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In two previous publications®*? we have pro-
posed an elastic theory for simple lipid bilayers
which may be viewed as two-dimensional fluids. In
particular, we have shown that bilayer spheres in
an aqueous medium can be deformed into ellipsoidal
bodies if they are submitted to a magnetic field or
excess outside pressure. Here we consider a possible
deformation by electric fields. It will be seen that
the electric effect can be quite strong for large
vesicles.

As before, we restrict ourselves to small deforma-
tions, assuming the bilayer to be unstretchable and
the sphere to become an ellipsoid of revolution. To
calculate the ellipticity we minimize the total ener-
gy consisting of curvature-elastic and electric parts.
The conductivity of the bilayer will in general be
very much smaller than that of the aqueous environ-
ment, so it seems permissible to treat the membrane
as a perfect insulator.

The electric energy of deformation may be ob-
tained from the Maxwell stresses. Those inside the
membrane will be balanced by equal but opposite
elastic stresses. The membrane is likely to sustain
the latter without undergoing an appreciable defor-
mation as they induce neither curvature nor shear
flow in the bilayer. The only unbalanced force is
due to the Maxwell stress exerted by the electric
field just outside the vesicle, since in the enclosed
water the field must be identical to zero. We assume
here that the membrane is dielectrically isotropic,
which implies that the forces caused by the Maxwell
stresses are confined to the interfaces with water.
If it is not, electrical torque densities may be ex-
pected within the bilayer. The torques may induce
curvature, but this should be negligible as the
polarizabilities of the bilayer should be very much
smaller than that of water.

The standard expression for the electric potential
U, around a sphere in a uniform applied field is

Uy= —Fooz+ Ay (cos Ofr?). (1)
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The field F,, is applied in z direction; r and @ are
polar coordinates, the polar axis being parallel to
the z axis. For an insulating sphere the radial com-
ponent of the electric field must obey the condition

Fer(rCQQ)EOQ (2\’

where r, is the radius of the sphere, i.e., the outer
radius of the bilayer shell. Insertion of (1) yields

Feo+(2 Ae/ros) =0, (3)

thus giving the constant 4, .

In order to compute the electric energy of defor-
mation we write down the force density per unit
area, f, exerted on the water-sphere interface by the
Maxwell stress of the external field. We have

/r=_(1/8ﬂ)€\vFg® (re, @)7 (4‘)

where ¢, is the dielectric constant of the (external)
aqueous medium and Fog(r., @) the field compo-
nent along the meridians. There is no tangential
component of the force. From (1) and (3) one
obtains

fe=—(9/32 7) &, Feosin? O (5)

The radial displacement of the bilayer for a small
ellipsoidal deformation leaving the bilayer area un-
changed may be expressed as

s=(3/2)s5(cos*© —1/3). (6)

where the amplitude s, of the second Legendre poly-
nomial is a measure for the ellipticity. Accordingly.
we have for the electric energy of deformation

Ei= - f frs2mr2sin O dO
0
= — (3/2) ey Foorel ss . (7)
The total curvature-elastic energy of the ellip-
soidal deformation was calculated to be, for constant

membrane area !,

Ee= 37 k52 (6-ryco) (8)
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where k, is the curvature-elastic modulus and ¢
the spontaneous curvature of the bilayer. The mean
radius r, and the outer radius r. of the shell are
interchangeable whenever the thickness of the bi-
layer (50—100A) is much smaller than the radii.
We restrict ourselves to this case, the only one of
interest, as is to be seen immediately. Minimizing
Eq+E, yields the desired formula for the ellipticity
induced by the electric field:
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The deformation is always prolate. For 6 — ¢,y <0
the spherical shape is unstable even without field 2.

An earlier estimate "2 of the curvature-elastic
modulus is k.=5-10""erg. In experiments F,
must be small enough to prevent excessive heat in
the medium. For F.,=30 Vem™!=0.1 cgs,
3-10 *cm, &,=280, and ¢,=0 one obtains s,=
3-107% cm. This fairly strong deformation is near
the limit of validity of the present approximation.
However, since s, x ry%, the effect decreases with
decreasing vesicle radius more rapldly than its

magnetic counterpart 2 which varies at | s, ~ ry®.
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Fig. 1. Schematic field distribution around spherical vesicle.

It has been discussed previously ? that strong de-
formations are likely to be hindered by slow
permeation. In the case of large vesicles, pores or
inserted tubes may be useful to avoid such difficul-
ties. With strong fields and large vesicles one might
hope that the needed holes can be generated, per-
haps with a limited lifetime, by electric break-
throughs 3. Within the membrane one has for the
radial field strength

Fmr == s L

F.,cos 6,

(10)
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where b is the thickness of the bilayer. The formula,
valid for ry > b, is readily derived by expressing
the potential within the bilayer by a form like (1).
(The electric potential in the aqueous interior is, of
course, identical to zero). Clearly, F. can be very
high for large vesicles.

The space charge (ion cloud) sustaining the high
field in the membrane will be spread over a surface
layer of water. Its thickness as well as that of any
electric double layers is roughly given by the Debwe
screening length

a= (‘F\\' kB T/4‘ 7T 92")1/’

where n is the ion concentration and ¢ the ionic
charge. The spreading of space charge can certainly
be disregarded in calculating s, if @ < b, as is the
case with high ion concentrations. Despite the com-
plexity of the situation, involving hydrostatic pres-
sure and shear flow in the water, Eqn. (9) possibly
remains valid for larger Debye lengths. This may be
inferred from the fact that the internal Maxwell
stresses in the membrane including the space charge
layers can in principle be balanced, if we were
dealing with a solid, by equal but opposite elastic
stresses, and from the assumption that the bilayer
is unstretchable. A detailed discussion of the limit
of validity would be quite difficult and is not at-
tempted here.

A bilayer may be electrically polar if its two
sides are chemically different. Polarity may also
result from curvature. Polar interaction with the
applied field can be shown not to contribute to the
deformation, at least not to a first approximation.
Experimentally, it can be ruled out by the use of

AC fields.

which diminishes the strength of the ellipsoidal deforma-
tion. However, the influence can be shown to be negligible
for large vesicles (r, > b), provided the holes are very
few and small.



