Investigations on Ion Fluxes of Chloroplasts with an Intact Envelope

R. Pflüger

Botanisches Institut der Tierärztlichen Hochschule, Abteilung Biochemie der Pflanzen, Hannover

(Z. Naturforsch. 28 c, 779-780 [1973]; received October 16, 1973)

Cation transport, chloroplast envelope, thylacoid membrane

During illumination of isolated broken chloroplasts electron transport dependent proton-uptake into the thylacoid space takes place 1. According to the chemiosmotic theory the pH-gradient forces photophosphorylation 2. H+-uptake is electrically compensated by an efflux of Mg2+ and K+ in a nearly stoichiometric ratio 3. Recently with whole intact chloroplasts such H+-fluxes across the thylacoid membrane could be demonstrated, too 4.

The intact chloroplast is surrounded by two membranes. The outer membrane is readily permeable even for larger molecules, whereas the inner membrane is the functional barrier between the cytoplasm of the cell and the stroma of the chloroplast 5. As was shown by Heber and Krause 6 there is no H+exchange across this membrane. The present paper deals with the problem, whether this is valid for Mg2+ and K+, too. The result would be of particular importance in respect of a possible regulation mechanism of Mg2+- or K+-dependent enzymes of the Calvin-cycle 7, 8. A rapid exchange of these cations between chloroplast and cytoplasm would largely abolish the primary increase of Mg2+- and K⁺-concentrations in the stroma during illumination. Thus, light-dependent extrusion of Mg2+ or K+ out off the thylacoid would be useless as a factor of enzyme regulation.

The isolation of intact spinach chloroplasts was performed according to the method of Jensen and Bassham 9. The translocation of K⁺ and Mg²⁺ were followed by measuring the steady state-concentrations of the suspending medium in the dark and light. For this purpose, the chloroplasts were rapidly separated from the incubation medium. A filtration through millipore filters was applied by which about 400 µl particle free supernant were obtained within 5 sec. In the supernant the cations were measured by atomic-absorption-spectrophotometry.

Both the broken and the intact chloroplast preparations exhibit an efflux of K⁺ and Mg²⁺ in the medium upon illumination (Table I). Nevertheless, the changes are smaller in the preparation of the intact chloroplasts. However, this preparation contains only a certain portion of intact chloroplasts which can be determined by the ferricyanidemethod, developed by Heber and Santarius 10. Ferricvanide is rapidly reduced by broken chloroplasts, whereas the envelopes of intact chloroplasts prevent the permeation of ferricyanide. After correction by the portion of broken chloroplasts present in the preparation the intact chloroplasts do not cause an increase of Mg2+- and K+-concentrations in the medium upon illumination. The result indicates that the chloroplast envelope is not readly permeable for these two cations.

Support of this work by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Table I. Comparison of Mg2+- and K+-translocations of broken and intact chloroplasts. The assay medium (4 ml) contained 0.38 M sorbitol for intact and 0.05 M sorbitol for broken chloroplasts. Additionally, both media contained 30 μm PMS and 0.2 mm MES pH 6.5. The concentration of chloroplasts was 0.049 mg chlorophyll/ml. After an incubation of 2 min at 20 °C the dark-sample, after 1 min red-light (RG 630 Schott-Filter, 8×10^5 ergs/cm sec) the light-sample were taken. The portion of intact chloroplasts of the "intact preparation" was determined after the ferricyanide-method by Heber and Santarius ¹⁰. Rates of ferricyanide-reduction (µmole FeCy red./mg chl. h): broken chloroplasts: 301 (100.0%), intact chloroplasts: 121 (40.2%).

Chloroplasts	Steady state K ⁺ - concentration in the medium (μ M)		Light-dark (change in nmole K*/mg chl. translocated	Steady state Mg^{2+} concentration in the medium (μM)		Light-dark (change in nmole Mg ²⁺ /mg chl. translocated
	dark	light	into the medium)	dark	light	into the medium)
broken "intact" intactcorrected	90.5 88.2	101.2 92.0	+220 + 80 - 8	63.5 46.8	67.3 48.2	+75 +30 ± 0

Requests for reprints should be sent to Dr. Reinhard Pflüger, Botanisches Institut der Tierärztlichen Hochschule, D-3000 Hannover-Kirchrode, Bünteweg 17 d.

- ¹ J. Neumann and A. T. Jagendorf, Arch. Biochem. Biophysics 107, 109 [1964].

 P. Mitchell, Biol. Rev. 41, 445 [1966].

 R. A. Dilley and L. P. Vernon, Arch. Biochem. Biophysics
- 111, 365 [1965].
- ⁴ H. W. Heldt and K. Werdan, Ber. dtsch. bot. Ges. 86, 203
- [1973].

 6 H. W. Heldt and F. Sauer, Biochim. biophysica Acta [Amsterdam] 234, 83 [1971].
- ⁶ U. Heber and G. H. Krause, Photosynthesis and Photorespiration, M. D. Hatch, C. B. Osmond and R. O. Slayter (eds.), p. 218, Wiley Interscience, New York 1971.
- ⁷ R. G. Jensen, Biochim. biophysica Acta [Amsterdam] 234, 360 [1971].
- ⁸ H. J. Evans and G. J. Sorger, Annu. Rev. Plant Physiol.
- 17, 47 [1966].

 R. G. Jensen and J. A. Bassham, Proc. nat. Acad. Sci. USA
- 56, 1095 [1966].
 U. Heber and K. A. Santarius, Z. Naturforsch. 25 b, 718 [1970].