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Lipid bilayers, elastic properties

A theory of the elasticity of lipid bilayers is proposed. Three types of strain, i. e. stretching, 
tilt and curvature, are distinguished and the associated stresses are identified. It is argued that in 
the case of vesicles (=  closed bilayer films) the only elasticity controlling nonspherical shapes is 
that of curvature. Euler-Lagrange equations are derived for the shape in magnetic fields and under 
excess outside pressure. It is shown that magnetic fields can deform spherical vesicles into ellipsoids 
of revolution. Under excess outside pressure the spherical shape becomes unstable at a certain 
threshold pressure. Both effects can be influenced by a spontaneous curvature of the bilayer. Some 
possible experiments to determine the elastic properties are also discussed.

I. Introduction

Lipid bilayers are a subject of some interest as 
they appear to be closely related to biological mem­
branes. They are attractive systems to study because, 
apart from thermal fluctuations, they can be homo­
geneous down to molecular dimensions. According­
ly, their mechanical properties should permit a con­
tinuum-mechanical description. The present article 
deals with the presumable elasticity of lipid bilayers. 
It is hoped that the continuum concept is transfer­
able to biological membranes, although this may re­
quire averaging over areas involving hundreds of 
lipid molecules, since the presence of proteins de­
stroys local homogeneity.

Lipid molecules consist of a polar head and one 
or two hydrocarbon chains. In an aqueous environ­
ment they tend to assemble as bimolecular sheets 
with the hydrophilic heads on the outsides and the 
hydrophobic chains in the interior of the film. Bi­
layers can often be prepared in such a way that they 
close to form vesicles whose diameters range from 
a few hundred angstroms1 to some millimeters2. 
We may think of bilayers as solid or fluid, depend­
ing on whether the lipid molecules form a two- 
dimensional lattice or not. The rather smooth con­
tours of biological and bilayers vesicles observed in 
electron microscopy suggest that the membranes are 
two-dimensional fluids, at least those capable of 
forming vesicles. (Bilayers may have two or more 
phases differing largely by the conformation of the
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hydrocarbon chains 3. It seems an open question if 
some low temperature phases can be regarded as 
quasi-solid.)

The following description of membrane elastici­
ty is based on the assumption of unrestricted 
internal fluidity. In addition, we take the 
“average” direction of the more or less flexible 
hydrocarbon chains to be normal to the bilayer, thus 
ruling out a spontaneous collective tilt of the lipid 
molecules. This assumption may not always be cor­
rect. Recent X-ray work revealed the existence of 
lyotropic smectic liquid crystals consisting of tilted 
bilayers 4. On the other hand, a long-range tilt neces­
sitates singularities in closed bilayers which might 
show as sharp points or ridges, again at variance 
with most electron micrographs of vesicles.

The elasticity of lipid bilayers may be viewed as 
a special case of the well-established theory of thin 
elastic shells5. Fluidity amounts to a vanishing 
shear modulus. For our purpose it appears pre­
ferable not to start from a general mathematical 
apparatus but to base a suitable elastic theory on 
straightforward physical considerations.

In a preceding note we have already given a 
formula for the ellipsoidal deformation of spherical 
vesicles by magnetic fields6. It was obtained by 
minimizing the sum of the curvature-elastic and 
magnetic energies of the vesicle as a function of its 
ellipticity. In the present article we discuss the 
various possible elastic strains and stresses of bi­
layers and show that curvature should, in general, 
be the only strain governing the shape of nonspheri­
cal vesicles. Euler-Lagrange equations are formu­
lated which permit to rederive the magnetic de-
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formation in a much simpler way, giving at the same 
time the complete balance of the forces and torques 
acting on the bilayer. They also serve to show that 
under excess outside pressure the spherical shape of 
a vesicle should become unstable above a certain 
threshold. Some direct experiments on vesicles which 
offer themselves for determining the curvature- 
elastic moduli and the spontaneous curvature of bi- 
layers are discussed in detail at the end of the 
article.

II. Elastic Strains and Stresses

A. Stretching

A lipid bilayer is deformable in more than one 
way. Let us first consider changes in area due to 
tension, i.e . tangential stress. For weak deforma­
tions the elastic energy of stretching per unit area, 
ws , must be a quadratic function of Aa/a, the re­
lative change in area a. We may write

ws = 1/2 ks(Aa/a)2, (1)

where k& is the elastic modulus of stretching with 
the dimensions of energy per unit area. The cor­
responding stress, a force per length, is

°s = ks(Aa/a) (2)

or in vector notation
crs = ks(Aafa) e  . (3)

The dimensionless unit vector e  is normal to the 
imaginary cut on which acts from the side to 
which e  points. Naturally, both G and o are parallel 
or, in the presence of curvature, tangential to the 
bilayer. The modulus ks may be obtained by mea­
suring the swelling of spherical vesicles as a function 
of internal excess pressure.

A bilayer is capable of exchanging lipid mole­
cules with its aqueous environment. For this reason, 
the elastic forces upon stretching may last only a 
limited time. The relaxation is apt to be very slow 
because of the small solubility of lipids in water. 
With vesicles it may be further hindered by the 
need for lipid molecules to flip from one side of 
the film to the other 7.

A stress which we may ignore here is hydrostatic 
pressure. It may influence Aa/a, but we think that 
in practice this is not an important effect. (An esti­
mate is possible on the basis of the considerations of 
HE.) Another strain, a change in membrane thick­

ness, is also disregarded. Being only about 50 Ä 
for phospholipid bilayers, the thickness cannot be 
uniquely defined and measured.

B. Tilt

A straight membrane can be submitted to a tor­
que density, for instance by applying an oblique 
magnetic field acting on magnetically anisotropic 
lipid molecules. The counter-balancing elastic tor­
que per unit area, m t , must be provided by a nor­
mal force per unit length:

ort = m t A e .  (4)

The strain underlying Ttlt and at is a tilt of the 
lipid molecules away from their average normal 
orientation, as sketched in Fig. 1. Denoting the layer

Fig. 1. Highly schematic 
diagram of untilted and 
tilted bilayers. Despite 
their actual flexibility the 
lipid chains are depicted 

as straight lines.

normal by W and the average orientation of the 
molecules by d, both dimensionless unit vectors, 
we may write for the elastic energy per unit area

wt = 1/2 kt (n A  d ) 2, (5)

where the dimension of the tilt-elastic modulus is 
again energy per unit area. Obviously, there are 
two ways to remove the tilt. One is to rotate the 
lipid molecules at fixed position, the other is to 
rotate the piece of bilayer as a whole at fixed mole­
cular orientation. The torque density is given by

mt= - k t(n A  d).  (6)
Eqn. (4) is, of course, confirmed by the microscopic 
picture.

An exact expression of wt as a function of tilt 
would have to take account of the various parts of 
the lipid molecule, their average tilts probably being 
not the same. However, tilt should be minute and its 
elastic energy negligible in most practical cases (see 
below), so is appears pointless to develop a detailed 
molecular therory.

C. Curvature

Finally, we consider curvature of the bilayer. For 
a convenient description we may use a local right- 
handed cartesian coordinate system, putting its 
origin in a given point of the film which is thought

nun ////// nm in j Ji
Unfitted Tilted
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to be infinitely thin. The z axis is made parallel to 
the local layer normal 71. Regarding W as a function 
of x  and y, we can define the two independent cur­
vatures at the origin

cx = d n j d x , cy = dn7/d y .  (7)

The rotation of the vector field 71 (x ,y)  must vanish 
as it is normal to a uniquely defined surface. There­
fore, the relation

d n jd y  — dny/d x  = 0 (8)

hat to be satisfied by the cross derivatives.
The elastic energy of the curvature is assumed to 

be a quadratic function of the derivatives of nx and 
ny . The two-dimensional fluid being rotationally 
symmetric, only those linear and quadratic forms 
can enter that are independent of the orientation of 
the x and y axes. They are

d n jd x + d n y/ d y , (9)
(d n jd x  +  driy/dy)2, (10)

3 nx 
3a:

3 nx dnx 
3 y

d n x
( 11 )3 y By 3x 

The curvature-elastic energy per unit area may be 
written as

>, = h k. / 3 nx 3ny
\ 3a: 3 y

+ kc
dnx Briir 3/̂ x 3nv ( 12)
3a: 3 y  3 y 3a:

The curvature-elastic moduli kc and kc have the di­
mension of energy. The linear term (9) is incor­
porated through c0 . The spontaneous curvature c0 
allows for bilayers whose two sides are chemically 
different. The sign of c0 depends, of course, on the 
arbitrary polarity of 71.

The expressions (9) and (11) are analogous to 
splay and saddle splay as introduced by Frank8 in 
dealing with the curvature elasticity of liquid 
crystals. It may be noted that Eqn. (12) can hold 
only if tilt in the sense defined above is negligible. 
(Otherwise 71 must be replaced by one or more 
directors d.)

Formulas (7) to (12) remain valid if a single 
global coordinate system is used instead of the local 
ones, 71 still being a function of x and y. The only 
exception is (8) which becomes

3 __  riy _  3_______ nx
t2- ny2)1/s 3y (1 - n x2- n y2)Vl

(13)
dx (1

(A prove may be based on curl grad z = 0 where 
z(x, y) describes the surface.) Here, and in the fol­
lowing, we use nz = (1 — nx2 — ny2) ,/j to eliminate raz .

Let us introduce the elastic energy density per 
unit area in the x, y  plane

gc =  w j  (1 — nx2 — ny2) ,/l. (14)

It can serve as a starting point to derive Euler- 
Lagrange equations governing the curvature of bi­
layers (see below). Here, we only want to show 
that the total “saddle splay” energy is independent 
of the size and shape of a membrane with fixed 
boundary conditions (fixed 71 on the contour). The 
energy in question is

_  \ i i  Bnx 3 riy 3 ns 3gc dx Ay = dx 3 y 3 y 
da: d y

3a;

(1 — tix2 — ny2)1/2  ̂ ^
It is extreme if gc satisfies the two differential equa­
tions

33
3 a:

3

3 |c  
3 nn
dx

3 y  n  3«u

3  " 3 7

= 0 , (16)

where u = x ,y .  The left-hand side of the first equa­
tion is

k t

— k,

+ kc

I 3 nx 3 ny 3 nx 3ny \
\ 3x 3 y 3 y 3r /

3 3 7 ly 1
3a: 3 y (1 —  Tlx 2 —

3 3 ny 1
3 y dx  (1 -  n 2 - n /Y "

(1 - n x2 - n y2) s/s

(17)

Inspection shows that the left-hand sides of both 
equations are identical to zero for any function 
U(x, y.)

An energy depending solely on boundary condi­
tions, while causing stresses, produces no torque 
or force densities. As a consequence, the “saddle 
splay” term can be omitted in many calculations, 
in agreement with the role of saddle splay in liquid 
crystals.

The stresses conjugate to curvature are torques 
per unit length. In order to compute them it is help­
ful to imagine a small rectangular piece of bilayer 
which is slightly and (practically) uniformly curved 
by applying such torques. We employ local coordi­
nates and keep | nx |, J 7iy I ^  1 on the whole piece. 
Simple energy considerations show that the torque
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per unit length, t , may be given the form

T =  (c i +  c2) ' iV" A  ®)

+  * c [c2( n A c 1) - - ( « r c )  ( 1 8 )
+ Ci(n A  e2) • (e2-e)].

Here <?x and C2 are orthogonal unit vectors tangen­
tial to the bilayer. They represent the principal axes 
of curvature for which the cross derivatives of It 
vanish. The principal curvatures along and <?2 
are c1 and c2, respectively. In analogy to other 
elastic problems, one can obtain the torque density 
(per unit area) by forming derivatives of r. Doing 
this, one finds that the terms containing kc drop out 
as expected.

D. Nonlinear curvature-elastic stresses

The stresses treated so far are linear functions of 
the respective strains. However, vesicles possess an 
inherent curvature even in their undeformed, spheri­
cal state. This points to the necessity of including 
stresses varying as the product of two curvatures.

A first stress quadratic in curvature is an aniso­
tropic tangential stress to be called directed tension. 
Its existence is quickly demonstrated by means of a 
tube of bilayer, the radius being R and the length L. 
The total curvature-elastic energy is, for c0 = 0,

Ee= l l2 k c(2 n jR )L .  (19)

With constant area
A = 2 n R L  (20)

one has
AEJAR= - K ( A /R 3). (21)

Accordingly, there must be a normal force per unit 
area which is

f„ = i c(n/R3), (22)
if the layer normal tl points outward. The force is 
linked with a tension parallel to the lines of circum­
ference

a „ _ - M l / f i 2). (23)

Both fn and ov can be balanced by an external force 
supplied, for instance, by a cylindrical constraint 
such as a solid tube. In this case, there is no tension 
along the cylinder axis. The tube may also be stabi­
lized by an isotropic tension offsetting the circum­
ferential tension so that only a tension parallel to 
the axis is left. This happens naturally if the length 
of the tube is prescribed by two supporting walls of 
fixed distance, provided 111 axis.

Slightly more complex arguments allowing for 
c0 = 0 and two non-vanishing principal curvatures 
result in a complete formula for the directed tension 

induced by curvature 
<?&T = - k c(c1 + c2- c 0) [c1e1(e1-e)

+ c2 e 2(e 2• e) ] — kt c1 c2 e . (24)
The net anisotropy of tension may be expressed by 
the difference o2 — o1 of the directed tensions along 
the principal axes of curvature. Naturally, o^r is 
equal in all directions on a sphere and thus there is 
net isotropy. Net anisotropy gives rise to shear 
stresses along imaginary cuts that are not parallel 
to the principal axes.

Another stress quadratic in curvature compen­
sates for the tendency of the lipid material to move 
into regions of lower curvature-elastic energy. This 
isotropic tension is simply given by

<C = w ce .  (25)
Other quadratic effects concern the force densities. 

The normal force produced by the combination of 
tension and curvature is well known from soap 
bubbles, etc. Conversely, a normal force per unit 
length (normal stress) in a curved bilayer causes a 
tanegntial force per unit area.

E. Estimate of the elastic moduli

It is natural to suppose that the only elasticity 
influencing the expansion of a spherical vesicle 
under excess internal pressure is that of stretching. 
On the other hand, if a vesicle is non-spherical, 
one may expect its shape to be controlled largely by 
curvature elasticity. To put these assumptions on a 
firm basis, we estimate the different elastic moduli. 
The elastic energy densities can be approximated by 
a sum of nearest-neighbor contributions. Each of 
them is roughly the molecular energy of conden­
sation, on the order of 1 eV, times the squared re­
lative change of the intermolecular distance or orien­
tation. In this picture the elastic energy per mole­
cule is about 1 eV 10-12 erg if | Aa/a |, | tl A d i ,  
and | c d\ I are about unity, d\ being the intermole­
cular spacing. With a density of 1015 molecules per 
cm2 one obtains

ks = 103 erg cm-2,
kt = 103 erg cm-2, (26)
kc = 10-12 erg .

The smallness of kc is due to the fact that for a 
curvature of 1 cm-1, i. e. a rotation of tl by ca.
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60° over 1 cm, the average orientations of adjacent 
molecules differ by only (10~15) ,/! times this angle. 
By way of contrast, microscopic and macroscopic 
deformations are equally strong for stretch and tilt, 
Aafa and Tl A d  representing the relative change on 
both scales.

Despite the obvious crudeness of such a model, 
the estimates for ka and kc are not too far from 
what one would guess on the basis of the known 
volume elastic moduli of organic liquids («* 109 
dyn cm-2 ) and the curvature elastic moduli of 
liquid crystals 10~6 dyn). Multiplying those by 
the thickness of the bilayer (approx. 50 Ä), one 
arrives at ks =  5 • 102 dyn cm-2 and kc = 5 • 10~13 erg.

An interesting number is the total curvature 
elastic energy E of a spherical vesicle,

E = 8 Ji kc( l —r0 c0/2 ) 2 +  4 Jt kc . (27)

With A;c = 0, kc =  5 • 10-13 erg and c0 = 0 one com­
putes the very small value of 8 eV, independently 
of the radius of the vesicle. Although our estimates 
may be wrong by a power of ten or more, it appears 
that the energy E could effect only a minor stretch­
ing of the bilayer unless the vesicle comprises just 
a few tens of molecules. The same energetical 
reasoning holds for tilt, but in practice tilt is even 
less likely since any torques produce tilt only local­
ly, while tangential forces may stretch a piece of 
bilayer.

It is now clear that curvature should be negligible 
in the swelling of vesicles, apart from special cases. 
However, curvature will dominate if the volume of a 
vesicle is reduced below the value characterized by 
a vanishing total tension in the spherical bilayer. In 
such cases, one can always find nonspherical vesicle 
shapes which require no stretching (change in area) 
or tilt of the bilayer. Curvature being the easiest 
deformation, it seems permissible to entirely neglect 
tilt and stretching in any calculus of variation de­
termining the vesicle shape. This approach is used 
in the following discussion of the deformation of 
spheres. It is also applied to the small changes in 
shape which are possible, e. g. in a magnetic field, 
without a significant decrease in volume.

III. Problem s of Rotational Symmetry

We are interested in the deformations of spherical 
bilayer vesicles. In many cases the deformed shape 
can be expected to be rotationally symmetric. It

may then be described by a function r(0 ), r being 
the distance from some origin within the vesicle and
6 the polar angle. However, r(6) is not well suited 
to derive a differential equation for the shape. Since 
r as well as its first and second derivatives enter the 
curvatures, a second-order calculus of variation 
ensues which leads to a fourth-order differential 
equation. It is preferable to employ another rota­
tionally symmetric function, namely ip{x), where x 
is the distance from the polar axis and ip the angle 
made by the layer normal with the polar axis. An 
illustration is given in Fig. 2. As will be seen im-

~ h

a

Fig. 2. Coordinates for the description of rotationally sym­
metric shapes.

mediately, ip(x) permits a standard calculus of 
variation resulting in a second-order differential 
equation. The shape of the vesicle is not directly 
given by ip(x), but it can be obtained by an inte­
gration. For instance, we may introduce a coordi­
nate z along the polar axis, indicated in Fig. 1 b. 
The integral

z(x) = J tan i/;(t)dt (28)
o

renders the contour of the vesicle. Both ip{x) and 
z(x) have upper and lower branches which need 
not be the mirror images of each other.

A. Film between circles

On any rotationally symmetric surface one can 
define in a unique fashion two sets of orthogonal 
lines corresponding to the meridians and parallels 
of a sphere. The principal curvatures of the surface
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are along these lines and will be designated cm and 
cp, respectively. For the upper branch of ip(x) in 
Fig. 2 they are

cm = cosip(dipfdx), cv = sin ip/x, (29)

if the layer normal is taken to point outward. It 
will be sufficient here to explicity consider only 
the upper branch. Limiting our attetnion to a piece 
of bilayer between the circles Xj and x2, we have 
for the total curvature-elastic energy

— 2 7Z X
f [ 2 kc (cm -|- Cp Cq) “ -|- kc cm Cp ] dx, (30)

XI COS ip

the square bracket representing the energy density 
(per cm2). To express our assumption that the bi­
layer is unstretchable, we adopt the auxiliary con­
dition of constant area,

J (2 x/cos ty’) dx = const. (31)

The auxiliary condition of no tilt is automatically 
satisfied by our formula for the curvature-elastic 
energy.

We are now in a position to set up an Euler- 
Lagrange equation for the shape of rotationally 
symmetric bilayers. Combining (30) and (31) 
yields the integrand / of our variational problem,

/  V-’’
dip
dx

1 7 | dip sin ip2 kc cos u —— +  dx x
r  . dip  1  .+ kc cos ip sin ip —-------+ /

dx x
2 ji x 
cos ip

(32)

=  0 . (33)

where X is a Lagrange multiplier. The integral of / 
is at an extreme if ip satisfies

3 / _  d 3 f _
dip dx 3 (dip/dx)

Carrying out the differentiations, one finds that 
the kc terms drop out as anticipated. The Euler- 
Lagrange equation (33) divided by 2 Jixf cos ip can 
be read as a balance of elastic torque densities. 
Multiplying (33) by cos2 ip, one obtains the con­
venient form

^ C (^ m  "t- C0 ) Cm 2 7Z x sin Ip  

+ 5 kc (cm + Cp -  c0) 2 2 n  x sin ip 

+  k 2  7 ix s in ip

(34)

— kc cos ip
d (cm Cp) 

dx 2 n  x  cos ip + 0 .

Now we have a balance of the elastic forces in z 
direction. The first term, without the factor 2 n x

sin ip, stands for the directed tension , the force 
being parallel to the local meridian. The second 
term, without 2 n  x sin ip, is the isotropic tension 
0*0° . The Lagrange multiplier X must then be an iso­
tropic tension, i. e. a tangential force per unit 
length, which is uniform throughout the film. The 
fourth term, without the factor 2 n  x  cos ip, is the 
normal stress ot .

Apart from boundary conditions ip1 = ip(xi) and 
ip2 = ip {x2) we may, for instance, prescribe the total 
surface area. Eqn. (34) allows indeed for three ad­
justable parameters, one of them being /. The 
distance z ( x 2) — z ( x j )  between the rings assumes 
the value of minimum energy, i. e. of vanishing 
force Fz .

If the force Fz is non-zero, one has to add to the 
integrand (32) the terms — F., tan ip which results 
in the additional term — F, on the left-hand side 
of Eqn. (34). (Fz is positive for pull and negative 
for push.)

B. Deformation of spherical vesicles by a magnetic 
field

A magnetic field exerts a torque on a magnetical­
ly anisotropic film. The effect of a uniform field H  
parallel to the z axis is taken into account by adding 
the orientational energy per unit area,

- ( 1 /2 )  (* „ -* .)b cos2vH *, (35)

to the square bracket of the integrand (32). We ex­
press the susceptibilities per unit area for fields 
normal and tangential to the bilayer by j£n b and 
Xt b, where b is a measure for the thickness of the 
bilayer. The Euler-Lagrange equation of the prob­
lem may be given the form

[ h  (cm + C p  C q )  C m  + l/2  kc (cm + C p  C q )  2

— 1/2 (xn — xt) b H2 cos2 ip + A] sin ip (36)

+ (Zn-Xt)^H2 cos ip sin ip

— kc cos ip
d (cm + Cp)

dx
cos ip = 0

The two magnetic terms arising from the variation 
are left separate in order to display their physical 
meanings. The first square bracket represents a 
tangential force per unit length and the second a 
normal one.

It has been shown previously 6 that a magnetic 
field may transform a spherical vesicle into an el­
lipsoid of revolution. The earlier proof was based
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on energy considerations, here we use the Euler- 
Lagrange equation (36) for the same purpose. In 
polar coordinates the ellipsoidal deformation may 
be described by

s = r — r0 = s2 P2 (cos 6) = s2 (3/2) (cos2 G —1/3),
(37)

where P2 is the second Legendre polynomial and r0 
the radius of the sphere. In terms of xp(x) we have

3 s.,Axp(x) = xp (x ) — xpx (x) =  - — — cos xpt (x) sin xpx (x ),
2 rn

where the function
sin xpx =  x/r0

(38)

(39)

represents the original sphere. These formulas are 
valid only for very small deformations, i. e. 
! s2 j ^  r0 . The radius r0 is used in (39) even 
though the equatorial radius of the deformed vesicle 
differs from r0. The associated change in bilayer 
area is immaterial in our approximation.

There are two equivalent representations for the 
curvatures to first order in the deformation. They 
are

JL
ro
1

rft

d2

cos 0 ds 
sinö rn2 dO (40)

and

+

+

d
dx 
cos xp

(cos xp Axp), 

Ay*. (41)

Inserting the curvatures in (36), and equating 
the terms proportional to s2 and dependent on 6 or 
x, one obtains

” 3 (* n  ~  2t) & H2
S2 =  - 3 (6 -  c0 r0) ka

(42)

Terms quadratic in s2 are meaningless in the present 
approximation. If terms proportional to s2 are omit­
ted, i. e. with H = 0, the stress X is

A =  l k c - ^ ( 2 - c o r o ) . (43)

The ellipsoid is oblate for %n — Xt >  0 and prolate 
for Xn — Xt < 0 , provided c0 r0 <  6 . A completely 
different situation to be discussed below arises for
c o r o =  &

Another extension of the shape equation (35) in­
cludes a difference Ap = pe — pi between external 
and internal pressure. In this case, the integrand of 
the variational problem becomes

C. Deformation of spherical vesicles by pressure

/ p  V »

dip
dx

5 k0 dip sin ipcos —---- 1----------— cftdx x
7 • «ty 1 ,

+  kc cos xi) sin w  — ------------+  /
dx x

2 jzx

cos
(44)

+ A p x2 71 tan xp.

The Euler-Lagrange equation determining the shape 
may be written as

-  K  (cm + Cp -  c0) cm 2 n X sin xp 
+  i  k c (cm + cp — c0) 2 2 t i  x  sin xp
+ X 2 n x s \n  xp (45)
i-A p x2 n

/ d(cm + cp)
—  kc cos xp------ r -------------- 2 71 X cos xp =  0 .dx

Let us study very small deformations, again as­
suming them to be ellipsoidal. (The first Legendre 
polynomial describes a translation, not a deforma­
tion.) Using (37), one can express x as a function 
of s2 and 0 and employ representation (40) for the 
curvatures. Alternatively, one may use representa­
tion (41) and write x as function of s2 and xp:

. ( 3 s.,x = r0 sin I xp cos xp sin xp
2 r0 ” -'T " " T / (46) 

= r0 sin xp — (3/2) s2 cos2 xp sin xp .

When the insertions are made in Eqn (45) one ob­
tains

X = I kc 0 (2 -  c0 r0) AP
(47)

from the constant terms, and

Apc = (2 kc/r03) (6 -  Cq r0) (48)

from those proportional to s2 and varying with 6 
or x.

At the pressure difference Apc the vesicle is in 
neutral equilibrium with respect to ellipsoidal de­
formations, the amplitude s2 being arbitrary in the 
linear approximation. Obviously, Apc in (48) re­
presents a threshold pressure for the deformation of 
the spherical shape, which is indicated by the sub­
script c. Any infinitesimal deformation correspond­
ing to higher Legendre polynomials than P2 would 
require larger pressure differences than Apc .
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We may infer that weak enough deformations 
under pressure are indeed ellipsoidal. However, the 
vesicle shape cannot be expected to be a continuous 
function of Ap. As the ellipsoid is prolate for s0> 0  
and oblate for s2 <  0, a change in sign of s2 leads to 
a physically non-equivalent situation. Consequently, 
there may be an abrupt deformation when a rising 
Ap passes Apc and an abrupt return to the spherical 
shape somewhere below Apc as Ap is dropping. To 
make this more plausible, we exploit an analogy of 
Landau’s theory of second-order phase transitions. 
Regarding s2 as an order parameter, we think the 
total free energy E of the vesicle, due to curvature 
and Ap, to be expanded up to fourth power in s2 . The 
difference Apc — Ap takes the role of the temperature 
difference T — Tc in Landau’s theory, and we may 
write

E =  a(Apc — Ap)s22 + B s23 + C s24 • (49)

Since E is as asymmetric in s2, the cubic term will, 
in general, not vanish and the transition will not be 
of second but of first order. (There can be no 
linear term since the sphere is an equilibrium state.) 
Accordingly, the deformation is discontinuous and 
displays hysteresis, i. e. the analogs of superheating 
and supercooling. In the quadratic approximation 
the sign of s2 is free and the ellipsoidal deformation 
need not be rotationally symmetric. These ambi­
guities disappear in an abrupt transition (but the 
deformedshape may be asymmetric with respect to 
the equatorial plane).

The calculation of the total free energy up to 
fourth order in s2 or, equivalently, of the stresses up 
to third order is tedious and not attempted here. 
Eqn (49) would give poor results if higher powers 
of s2 and higher Legendre polynomials are im­
portant. (Associated Legendre functions have to be 
considered if rotational symmetry is abandoned.) 
Also, theoretically sharp transitions and hysteresis 
effects are possibly washed out by thermal fluc­
tuations because of the probable weakness of curva­
ture elasticity (see below). In our approximation, 
these fluctuations should diverge at the transition.

The deformability (42) of vesicles in a magnetic 
field goes to infinity and the threshold pressure (48) 
to zero as c0 approaches the value of 6/r0 . Apparent­
ly, the spherical shape is in neutral equilibrium at 
c0 r0 = 6 without the action of any external forces. 
For even larger c0 , i.e. for spontaneous curvatures 
at least six times stronger than that of the sphere,

the vesicle will be nonspherical. Its shape is likely 
to be prolate because thus the curvature can assume 
its large spontaneous value over most of the bilayer 
area. The deformation caused by spontaneous curva­
ture can, of course, be removed by applying a nega­
tive Ap, the critical value again being given by Eqn 
(48). On the other hand, if c0 is small or negative, 
a deformation induced by a positive Ap is likely 
to result in biconcave-discoid shapes of the type 
known from red blood cells and their ghosts. Such 
shapes permit a large decrease in vesicle volume, 
requiring at the same time comparatively little 
curvature.

Bilayer vesicles may possess a variety of stable 
and metastable states. As far as they are caused by 
spontaneous curvature, a magnetic field, or a pres­
sure difference, they should all be solutions of the 
above shape equations. It is easy to put up a general 
relation involving both H and Ap. The formula for 
the ellipticity of a weakly deformed vesicle subject 
to both influences comes out to be

So =
2 ('An -  Xx) b H2
3 {Apc — Ap)

(50)

D. Energies and thermal fluctuations

Sometimes a comparison of energies is more ex­
pedient than a balance of forces. A vesicle whose 
shape is exactly an ellipsoid of revolution has the 
following curvature-elastic, magnetic, and volume 
energies in the lowest occurring power of s2

Ec= {8n/5) (6 — r0 c0) kc (s22/r02) , (51)

E h  = {16 n/15) {xn- x t) b H 2 r0s2, (52)

Ey = — (4 n/5) Ap r0 s22 . (53)

Formulas (51) and (52) have been given before6. 
Their calculation is straightforward but fairly cum­
bersome. The radius r0 is that of the original sphere. 
As the surface area is kept constant, r0 in (37) has 
to be replaced by the renormalized radius

ro + + 0 (s 23). (54)zu r0
Renormalization has been taken into account in 
Eqn (51). The volume of the renormalized ellipsoid 
is

r = ( 4 * /3 )  (r03-  f r 0s22) + 0 (s23) , (55)

which leads directly to Eqn (53). Knowing that 
small deformations are ellipsoidal 6, one can use the
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energy expressions to rederive (42), (48), and
(50).

The possible effect of thermal fluctuations of the 
vesicle shape on the deformation induced by pres­
sure has already been mentioned. According to
(51) these fluctuations can be very strong. Their 
mean square amplitude is deducible from

( l /2 )k BT = (E c) (56)

where kß is Boltzmann’s constant and T the absolute 
temperature. For k# T = 4-10“ 14 erg. A;c = 5-10~13 
dyn cm, and c0 = 0, one obtains

Bilayer vesicles at room temperature may thus be 
expected to exhibit, on the average, an appreciable 
ellipticity. Deformations of higher order will also 
be excited, so the shape can be rather bumpy. 
Simple statistical considerations indicate, however, 
that thermal deformations should not affect a super­
imposed magnetic deformation too much, unless 
they distort the original sphere almost beyond re­
cognition.

IV. Possible Experiments

A check of the proposed theory would be experi­
ments aimed at determining the curvature-elastic 
modulus kc and the spontaneous curvature c0. Are 
measurements of the type outlined above feasible?

A. Magnetic deformation

Let us first deal with the deformation caused by 
magnetic fields. With &c = 5 •10-13 erg, — Xt — 
10~7, 6 = 5-10_7cm, H = 104 oersted, and c0 = 0, 
one computes from Eqn (42).

s2 = — 5 ■ 10_ 10 cm (57)

for a vesicle of radius r0= 10~5cm. This is a small 
deformation, but it may be detectable by means of 
the induced birefrigence of a concentrated solution 
of vesicles, a formula for which was already been 
given 6.

We have assumed / n — ^t = 10-7 because this 
order of magnitude is characteristic of liquid 
crystals. The magnetic anisotropy of ordinary lipid 
bilayers is probably smaller. However, the order of 
10-7 may be reached by lipids with highly un­
saturated hydrocarbon chains. Alternatively, it may

be achieved with the aid of spin labels. A concentra­
tion of roughly 0.1 percent is needed, the bulk 
susceptibility of paramagnetic organic compounds 
being typically around 10~4.

Any deformation of a spherical vesicle diminishes 
its volume if the surface area is fixed. Therefore, a 
predicted magnetic deformation may be prevented 
by the hydrostatic elasticity of the enclosed water. 
To assess the strength of this disturbance, 
we write down the compressional energy Ew, 
assuming that without field the vesicle is spherical 
and Ap — 0. On the basis of (55) we have

<s8>

The elastic stiffness of water, kw, is 2-1010dyn 
cm-2. Ew varies as the fourth power of s2, unlike 
the curvature-elastic energy Ec given by (51). Com­
parison shows that for c0 = 0

EW< E C if 522< 4 0  (kc/r0 kw) . (59)

For the above vesicle the energy of water compres­
sion is negligible if

| s2 | <  1 • 10-8 cm .

Clearly, the deformation (57) is well within the 
limit.

The restriction (59) becomes more stringent for 
larger vesicles. It seems prohibitive for red blood 
cells and their ghosts whose radii are about
3-10~4cm. A certain relief may be provided by 
permeation which is discussed below. An attractive 
method for facilitating rapid pressure equalization 
would be the insertion of pores of tubes, particular­
ly with giant bilayer vesicles 2.

So far, we have neglected the strong thermal 
fluctuations of the vesicle shape, which, in most 
cases, are likely to be much stronger than the magne­
tic deformation. Since the two effects should be es­
sentially independent, as stated earlier, the fluctua­
tions do not prevent meaningful measurements of the 
induced birefringence. On the contrary, thermal de­
formation is an advantage whenever magnetic de­
formation is hindered by slow permeation. Provided 
the thermal ellipticity is much larger than the in­
duced deformation, one can view magnetic bire­
fringence primarily as a result of the orienting 
action of the field on preexistent ellipsoids. The ad­
ditional deformation by the magnetic field is then
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negligible and there is no need to wait for the end 
of permeation before measuring the magnetic bire­
fringence.

Of course, the thermal fluctuations have to be 
fully developed at the time of measurement. In 
order to get an idea of how fast they form and 
decay, we consider the relaxation of ellipticity under 
its own force. The pressure produced by an ellip­
soidal deformation is

Ap =
d E{ / dV

ds.,
2 kc( 6 -  ro cn) (60)

dso ' uo2 ' o

This is just the critical pressure Ap(. and indepen­
dent of s.2* With kc = 5 • 10“ 13 erg and c0 = 0 one 
has

. (6 • 103 dyn cm-2 for r0 = 10“5cm 
^  }0.2 dyn cm“2 for r0 = 3-10“ 4cm.

The speed of permeation may be expressed by the 
time derivative of the vesicle volume,

dV /dt = (P M/q a) Ap 4 n  r02 . (62)

Here P is the permeability, M the molecular weight 
and Q the density of the permeating substance. The 
ratio a is at room temperature 2.24 ■ 1010 dyn cm“2 
per mole cm“3.

A useful quantity is

dV / 4  n r .J  =  h -------------—----
4d t

6 P M _ k A b - z r „c n) _ (631 
p a  r n

The material constants of water are M  = 18 g mole“ 1 
and £> = lg c m “3, the permeability 9 was measured 
to be 10“4cmsec“ 1 for artificial bilayers and 10“3 
cm sec“ 1 for red blood cells. With these values, in 
particular P = 10“4 cm sec“ 1, one computes for the 
inverse of the right-hand side of (63)

5 104 sec for r0 = 10“5cm,
5-1010sec for rft = 3-10 4 cm . (64)

These times multiplied by (s22)/r02 should be 
characteristic of the build-up and decay of thermal 
shape fluctuations. With {so2)/r02 äs 10“3, the ear­
lier estimate, the relaxation is fairly fast for r0 = 
10“3cm, but unacceptably slow for r = 3 1 0 “4cm. 
However, the very slow permeation of dissolved 
ions 9 may prevent the establishment of equilibrium 
in either case.

B. Deformation by pressure

Experimental studies of the deformation caused 
by pressure differences zlp>0 appear to be difficult

because of the expected smallness of the critical 
pressure, as illustrated by (61). For large vesicles 
such as red blood cells, the theoretical critical pres­
sure is so small that under osmosis the vesicle vo­
lume should be simply determined by the relation

V j  r03 = cjc.d . (65)

Here c; and ca are the initial and actual concentra­
tions of a single nonpermeating solute and it is as­
sumed that from the start the concentration is the 
same inside and outside the vesicle. The vesicle 
shape is controlled by curvature elasticity, together 
with the auxiliary conditions of fixed surface area 
and volume. Practical experience9 and estimates 
like those above indicate that even with red blood 
cells the permeation of water takes no more than a 
few minutes under the force of osmosis.

The critical pressure of small vesicles, r0 < 10“5 
cm, is of a more accessible order. However, since 
the decrease of the vesicle volume by the permeation 
of water increases the internal solute concentration, 
Ap is diminished and the deformation stopped be- 
for reaching the shape to be expected with a con­
stant Ap. A sufficiently sensitive method of detec­
tion may still reveal the threshold pressure of de­
formation. Both the intensity and spectrum of scat­
tered light could show the onset of the deformation. 
Another possibility would be to measure the magne­
tic birefringence of a vesicle solution. An ellipticity 
caused by pressure should manifest itself by a 
dramatic increase of the birefringence.

V. Concluding Remarks
Our discussion of bilayer elasticity and vesicle 

shapes leaves many open questions, some of which 
can be answered only by experiment. Of particular 
interest is the strength of the thermal fluctuations. 
Where they are very pronounced, curvature elastici­
ty becomes ineffective in controlling the shape of 
vesicles. The fact that visible vesicles, e. g. bicon­
cave-discoid red blood cells, seem to have a constant 
shape is evidence to the contrary. However, the 
elastic stiffness of vesicles may vary over a wide 
range and can be influenced by chemical means, 
notably through c0 . Another interesting problem is 
the role of the elastic properties in vesicle fusion 
and fission. Although in biological systems these 
processes are probably catalyzed by proteins, it is 
conceivable that certain elastic conditions must be 
met to make them possible.
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