Notizen 101

Notizen

Synthesis of Purine and Pyrimidine Substituted Nitroxides

R. Harcus, P. N. Preston, and J. S. Suffolk Chemistry Departmen, Heriot-Watt University, Edinburgh

(Z. Naturforsch. 31 c, 101-102 [1976]; received July 8/September 24, 1975)

Purines, Pyrimidines, Nitroxides

Reaction of 6-hydrazinopurine and 2-hydrazinopyrimidine with 2,2,6,6-tetramethylpiperidone-1-oxyl gives 2,2,6,6-tetramethylpiperidone-1-oxyl-(6-purinyl)hydrazone (3b) and 2,2,6,6-tetramethylpiperidone-1-oxyl-(2-pyrimidinyl)hydrazone (4b) respectively. Compound 3b is inactive even at high dose levels against TLX/5 lymphoma and 3b and 4b are both inactive in tests using the L1210 leukaemia system.

Considerable effort has been expended by Brown et al. 1 on the synthesis of purine N-oxides for evaluation in chemotherapy and oncogenesis assays. Recently they adduced chemical evidence 2 suggesting the intermediacy of a radical-anion in one solution decomposition mode of esters of the potent oncogen 3-hydroxyxanthine. It is therefore desirable to synthesise and assay if possible free radicals bearing purinyl or pyrimidinyl substituents. Recently 3-hydroxyanthine-derived radicals (1, 2) have been generated 4 but cannot be isolated. We now report our preliminary studies on the synthesis and assay of stable nitroxide radicals containing purine and pyrimidine substituents.

Treatment of 6-hydrazinopurine 5 (3 a) or 2-hydrazinopyrimidine 6 (4 a) with 2,2,6,6-tetramethylpiperidone-1-oxyl 7 (5 a) gave the desired free radicals 8 3b and 4b as stable pale yellow and beige solids respectively. Approaches to nitroxides using the lithium derivative $\mathbf{4c}$ were less successful: when the free radical 5 a was allowed to react 9 with the lithium derivative $\mathbf{4c}$ 10 , only the hydroxylamine derivative $\mathbf{5b}$ was isolated. Treatment 11 of tert-butyl phenyl nitrone with the lithium derivative $\mathbf{4c}$ followed by autoxidation of the ensuing anion resulted in a nitroxide $\mathbf{4d}$ as evidenced by ESR spectroscopy ($\mathbf{a_N} = \mathbf{1} \cdot \mathbf{46}$; $\mathbf{a_H} = \mathbf{0} \cdot \mathbf{34}$ MT) although no attempt was made to isolate this free radical.

Antitumor Evaluation

The purine derivative ${\bf 3}\,{\bf b}$ was tested on TLX/5 lymphoma, but was found to be inactive even at high dose levels (288 mg/kg for 5 days). Compounds ${\bf 3}\,{\bf b}$ and ${\bf 4}\,{\bf b}$ were also inactive in tests using the L1210 leukaemia system.

Requests for reprints should be sent to Dr. P. N. Preston, Department of Chemistry, Heriot-Watt University, Riccarton, Currie, *Edinburgh EH14* 4AS.

Experimental Section

2,2,6,6-Tetramethylpiperidone-1-oxyl-(6-purinyl)-hydrazone ${\bf 3}\ {\bf b}$

To a saturated solution of 6-hydrazinopurine 5 (0.45 g, 3 mmol) in a mixture of glacial acetic acid (1.6 ml) and water (11 ml) was added 2,2,6,6-tetramethylpiperidone-1-oxyl 7 (0.5 g, 3 mmol). The mixture was shaken for 15 min, cooled and extracted with chloroform. The extract was washed with water, dried (MgSO₄) and evaporated to give a solid that was chromatographed (silica gel with CHCl₃/EtOH 9:1 eluant) to give a pure pale yellow product (0.60 g, 66%), m. p. 207 – 208 °C (dec.). Found: C, 55.49; H, 6.62; N, 32.51%. $\rm C_{14}H_{20}N_7O$ requires: C, 55.61; H, 6.67; N, 32.43%. IR (KBr) 3200, 2965, 2922, 1622, 1326 cm $^{-1}$. UV $\lambda_{\rm max}^{\rm EtOH}$ 298 (ϵ , 2.7 \times 10⁴), 224 (1.7 \times 10⁴). ESR. triplet, $a_{\rm N}=1.425$ mT (in benzene).

2,2,6,6-Tetramethylpiperidone-1-oxyl-(2-pyrimidinyl)hydrazone (**4 b**)

To a solution of 2-hydrazinopyrimidine ⁶ (1.8 g, 16 mmol) in a mixture of glacial acetic acid (0.3 ml) and water (2.2 ml) was added 2,2,6,6-tetramethylpiperidone-1-oxyl ⁷ (1.5 g, 9 mmol) and the mixture

shaken for 20 min. The product was extracted with ether and the ensuing solid was purified by preparative scale tlc (CHCl₃: Et₂O 1:1 eluant with silica gel). The orange extract was washed with ether to give a pure product $(1.6\,\mathrm{g},\ 30\%)$ m. p. $114-115\,^{\circ}\mathrm{C}$. Found: C, 59.25; H, 7.54; N, 26.49%. $C_{13}H_{20}N_5O$ requires C, 59.52; H, 7.68; N, 26.70%.

IR (KBr) 3210, 2965, 2922, 1585, 1342, 1228 cm⁻¹. UV $\lambda_{\rm max.}^{\rm Et0H}$ 264 nm (ϵ 2.3 × 10⁴). ESR triplet, $a_{\rm N}=1.50$ mT (in benzene).

We thank the Science Research Council for a research grant and Professor A. B. Foster for helpful comments. We also thank Dr. O. C. Yodor and Dr. T. A. Connors for biological assay data.

¹ G. B. Brown, Prog. Nucleic Acid Res. 8, 209 [1968].

² N. J. M. Birdsall, J. C. Parham, V. Wölcke, and G. B.

Brown, Tetrahedron 28, 3 [1972].

M. N. Teller, G. Stohr, and H. Dienst, Cancer Res. 30, 179 [1970]; K. Sugiura, M. N. Teller, J. C. Parham, and G. B. Brown, Cancer Res. 30, 184 [1970].

⁴ J. C. Parham, I. Pullman, and G. B. Brown, Tetrahedron

29, 3329 [1973].

J. A. Montgomery and L. B. Holum, J. Amer. Chem. Soc. 79, 2185 [1957].

⁶ V. Vanderhaeghe and M. Claesen, Bull. Soc. Chim. Belges **68**, 30 [1959].

E. G. Rozantsev, Free Nitroxyl Radicals, p. 213, Plenum

Press, New York 1970. 8 cf. The synthesis of a spin labelled dinucleotide: W. E.

Trommer, H. Wenzel, and G. Pfleiderer, Liebigs Ann. Chem. 1974, 1357.

⁹ cf. ref. 7, p. 64.

¹⁰ J. C. Roberts, J. Chem. Soc. 1952, 3065.

¹¹ cf. E. G. Janzen and B. J. Blackburn, J. Amer. Chem. Soc. 91, 4481 [1969].