Eine neue Larvenfarbmutation bei der Stechmücke Culex pipiens L.

A New Mutation of Larval Color in the Mosquito, Culex pipiens L.

Leonore Dennhöfer

Institut für Entwicklungsphysiologie, Universität Köln

(Z. Naturforsch. 28 c, 754-756 [1973]; eingegangen am 16. August 1973)

The new mutation "dunkel" (d) of the mosquito Culex pipiens L. causes larvae darker than the wildtype. Especially head capsule and siphon are dark brown, almost black. The factor is inherited like a recessive autosomal one. It is linked with the eye color mutation "ruby" in the 2^{nd} coupling group and is characterised by 45-47% crossingover between these two mutations. Showing complete penetrance, the mutation is a good marker for the second chromosome. This mutation "dunkel" is not identic with mel (melanotic larvae) or Bl (Black larvae).

Im autogenen Stamm "Hamburg normal" von Culex pipiens L. sind des öfteren auffallende Larven zu finden, die im Vergleich mit den wildfarbenen insgesamt dunkler in ihrem Erscheinungsbild sind (Abb. 1)*. Chitinöse Körperteile, die bei wildfarbenen Larven braun sind, wie z.B. Kopfkapsel und Atemrohr, weisen hier eine schwarzbraune Färbung auf. Bereits Larven des 1. Stadiums lassen diesen Unterschied erkennen; spätestens im 4. Larvenstadium sind die dunklen Larven eindeutig von den normalfarbigen zu unterscheiden. Nach jeder Häutung sind sie ebenso hell wie die wildfarbenen, dunkeln aber innerhalb von 4-6 Stunden nach. Diese Dunkelfärbung der Larven beruht wahrscheinlich auf einer Störung des normalen larvalen Stoffwechsels. Puppen und Imagines sind vom Wildtyp nicht zu unterscheiden. Die Tiere, die sich aus dunklen Larven entwickeln, zeigen alle eine leichte Entwicklungsverzögerung und schlüpfen später. Die Schlüpf-Folge der Geschlechter zeigt im Vergleich zu normalen Tieren keine Verschiebung. Die hier beschriebenen dunklen Larven sind im Aussehen und Verhalten von Trägern der Mutation mel (melanotic larvae 1) unterschieden. Sie ähneln eher der sich dominant vererbenden, geschlechtsgekoppelten Mutation Bl (Black Larvae), die Vandehev 2 beschreibt.

Außer diesen beiden Mutationen der Larvenfarbe sind bei *Culex pipiens* noch zwei weitere beschrieben worden, nämlich "grüne Larven" ³ und "gelbe Larven" ⁴. Bei diesen handelt es sich im Gegensatz zu den hier beschriebenen "dunklen Larven" um Farbstoffeinlagerungen im Fettkörper.

Sonderdruckanforderungen an Dr. L. Dennhöfer, Institut für Entwicklungsphysiologie, Universität Köln, *D-5000 Köln 41*, Gyrhofstraße 17.

Für die Stechmücke Culex tritaeniorhynchus beschreiben neuerdings Sakai et al. ⁵ eine ähnliche rezessive, nicht-letale Mutation, die die Autoren "ebony" nennen. Es wird leider nicht erwähnt, wo die Pigmente eingelagert sind. Der Farbunterschied zum normalen Phänotyp ist bei "ebony" nicht nur in Larven, sondern auch in Imagines sehr deutlich zu erkennen.

Es galt zu klären, ob die Eigenschaft "dunkel" bei den Larven von *Culex pipiens* erblich ist, also eine Mutation des Normaltypus darstellt und wenn ja, nach welchem Modus der Erbgang erfolgt.

Kreuzungen

Durch gezielte Selektion über mehrere Generationen hinweg gelang es, zwei Stämme zu isolieren: Der eine Stamm zeigt nur wildfarbene Larven, während der andere nur dunkle Larven aufweist. Schon dies ist ein Beweis, daß es sich bei den dunklen Larven um eine erblich bedingte Änderung handeln muß und nicht um eine umweltbedingte Modifikation.

Um den Erbgang zu klären, wurden in zwei verschiedenen Versuchsansätzen Individuen aus diesen beiden reinen Linien reziprok miteinander verpaart. Aus dem Ergebnis der F_1 dieser Kreuzungen ist zu schließen, daß sich der untersuchte Faktor rezessiv vererbt: Die Larven der 1. Filialgeneration sind wildfarben. Diese Tiere wurden ingezüchtet. Die Auswertung der F_2 (Tab. I) bestätigt dieses Ergeb-

^{*} Abb. 1 siehe Tafel auf Seite 756 a.

Tab. I. Auswertung der F₂-Generationen reziproker Kreuzungen zwischen Individuen homozygot normal und homozygot "dunkel".

1.
$$P \frac{d}{d} \times \frac{+}{+}$$
 2. $P \frac{+}{+} \times \frac{d}{d}$ $F_1 \frac{d}{+} \times \frac{d}{+}$ $\frac{+}{d} \times \frac{+}{d}$

	wild- dunkel farben		wild- farben		dunkel	
Beobachtung erwartetes	377	120	444		140	
Verhältnis	3:	1	3	:	1	
Erwartung	372,75	124,25	438		146	
X^2	0,1937		0,3287			
p	0,7	0,7-0,5				

nis. Die dunkle Larvenfarbe ist demnach durch einen erblichen, rezessiven Faktor bestimmt, der die Bezeichnung "dunkel" (d) tragen soll.

Um zu entscheiden, ob sich d autosomal oder geschlechtsgekoppelt vererbt, wurden auch die Imagines ausgewertet. In der Kreuzung 1 ergeben in der F_2 24 dunkle Larven 11 Weibchen und 13 Männchen; 118 wildfarbene Larven 70 Weibchen und 48 Männchen.

Das Geschlecht wird bei Culex durch einen Faktor oder eine kleine Faktorengruppe bestimmt 6,7 ; das Weibchen besitzt diesen Faktor m homozygot (m/m), das Männchen hingegen heterozygot (M/m). Wäre das Gen für d geschlechtsgekoppelt, dann hätten sich in diesem Kreuzungsansatz keine dunklen Männchen finden dürfen, weil der Faktor mit dem Weibchen der Parental-Generation eingekreuzt wurde.

Der reziproke Kreuzungsansatz 2 bestätigt den rezessiven, autosomalen Erbgang. Aus 41 dunklen Larven schlüpfen 14 Weibchen und 27 Männchen; aus 306 wildfarbenen Larven 172 Weibchen und 134 Männchen. Wäre der Faktor d geschlechtsgekoppelt, müßten in dieser Kreuzung sämtliche dunklen Larven Männchen ergeben haben.

Es ist jetzt die Frage zu klären, welcher der beiden autosomalen Koppelungsgruppen die Mutation d angehört.

Individuen, homozygot für "dunkel" wurden mit Männchen verpaart, die homozygot für die Männchen-begrenzte Palpenmutation kps 8,9 waren. Die im Phänotyp einheitlichen, normalen Tiere der F₁ wurden ingezüchtet. Die Nachkommen davon (F₂) wurden als Larven des 4. Stadiums nach ihrer Körperfarbe getrennt. Die männlichen Imagines wurden

dann nach dem Erscheinungsbild ihrer Palpen ausgewertet; die Weibchen der F_2 wurden in diesem Versuch nicht berücksichtigt (Tab. II). Eine Koppelung der Faktoren d und kps liegt den Ergebnissen nach nicht vor. Die Phänotypen spalten in der F_2 so auf, wie es in einer dihybriden Kreuzung zu erwarten ist.

Tab. II. Auswertung der F₂-Generation einer Kreuzung zwischen Individuen homozygot "dunkel" und homozygot "kps".

$$ext{P}rac{d}{d}, rac{+}{+} imesrac{+}{+}, rac{kps}{kps} \ ext{F}_1rac{d}{+}, rac{kps}{+} imesrac{+}{d}, rac{+}{kps}$$

	wild- farben ohne kps		$\begin{array}{c} \text{wild-} \\ \text{farben} \\ \text{mit } kps \end{array}$		$\begin{array}{c} {\rm dunkel} \\ {\rm ohne} \ kps \end{array}$		$\begin{array}{c} {\rm dunkel} \\ {\rm mit} \ kps \end{array}$	
Beobachtung erwartetes	166		49		74		15	
Verhältnis Erwartung X ²	9 171 7,1813	:	3 57	:	3 57	:	1 19	
p	0,1-0	,05						

Kreuzt man Tiere homozygot für "dunkel" gegen Tiere, homozygot für die rezessive autosomale Augenfarbmutation "ruby" 4 , und züchtet die F_1 in, dann spaltet die F_2 -Generation ebenfalls in Phänotypen auf. Die Spaltzahlen lassen jedoch Zweifel an einer freien Verteilung der beiden Faktoren aufkommen. Berechnet man das Verhältnis der Produkte der vier Gruppen nach der Methode von Stevens 10 , der die Überlegungen von Fischer u. Bhai Balmukand 11 und Immer 12 fortsetzt, so findet man eine Crossing-over-Häufigkeit zwischen "ruby" und "dunkel" von $46,73\pm0,03974\%$ (Tab. III).

Tab. III. Ergebnisse der F₂-Generation einer Kreuzung zwischen Individuen homozygot "dunkel" und homozygot

$$ext{P} rac{ru+}{ru+} imes rac{+d}{+d} \ ext{F}_1 rac{ru+}{+d} imes rac{ru+}{+d} \ ext{Sumber} rac{225}{67} \ ext{dunkel} rac{72}{4} \ ext{ruby} rac{67}{4} \ ext{dunkel} + ext{ruby} rac{17}{8} \ ext{Summe} : 381 \ ext{381}$$

Die für "dunkel" und "ruby" homozygoten Tiere der Kreuzung wurden als Stamm weitergezüchtet. Um die genauen Austauschraten der beiden Faktoren zu bestimmen, wurden Rückkreuzungen durchgeführt. Sowohl die heterozygoten Weibchen als auch die heterozygoten Männchen der F_1 wurden mit für "dunkel" und "ruby" homozygoten Tieren rückgekreuzt. Die Ergebnisse zeigen, daß eine Austauschintensität von $46.9\pm5.2\%$ vorliegt, die Allelenpaare also relativ weit voneinander lokalisiert sind. Die Austausch-Häufigkeiten sind in beiden Geschlechtern gleich": Die Weibchen zeigen $47.5\pm3.9\%$, die Männchen $45.6\pm5.2\%$ Crossingover (Tab. IV). Diese Ergebnisse bestätigen die Be-

Tab. IV. Reziproke Rückkreuzungen zur Ermittlung der Austauschhäufigkeit zwischen "dunkel" und "ruby".

$$ext{P}rac{d\,ru}{d\,ru} imesrac{+\;+\;+\;}{+\;+\;} \ ext{RF}_1rac{d\,ru}{d\,ru} imesrac{d\,ru}{+\;+\;+\;}$$

$\begin{array}{l} \text{wildfarben} \\ \text{dunkel} + \text{ruby} \\ \text{ruby} \\ \text{dunkel} \end{array}$	154 145 137 114	$race{251=45,64\pm5,18\ (6\ \mathrm{Gelege})}$
Summe:	550	
wildfarben	RF ₁	$rac{d\ ru}{+\ +} imes rac{d\ ru}{d\ ru}$
dunkel + ruby ruby	250)
dunkel		513 = 47,54 \pm 3,90 (9 Gelege)
Summe:	1079	

c) Austauschhäufigkeit gesamt:

 $\begin{array}{lll} \text{wildfarben} & 470 \\ \text{dunkel} + \text{ruby} & 395 \\ \text{ruby} & 389 \\ \text{dunkel} & 375 \\ \hline \text{Summe:} & 1629 \end{array} \right\} \ 764 = 46,89 \pm 5,15 \ (15 \ \text{Gelege})$

rechnungen der F_2 -Generation nach Stevens. Die deutliche, wenn auch schwache Koppelung der Mutationen "ruby" und "dunkel" auf der 2. Koppelungsgruppe 9 wird außerdem durch Koppelungsversuche an cytologisch analysierten reziproken Translokationen bestätigt 13 .

- ¹ H. Laven u. P. S. Chen, Z. Naturforsch. 11 b, 273 [1956].
- ² R. C. Vandehey, Mosquito News 27, 69 [1967].

³ C. G. Huff, Biol. Bull. **57**, 172 [1929].

- ⁴ W. G. Iltis, A. R. Barr, A. H. McClellang u. C. M. Myers, Bull. WHO [1965].
- ⁵ R. K. Sakai, R. H. Baker u. M. P. Iqbal, J. Heredity 63, 275 [1972].
- ⁶ B. M. Gilchrist u. J. B. S. Haldane, Experientia [Basel] 2, 372 [1946].
- ⁷ B. M. Gilchrist u. J. B. S. Haldane, Hereditas 33, 175 [1947].

Zusammenfassende Diskussion

Die Mutation "dunkel", die besonders an Kopfkapsel und Atemrohr der Larven eine schwarzbraune Färbung verursacht, vererbt sich als ein einfach mendelnder rezessiver Faktor. Als Symbol wird d (dunkel) vorgeschlagen. Der Erbgang ist autosomal und nicht mit den geschlechtsbestimmenden Faktoren m bzw. M gekoppelt. Eine Koppelung mit der Mutation kps (3. Koppelungsgruppe) liegt ebenfalls nicht vor. Sie ist mit der Augenfarbmutation ru gekoppelt, gehört somit der 2. Koppelungsgruppe an 9 und liegt auf Chromosom II 14. Die Austauschwerte zwischen diesen Mutationen betragen in beiden Geschlechtern ca. 45 – 47%, die Loci sind also relativ weit voneinander entfernt. Iltis et al. 4 finden für die Austauschwerte zwischen den Mutationen "ruby" und "yellow", beide zur 2. Koppelungsgruppe gehörend, große Unterschiede zwischen den Geschlechtern: Die Austauschraten der Weibchen liegen erheblich höher als die der Männchen. Dieser Unterschied im Crossing-over autosomaler Faktoren wird durch unser Ergebnis nicht bestätigt.

Bei der hier beschriebenen Farbänderung der Larven handelt es sich um eine neue Mutation der Stechmücke. Die im Phänotyp ähnliche Mutation mel (melanotic larvae¹) ist im homozygoten Zustand letal. Auch eine Allelie zu der von Vandehey² beschriebenen Mutation Bl (Black larvae) scheidet aus: sie ist im Unterschied zu "dunkel" geschlechtsgekoppelt und vererbt sich dominant. Außerdem bewirkt sie eine deutliche Änderung in der Schlüpf-Folge der Geschlechter.

Die Larvenfarb-Mutation "dunkel" zeichnet sich durch vollständige Penetranz und nur geringe Variabilität aus. Bereits an Larven des 1. Stadiums ist sie zu erkennen, mit absoluter Sicherheit an älteren Larven des 4. Stadiums. Diese neue Mutation ist daher als Markierungsgen für die 2. Koppelungsgruppe gut geeignet, obwohl die Imagines nicht von denen aus wildfarbenen Larven unterschieden werden können.

- ⁸ H. Laven, Z. Naturforsch. 10 b, 320 [1955].
- ⁹ H. Laven, Genetics of insect vector of disease, (J. W. Wright u. R. Pal, eds.), Amsterdam 1967.
- ⁰ W. L. Stevens, J. Genetics **39**, 171 [1939].
- ¹¹ R. A. Fischer u. M. A. Bhai Balmukand, J. Genetics 20, 79 [1928].
- ¹² F. R. Immer, Genetics **15**, 81 [1930].
- ¹³ L. Dennhöfer, in Vorbereitung.
- ¹⁴ L. Dennhöfer, Chromosoma 37, 43 [1972].

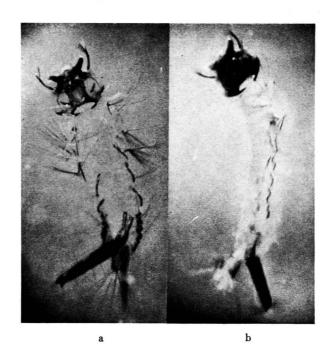


Abb. 1. Exuvien von Larven des 4. Stadiums: a. Phänotyp der Larve +/+; b. Phänotyp der Larve d/d.