Notizen 761

Der Dotterkern in jungen Oocyten von Noemacheilus barbatulus (L.) (Teleostei, Cobitidae)

The Yolk Nucleus in Young Oocytes of Neomacheilus barbatulus (L.) (Teleostei, Cobitidae)

Rüdiger Riehl

I. Zoologisches Institut, Justus Liebig-Universität Gießen

(Z. Naturforsch. **31** c, 761 – 762 [1976]; eingegangen am 23. Juli/20. August 1976)

Yolk Nucleus, Oocytes, Electron Microscopy, Noemacheilus barbatulus

The yolk nucleus in the young oocytes of the freshwater teleost *Noemacheilus barbatulus* (L.) was investigated by electron microscopy. Yolk nuclei are only found in stage I. They consist of nucleolar substance, mitochondria and partly of dictyosomes. The nucleolar material leaves the nucleus through the pores of the nuclear membrane and gets into the juxtanuclear cytoplasm. It mainly consists of ribonucleic acid. The yolk nuclei of *Noemacheilus* doesn't have any relations to the formation of yolk.

In Teleosteer-Oocyten wurden Dotterkerne schon im vorigen Jahrhundert gefunden (Emery ¹ bei Fierasfer, Henneguy ² bei Syngnathus, Hubbart ³ bei Cymatogaster). Zum ersten Mal gründlich wurden Dotterkerne bei Fischen von Franz ⁴ untersucht, der sie in Schollen- und Klieschen-Oocyten feststellte. Inzwischen sind sowohl bei weiteren Teleosteern ⁵⁻¹³ als auch bei verschiedenen anderen Tierstämmen Dotterkerne nachgewiesen worden. Dabei weichen die Ergebnisse zu Struktur und Genese der Dotterkerne sowie die Deutung ihrer Funktion in vielen Fällen voneinander ab.

In den Eizellen von Noemacheilus barbatulus wurde erstmalig ein Dotterkern von Sterba ¹⁴ beschrieben. Nach eigenen lichtmikroskopischen und histochemischen Untersuchungen ließ sich bei Noemacheilus barbatulus kein Dotterkern darstellen. Aus diesem Grunde wurden die Befunde von Sterba ¹⁴ und die eigenen Ergebnisse elektronenmikroskopisch und ultrahistochemisch überprüft und ergänzt.

Elektronenmikroskopisch ist in den Noemacheilus-Oocyten ein Dotterkern nachweisbar. Er wird allerdings nur im Stadium I gefunden (Stadieneinteilung nach Arndt ¹⁵). Im juxtanucleären Cytoplasma sammeln sich Mitochondrien an. Im frühen Stadium I ist nur ein einziger Nucleolus vorhanden. Im weiteren Verlauf des Stadiums I kommen bis über 100 Nucleoli vor, die sich an die Peripherie des

Sonderdruckanforderungen an Dr. R. Riehl, I. Zoologisches Institut, Justus Liebig-Universität, Stephanstr. 24, D-6300 Gießen.

Kernes verlagern (Abb. 1*). Zum Teil liegen die Nucleoli ganz dicht an der Kernhülle, die im Stadium I kaum gewellt ist. Anhand radioaktiver Markierung ([³H]Uridin) kann gezeigt werden, daß bei Noemacheilus barbatulus nucleoläres Material durch die vorhandenen Kernporen in das Cytoplasma wandert ¹6. Dieses elektronendichte Material liegt der äußeren Kernmembran zunächst eng an und kondensiert sich (Abb. 2).

Anschließend gelangt das nucleoläre Material in den juxtanucleären Cytoplasmabereich. Es befindet sich jetzt zwischen den dort liegenden Mitochondrien. Regressive Uranylacetatkontrastierung nach Bernhard ¹⁷ und Nucleinsäureabbau am GMA-Ultradünnschnitt nach Leduc ^{18, 19}, Marinozzi und Bernhard erbrachten, daß das osmiophile Material überwiegend aus RNA besteht.

Die Dotterkerne der Noemacheilus-Oocyten bestehen aus mehr oder weniger homogen aussehendem, RNA-haltigem Material, das außen von einem Kranz aus Mitochondrien umgeben ist (Abb. 3 und 4). Es werden außerdem noch Dictyosomen in der Nähe der Dotterkerne gefunden. Die Dotterkerne der Noemacheilus-Eizellen bestehen somit aus zwei bis drei Komponenten. Diese sind das RNA-haltige nucleoläre Material, die Mitochondrien und machmal auch die Dictyosomen.

Den Dotterkernen von Fischen wird meistens eine direkte oder indirekte Beteiligung an der Vitellogenese zugeschrieben ^{5-9, 20}. Bei *Plecoglossus altivelis* und *Pseudorasbora pimula* sind die Dotterkerne an der Bildung der Rindenvakuolen beteiligt ^{12, 13}. Dagegen haben die Dotterkerne der *Noemacheilus*-Oocyten keine nachweisbaren Beziehungen zur Vitellogenese und zur Entstehung der Rindenvakuolen.

Der Deutschen Forschungsgemeinschaft wird für die Unterstützung gedankt.

* Abbn. 1-4 siehe Tafeln auf Seite 762 a und 762 b.

Legenden zu den Abbildungen 1 bis 4:

- Abb. 1. Nucleolus in Cytoplasmanähe. Es ist nucleoläres Material in das Cytoplasma gewandert. Mitochondrien befinden sich in der Nachbarschaft des Materials.
- Abb. 2. Ausgetretene Nucleolarsubstanz, die außen an der Kernhülle liegt und sich dort kondensiert.
- Abb. 3. Beginnende Bildung eines Dotterkernes. Er setzt sich aus Nucleolarsubstanz, Mitochondrien und teilweise Dictyosomen zusammen.
- Abb. 4. Zwei Dotterkerne. Die Nucleolarsubstanz wird rosettenförmig von Mitochondrien umgeben.

Erklärung der Zahlen:

- 1 Caryoplasma; 2 Kernhülle; 3 Kernporen; 4 Annuli;
 - Nucleolus; 6 Nucleolarsubstanz; 7 Mitochondrien;
- 8 Dictyosom; 9 Dotterkern.

762 Notizen

- ¹ C. Emery, Regale Accad. Lincei 1880.
- ² L. F. Henneguy, J. Anat. Physiol. Norm. Pathol. Homme Anim. 29 [1893].
- ³ J. W. Hubbart, Proc. Amer. Phil. Soc. 33 [1894].
- ⁴ V. Franz, Verh. dt. zool. Ges. 17, 99-105 [1907].
- ⁵ G. Mendoza, Proc. Iowa Acad. Sci. **61**, 535-553 [1954].
- ⁶ A. Stolk, Acta Morph. Neerl. Scand. 2, 365-378 [1959].
- ⁷ S. S. Guraya, Z. Zellforsch. **60**, 659-666 [1963].
- ⁸ N. H. G. Dutt, Quart. J. Micr. Sci. 105, 349-352 [1964].
- ⁹ R. P. Nayyar, Quart. J. Micr. Sci. 105, 353-358 [1964].
- ¹⁰ K. J. Götting, Umschau Wiss. Tech. 23/68, 207 [1968].

- 11 K. J. Götting, Verh. dt. zool. Ges., Zool. Anz. Suppl. 32, 161-168 [1969].
- S. Kudo, Zool. Mag. 78, 297-304 [1969 a].
 S. Kudo, Zool. Mag. 78, 334-339 [1969 b].
- ¹⁴ G. Sterba, Z. mikr. anat. Forsch. **63**, 581-588 [1958].
- ¹⁵ E. A. Arndt, Protoplasma 47, 1-36 [1956].
- R. Riehl, laufende, unveröffentlichte Untersuchungen.
 W. Bernhard, J. Ultrastruct. Res. 27, 250-265 [1969].
- ¹⁸ E. H. Leduc, J. Biophys. Biochem. Cytol. **10**, 437-455 [1961].
- ¹⁹ E. H. Leduc, V. Marinozzi, and W. Bernhard, J. Roy. Micr. Soc. 81, 119-130 [1963].
- ²⁰ H. Wartenberg, Z. Zellforsch. **58**, 427-486 [1962].

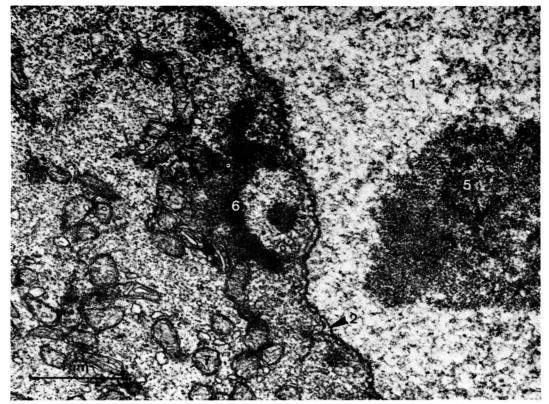


Abb. 1.

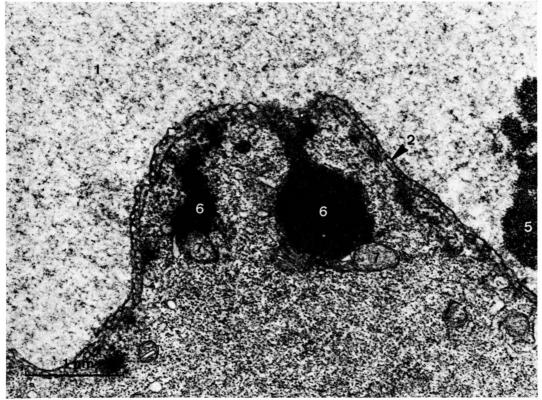


Abb. 2.



Abb. 3.



Abb. 4.

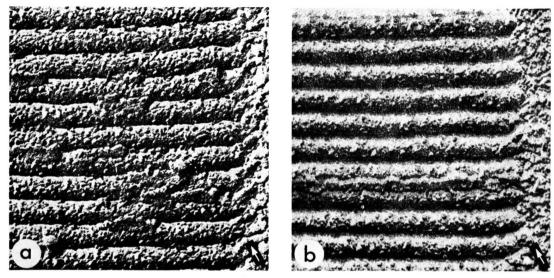


Fig. 1. Electron micrographs of freeze-fractured rhabdomere microvilli from vitamin-A enriched (a), and vitamin-A deprived (b) blow flies. The figures above are examples of numerous micrographs made from a total of 23 vitamin-A deprived and 37 vitamin-A enriched flies. Eyes were excised, fixed in glutaraldehyde for one hour and treated with 25% glycerin for 12 h before freezing. The arrows indicate the direction of carbon-platinum shadowing (× 120,000).