhaltene Kurve (Abb. 5) um die von β her bekannten Beträge der bimolekularen Reaktion. Im sauren und alkalischen Bereich erhielten wir die erwartete Proportionalität zu

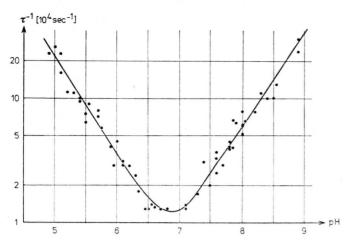


Abb. 5. Relaxationszeit in 3-Hydroxypyridin ($c_0 = 2 \times 10^{-4} \,\mathrm{M}$, $T = 25 \,^{\circ}\mathrm{C}$, I = 0,1; die starke Streuung der einzelnen Meßpunkte hat ihre Ursache in der mangelnden pH-Konstanz hochverdünnter, ungepufferter Lösungen).

cH bzw. cOH mit den in der Tabelle angeführten katalytischen Koeffizienten, kH und kOH. Die Zahlenwerte entsprechen völlig jenen, welche man bei Annahme diffusionskontrollierter Reaktionen mit H⁺ und OH⁻ erwarten würde. Wegen der starken Streuung der Meßpunkte im Neutralbereich gestaltet sich die Beantwortung der Frage nach der Bedeutung des innermolekularen direkten Protonenaustausches $(k_{23} \text{ und } k_{32})$ etwas schwieriger. Bei pH = 7 liegt die aus den für Diffusionskontrolle abgeschätzten Konstanten berechnete Relaxationszeit für die katalysierten Prozesse allein ($\tau_{\rm ber} = 2.5 \times 10^{-4} \, {\rm sec}$) nur wenig über dem aus den Meßpunkten extrapolierten Wert ($\tau_{\rm exp} = 1.4 \times 10^{-4} \, {\rm sec}$). Mit Sicherheit können wir daher nur auf eine obere Grenze für die Geschwindigkeit des unkatalysierten innermolekularen Protonenüberganges schließen (k23~ $k_{32} < 2 \times 10^3 \, \text{sec}^{-1}$). Die gegenseitige, monomolekulare Umwandlung von Neutralform und Zwitterion des 3-HP verläuft daher auch im Neutralbereich zum ganz überwiegenden Teil über A₊ und A₋ als stationäre Zwischenstufen ab, oder, mit anderen Worten ausgedrückt, die direkte innermolekulare Protonenübertragung verläuft langsamer als die Aufeinanderfolge von Protonierungs- und Deprotonierungsschritt unter Ausbildung eines freien hydratisierten Protons oder Defektprotons. Im Vergleich zu anderen Molekülen verläuft auch die katalysierte Protonenübertragung beim 3-HP und seinen Verwandten besonders langsam ab, was im wesentlichen durch zwei Faktoren bestimmt ist: 1. der isoelektrische Punkt fällt in die unmittelbare Umgebung des Neutralpunktes (pK_I \sim 7) und 2. die Gleichgewichtskonstante für die Protonenübertragung liegt in der Größenordnung $K_T \sim 1$.

Abschließend erscheint es noch von Interesse, die hier erhaltenen Resultate mit anderen ähnlichen Protonenübertragungsprozessen zu vergleichen. Innermolekulare Protonenübergänge wurden in zwei Klassen von anologen, zweibasischen Säuren untersucht: Aminobenzoesäuren 1, 21 und 2-Aminoäthylmercaptane (AM) 3. Im Fall von 3- und 4-Aminobenzoesäure zeigt eine zum 3-HP analoge Berechnung 17, daß die gemessenen Relaxationszeiten 1 gut mit den Erwartungen für katalysierte, diffusionskontrollierte Schritte übereinstimmen. Die pK-Werte der Aminobenzoesäuren unterscheiden sich stark von denen des 3-HP und daher laufen die katalysierten Protonenübergänge am isoelektrischen Punkt um etwa drei Zehnerpotenzen rascher ab. Für 2-Aminobenzoesäure wurde zwar eine Relaxationszeit für den Protonenübergang angegeben 1, aber wir konnten keine verläßlichen Angaben über K_T finden. Bei den 2-Aminoäthylmercaptanen (AM) hingegen verläuft die innermolekulare Protonenübertragung am isoelektrischen Punkt um etwa zwei Zehnerpotenzen rascher ab, als eine Berechnung basierend auf der Annahme von diffusionskontrollierten, katalysierten Teilschritten erwarten läßt. In diesen Molekülen wandert das Proton dementsprechend bevorzugt innerhalb der Hydrathülle des Moleküls. Eine mögliche Erklärung für dieses unterschiedliche Verhalten kann in einer speziellen Struktur der Hydrathülle von AM liegen, in welcher ein Wassermolekül bevorzugt zwischen dem kationischen und anionischen Zentrum des Zwitterions gebunden wird:

Ähnliche Strukturen treten auch in konzentrierten Salzlösungen auf ¹⁹ und sind durch besondere Stabilität gekennzeichnet ²⁰. Der Protonenübergang kann in diesem Fall bevorzugt längs des durch Wasserstoffbrücken vorgezeichneten Weges erfolgen. In 3-HP und in 3- und 4-Aminobenzoesäure wären zwei oder mehrere Wassermoleküle für eine solche Brücke zwischen den Bindungsplätzen des Protons erforderlich, was jedoch eine zu große Einschrän-

kung für die Ausbildung der günstigsten Hydrathülle des Gesamtmoleküls bedeutet.

Herrn Prof. Dr. M. Eigen sind wir für zahlreiche Diskussionen und Ratschläge zu diesem Thema zu großem Dank verpflichtet. Darüber hinaus wollen wir den Herren Dres. F. Eggers und Th. Funck für ihre Hilfe beim Aufbau der Ultraschallabsorptionsmethode sowie Frl. Ingrid Günther und Frl. Vivian Thomas für ausgezeichnete technische Assistenz danken.

- ¹ M. Eigen u. L. De Maeyer, Technique of Organic Chemistry, 2nd ed. (A. Weissberger, ed.), Vol. VIII/2, p. 895, Wiley Interscience 1963.
- ² M. L. Ahrens, G. Maaß, P. Schuster u. H. Winkler, FEBS Letters 5, 327 [1969].
- ³ G. Maaß u. F. Peters, Angew. Chemie **84**, 430 [1972].
- M. L. Ahrens, Biochim. Biophys. Acta 320, 86 [1973].
 I. Oberbäumer, Diplomarbeit, Univ. Göttingen 1975.
- ⁶ D. E. Metzler, C. M. Harris, R. J. Johnson, D. B. Siano u. J. A. Thomson, Biochemistry 12, 5377 [1973].
- ⁷ H. Vanderhaeghe u. G. Parmentier, J. Amer. Chem. Soc. 82, 4414 [1960].
- 8 H. Ruf, I. Oberbäumer, P. Zingsheim u. E. Grell, in Vorbereitung.
- ⁹ G. G. Hammes, Investigations Techniques of Chemistry, 3rd ed., Vol. VI/2, p. 147, Wiley-Interscience, New York 1974.
- ¹⁰ G. W. Hoffmann, Rev. Sci. Instrum. 42, 1643 [1971].
- ¹¹ D. Pörschke, in Vorbereitung.
- ¹² F. Eggers, Acustica 19, 323 [1967/68].

- ¹³ F. Eggers u. Th. Funck, Rev. Sci. Instrum. 44, 969 [1973].
- ¹⁴ M. Eigen, Angew. Chemie 75, 489 [1963].
- ¹⁵ M. Eigen, W. Kruse, G. Maaß u. L. De Maeyer, Progress in Reaction Kinetics 2, 287 [1964].
- ¹⁶ H. Winkler, K. Tortschanoff u. P. Schuster, in Vorbereitung.
- ¹⁷ P. Schuster, K. P. Wolschann u. K. Tortschanoff, Chemical Relaxation in Molecular Biology (R. Rigler u. I. Pecht, eds.), Springer-Verlag, Berlin 1976, im Druck.
- ¹⁸ M. Eigen, persönliche Mitteilung.
- ¹⁹ A. H. Narten, F. Vaslow u. H. A. Levy, J. Chem. Phys. 58, 5017 [1973].
- ²⁰ R. O. Watts, E. Clementi u. J. Fromm, J. Chem. Phys. 61, 2550 [1974].
- ²¹ R. D. White u. L. J. Slutsky, J. Phys. Chem. **76**, 1327 [1972].
- ²² M. Freyfus, G. Dodin, O. Bensaude u. J. E. Dubois, J. Amer. Chem. Soc. **97**, 2369 [1975].