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In two previous publications1; 2 we have pro­
posed an elastic theory for simple lipid bilayers 
which may be viewed as two-dimensional fluids. In 
particular, we have shown that bilayer spheres in 
an aqueous medium can be deformed into ellipsoidal 
bodies if they are submitted to a magnetic field or 
excess outside pressure. Here we consider a possible 
deformation by electric fields. It will be seen that 
the electric effect can be quite strong for large 
vesicles.

As before, we restrict ourselves to small deforma­
tions, assuming the bilayer to be unstretchable and 
the sphere to become an ellipsoid of revolution. To 
calculate the ellipticity we minimize the total ener­
gy consisting of curvature-elastic and electric parts. 
The conductivity of the bilayer will in general be 
very much smaller than that of the aqueous environ­
ment, so it seems permissible to treat the membrane 
as a perfect insulator.

The electric energy of deformation may be ob­
tained from the Maxwell stresses. Those inside the 
membrane will be balanced by equal but opposite 
elastic stresses. The membrane is likely to sustain 
the latter without undergoing an appreciable defor­
mation as they induce neither curvature nor shear 
flow in the bilayer. The only unbalanced force is 
due to the Maxwell stress exerted by the electric 
field just outside the vesicle, since in the enclosed 
water the field must be identical to zero. We assume 
here that the membrane is dielectrically isotropic, 
which implies that the forces caused by the Maxwell 
stresses are confined to the interfaces with water. 
If it is not, electrical torque densities may be ex­
pected within the bilayer. The torques may induce 
curvature, but this should be negligible as the 
polarizabilities of the bilayer should be very much 
smaller than that of water.

The standard expression for the electric potential 
Ue around a sphere in a uniform applied field is

Ue= -Feoz + Ae(cos 0/r2). (1)
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The field Feo is applied in 2 direction; r and 0  are 
polar coordinates, the polar axis being parallel to 
the z axis. For an insulating sphere the radial com­
ponent of the electric field must obey the condition

Fer(re, 6> )= 0, (2 )

where re is the radius of the sphere, i. e., the outer 
radius of the bilayer shell. Insertion of (1) yields

^eo+ (2 Ae/res) = 0 , (3)

thus giving the constant Ae.

In order to compute the electric energy of defor­
mation we write down the force density per unit 
area, /, exerted on the water-sphere interface by the 
Maxwell stress of the external field. We have

f,.= -(l/8jz)ewF ^ ( r e,0 ) ,  (4)

where £w is the dielectric constant of the (external) 
aqueous medium and Fee(re, 0) the field compo­
nent along the meridians. There is no tangential 
component of the force. From (1) and (3) one 
obtains

/,.= - (9/32 ti) ew FIq sin2 0  . (5)

The radial displacement of the bilayer for a small 
ellipsoidal deformation leaving the bilayer area un­
changed may be expressed as

5= (3/2)ä2(cos2 0-1/3 ). (6)

where the amplitude s2 of the second Legendre poly­
nomial is a measure for the ellipticity. Accordingly, 
we have for the electric energy of deformation

71
Et\ = — f /,. 5 2 n r 2 sin 0  d0  

ö

= - (3/2) ew F%0re2s.2. (7)

The total curvature-elastic energy of the ellip­
soidal deformation was calculated to be, for constant 
membrane area

k, ^ 4 (6 - r0c0) (81
d r0-

where kc is the curvature-elastic modulus and c0 

the spontaneous curvature of the bilayer. The mean 
radius r0 and the outer radius re of the shell are 
interchangeable whenever the thickness of the bi­
layer (50 —100 Ä) is much smaller than the radii. 
We restrict ourselves to this case, the only one of 
interest, as is to be seen immediately. Minimizing 
Ed + Ec yields the desired formula for the ellipticity 
induced by the electric field:
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The deformation is always prolate. For 6 — c0r0< 0  
the spherical shape is unstable even without field 2.

An earlier estimate1’ 2 of the curvature-elastic 
modulus is kc = 5 • 10-13 erg. In experiments Fe0 
must be small enough to prevent excessive heat in 
the medium. For f eo = 30 Vcm-1 = 0.1 cgs, r0 — 
3-10~4cm, £w = 80, and c0 = 0 one obtains s2 =
3-10_5cm. This fairly strong deformation is near 
the limit of validity of the present approximation. 
However, since s2 c«c r04, the effect decreases with 
decreasing vesicle radius more rapidly than its 
magnetic counterpart1> 2 which varies at | s2] r03.

Fig. 1. Schematic field distribution around spherical vesicle.

It has been discussed previously 2 that strong de­
formations are likely to be hindered by slow 
permeation. In the case of large vesicles, pores or 
inserted tubes may be useful to avoid such difficul­
ties. With strong fields and large vesicles one might 
hope that the needed holes can be generated, per­
haps with a limited lifetime, by electric break­
throughs 3. Within the membrane one has for the 
radial field strength

f,»,= | ~ f e „ C O S 0 ,  (10)

1 W. Helfrich, Physics Letters 43 A, 409 [1973].
2 W. Helfrich, Z. Naturforsch. 28 c, 693 [1973].
3 Holes not on the vesicle “equator” (with respect to the

applied field) will allow the field to penetrate the vesicle

where b is the thickness of the bilayer. The formula, 
valid for r0 b, is readily derived by expressing 
the potential within the bilayer by a form like (1). 
(The electric potential in the aqueous interior is, of 
course, identical to zero). Clearly, Fmr can be very 
high for large vesicles.

The space charge (ion cloud) sustaining the high 
field in the membrane will be spread over a surface 
layer of water. Its thickness as well as that of any 
electric double layers is roughly given by the Debye 
screening length

a = (ew T/4 n q2 n)1/s

where n is the ion concentration and q the ionic 
charge. The spreading of space charge can certainly 
be disregarded in calculating s2 if a 6, as is the 
case with high ion concentrations. Despite the com­
plexity of the situation, involving hydrostatic pres­
sure and shear flow in the water, Eqn. (9) possibly 
remains valid for larger Debye lengths. This may be 
inferred from the fact that the internal Maxwell 
stresses in the membrane including the space charge 
layers can in principle be balanced, if we were 
dealing with a solid, by equal but opposite elastic 
stresses, and from the assumption that the bilayer 
is unstretchable. A detailed discussion of the limit 
of validity would be quite difficult and is not at­
tempted here.

A bilayer may be electrically polar if its two 
sides are chemically different. Polarity may also 
result from curvature. Polar interaction with the 
applied field can be shown not to contribute to the 
deformation, at least not to a first approximation. 
Experimentally, it can be ruled out by the use of 
AC fields.

which diminishes the strength of the ellipsoidal deforma­
tion. However, the influence can be shown to be negligible 
for large vesicles (r0 ^  b) , provided the holes are very 
few and small.


