Home Crystal structure, X-ray emission properties and 57Fe Mössbauer spectra of TaFeP
Article
Licensed
Unlicensed Requires Authentication

Crystal structure, X-ray emission properties and 57Fe Mössbauer spectra of TaFeP

  • Ivan Shcherba , Olha Zhak , Henryk Noga , Victor N. Antonov , Lev Bekenov , Volodymyr Babizhetskyy EMAIL logo , Kamila Komedera , Marcin Kowalski , Markian Kachmar and Bohdan Jatsyk
Published/Copyright: July 17, 2025
Become an author with De Gruyter Brill

Abstract

The crystal structure of the phosphide Ta0.88(1)Fe1.12(1)P has been determined from X-ray powder diffraction data: full-profile refinement, orthorhombic space group Pnma, a = 6.1036(2) Å, b = 3.5774(1) Å, c = 6.9742(2) Å, RI = 0.042. Examination of the X-ray emission spectra (XES) has revealed that the main maximum of the FeLα band coincides with the high-energy feature of the P LII,III bands, indicating strong hybridization of P s and Fe d electrons. High intensity of the FeKβ″ satellite has been observed and explained. Two components appear in the 57Fe Mössbauer spectruma measured at temperatures in the range 80–300 K, Fe1 (77(2)%) and Fe2 (23(2)%). The paramagnetic component reflects Fe in the crystallographic position 4c. The moderate value of the quadrupole splitting of 0.3758 mm s−1 indicates a slight anisotropy of the electric field created by Fe1 in its nearest environment. The second component (Fe2) is attributed to Fe atoms statistically substituting Ta atoms in the crystal structure. Its broader linewidth and distinct isomer shift support this assignment. The relative intensities and hyperfine parameters remain constant with temperature, indicating two thermally stable Fe environments. Results of ab initio calculations carried out using the fully relativistic spin-polarized linear muffin-tin orbital method show good agreement with the experimental data.


Corresponding author: Volodymyr Babizhetskyy, Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla & Mefodiya Street 6, 8, 79005 Lviv, Ukraine, E-mail:

Funding source: Ivan Franko National University of Lviv P2–BF

Funding source: Simons Foundation

Award Identifier / Grant number: 00014574

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interests: The authors state no conflict of interest.

  6. Research funding: This research was funded by Ivan Franko National University of Lviv P2–BF and Simons Foundation g. a. 00014574.

  7. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Stein, S.; Block, T.; Klenner, S.; Heletta, L.; Pöttgen, R. Z. Naturforsch. 2019, 74b, 211–219.10.1515/znb-2018-0237Search in Google Scholar

2. Jeitschko, W.; Jordan, A. G.; Beck, P. A. Trans. Met. Soc. AIME 1969, 245, 335–339.Search in Google Scholar

3. Benndorf, C.; Heletta, L.; Heymann, G.; Huppertz, H.; Eckert, H.; Pöttgen, R. Solid State Sci. 2017, 68, 32–38; https://doi.org/10.1016/j.solidstatesciences.2017.04.002.Search in Google Scholar

4. Shirotani, I.; Konno, Y.; Okada, Y.; Sekine, C.; Todo, S.; Yagi, T. Solid State Commun. 1998, 108, 967–970.10.1016/S0038-1098(98)00469-4Search in Google Scholar

5. Benndorf, C. Multinukleare Festkörper NMR spektroskopische Untersuchungen ausgewählter intermetallischer Verbindungen. Dissertation, Universität Münster: Münster, 2016.Search in Google Scholar

6. Benndorf, C.; Eckert, H.; Pöttgen, R. Dalton Trans. 2016, 45, 8215–8223; https://doi.org/10.1039/c6dt00861e.Search in Google Scholar PubMed

7. Villars, P.; Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2023/24); ASM International®: Materials Park, Ohio (USA), 2023.Search in Google Scholar

8. Lomnytska, Ya.; Dzevenko, M.; Babizhetskyy, V.; Toma, O.; Smolyak, O.; Gordon, E. E.; Whangbo, M.-H.; Köhler, J. K. J. Alloys Compd. 2018, 732, 777–783; https://doi.org/10.1016/j.jallcom.2017.10.247.Search in Google Scholar

9. Lomnytska, Ya.; Dzevenko, M.; Kushnir, A. Proc. Shevchenko Sci. Soc. Chem. Sci. 2019, 56, 56–63.10.37827/ntsh.chem.2019.56.056Search in Google Scholar

10. Lomnytska, Ya.; Babizhetskyy, V.; Oliynyk, A.; Toma, O.; Dzevenko, M.; Mar, A. J. Solid State Chem. 2016, 235, 50–57; https://doi.org/10.1016/j.jssc.2015.12.010.Search in Google Scholar

11. Lomnytska, Ya.; Dzevenko, M.; Babizhetskyy, V.; Schöneich, M.; Köhler, J. J. Solid State Chem. 2019, 277, 77–82; https://doi.org/10.1016/j.jssc.2019.05.045.Search in Google Scholar

12. Lomnytska, Ya.; Babizhetskyy, V.; Dzevenko, M.; Kushnir, A. Visnyk Lviv Univ. Ser. Chem. 2021, 62, 36–45; https://doi.org/10.30970/vch.6201.036.Search in Google Scholar

13. Babizhetskyy, V.; Lomnytska, Ya.; Dzevenko, M.; Zheng, C.; Smetana, V.; Mudring, A.-V. J. Alloys Compd. 2021, 864, 158122 (14 pages); https://doi.org/10.1016/j.jallcom.2020.158122.Search in Google Scholar

14. Paulsen, C.; Gerdes, J. M.; Svitlyk, V.; Reimann, M. K.; Rabenbauer, A.; Nilges, T.; Hansen, M. R.; Pöttgen, R. Z. Kristallogr. 2023, 238 (3–4), 105–117.Search in Google Scholar

15. Lomnitskaya, Ya. F.; Kuz’ma, Yu. B. Powder Metall. Met. Ceram. 1991, 2, 82–86.Search in Google Scholar

16. Lomnitskaya, Ya. F.; Kuz’ma, Yu. B. Zh. Neorg. Khim. 1989, 34, 2113–2116.Search in Google Scholar

17. Lomnitskaya, Ya. F.; Kondratyuk, H. D.; Zakharets, L. I. Zh. Neorg. Khim. 1988, 33, 734–737.10.1520/JFS12481JSearch in Google Scholar

18. Oryshchyn, S. V.; Ustyak, O. V.; Kuz’ma, Yu. B. Visnyk L’viv. Univ., Ser. Khim. 1981, 23, 69–70.Search in Google Scholar

19. Lomnytska, Ya. F.; Kuz’ma, Yu.B. J. Alloys Compd. 1998, 269, 133–137.10.1016/S0925-8388(98)00134-0Search in Google Scholar

20. Lomnytska, Y. F.; Kuz’ma, Y. B. Inorg. Mater. 1980, 16, 705–707.Search in Google Scholar

21. Rundqvist, S.; Nawapong, P. C.; Rymo, L.; Bowie, J. H.; Williams, D. H.; Bunnenberg, E.; Djerassi, C.; Records, R. Acta Chem. Scand. 1966, 20, 2250–2254; https://doi.org/10.3891/acta.chem.scand.20-2250.Search in Google Scholar

22. Chaichit, N.; Chalugune, P.; Rukvichai, S.; Choosang, P.; Kaewchansilp, V.; Pontchour, C. O.; Phavanantha, P.; Pramatus, S. Acta Chem. Scand., Ser. A 1978, 32, 309–311.10.3891/acta.chem.scand.32a-0309Search in Google Scholar

23. Akselrud, L.; Grin, Y. J. Appl. Crystallogr. 2014, 47, 803–805; https://doi.org/10.1107/s1600576714001058.Search in Google Scholar

24. Shcherba, I. D.; Bekenov, L. V.; Antonov, V. N.; Noga, H.; Uskokovic, D.; Zhak, O.; Kovalska, M. V. J. Electron Spectrosc. Relat. Phenom. 2016, 212, 5–10; https://doi.org/10.1016/j.elspec.2016.07.002.Search in Google Scholar

25. Duraj, Ł.; Ruebenbauer, K. Nukleonika 2013, 58, 13–16.Search in Google Scholar

26. Antonov, V. N.; Jepsen, O.; Yaresko, A. N.; Shpak, A. P. J. Appl. Phys. 2006, 100, 043711 (7 pages); https://doi.org/10.1063/1.2234809.Search in Google Scholar

27. Antonov, V. N.; Harmon, B. N.; Yaresko, A. N.; Shpak, A. P. Phys. Rev. B 2007, 75, 184422 (10 pages); https://doi.org/10.1103/physrevb.75.184422.Search in Google Scholar

28. Antonov, V. N.; Yaresko, A. N.; Jepsen, O. Phys. Rev. B 2010, 81, 075209 (19 pages); https://doi.org/10.1103/physrevb.81.075209.Search in Google Scholar

29. Antonov, V. N.; Kukusta, D. A.; Bekenov, L. V. Phys. Rev. B 2022, 105, 155144 (9 pages); https://doi.org/10.1103/physrevb.105.155144.Search in Google Scholar

30. Andersen, O. K. Phys. Rev. B 1975, 12, 3060–3083; https://doi.org/10.1103/physrevb.12.3060.Search in Google Scholar

31. Antonov, V.; Harmon, B.; Yaresko, A. Electronic Structure and Magneto-Optical Properties of Solids; Kluwer: Dordrecht, 2004.Search in Google Scholar

32. Nemoshkalenko, V. V.; Krasovskii, A. E.; Antonov, V. N.; Antonov, Vl. N.; Fleck, U.; Wonn, H.; Ziesche, P. Phys. Status Solidi B 1983, 120, 283–296; https://doi.org/10.1002/pssb.2221200130.Search in Google Scholar

33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

34. Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Phys. Rev. B 1994, 49, 16223–16233; https://doi.org/10.1103/physrevb.49.16223.Search in Google Scholar PubMed

35. Yaresko, A. N.; Antonov, V. N.; Fulde, P. Phys. Rev. B 2003, 67, 155103 (10 pages); https://doi.org/10.1103/physrevb.67.155103.Search in Google Scholar

36. Dederichs, P. H.; Blügel, S.; Zeller, R.; Akai, H. Phys. Rev. Lett. 1984, 53, 2512–2515.10.1103/PhysRevLett.53.2512Search in Google Scholar

37. Pickett, W. E.; Erwin, S. C.; Ethridge, E. C. Phys. Rev. B 1998, 58, 1201–1209; https://doi.org/10.1103/physrevb.58.1201.Search in Google Scholar

38. Campbell, J. L.; Papp, T. At. Data Nucl. Data Tables 2001, 77, 1–56; https://doi.org/10.1006/adnd.2000.0848.Search in Google Scholar

39. Shoemaker, C. B.; Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900–905; https://doi.org/10.1107/s0365110x65002189.Search in Google Scholar

40. Wiberg, E.; Wiberg, N. Holleman-Wiberg Lehrbuch der Anorganischen Chemie; Walter de Gruyter: Berlin, New York, 1995.Search in Google Scholar

41. Hoffmann, R.-D.; Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145.10.1524/zkri.216.3.127.20327Search in Google Scholar

42. Shcherba, I.; Babizhetskyy, V.; Antonov, V. N.; Noga, H.; Zhak, O.; Bekenov, L.; Köhler, J.; Kremer, R. K.; Kuzhel, B.; Jasinski, M. J. Electron Spectrosc. Relat. Phenom. 2024, 275, 147471 (9 pages); https://doi.org/10.1016/j.elspec.2024.147471.Search in Google Scholar

43. Nemoshkalenko, V. V.; Tomashevskii, N. A.; Chernogorenko, V. B.; Solomatina, L. Ya. Powder Metall. Met. Ceram. 1982, 21, 50–53; https://doi.org/10.1007/bf00791726.Search in Google Scholar

44. Nishida, H.; Hirata, M.; Hirano, T.; Ohki, T.; Nasu, S.; Nakaue, A. Nucl. Instrum. Methods Phys. Res. 1993, B76, 376–377.10.1016/0168-583X(93)95244-YSearch in Google Scholar

Received: 2025-06-06
Accepted: 2025-07-01
Published Online: 2025-07-17

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2025-0040/html
Scroll to top button