Crystal structure, X-ray emission properties and 57Fe Mössbauer spectra of TaFeP
-
Ivan Shcherba
, Kamila Komedera
Abstract
The crystal structure of the phosphide Ta0.88(1)Fe1.12(1)P has been determined from X-ray powder diffraction data: full-profile refinement, orthorhombic space group Pnma, a = 6.1036(2) Å, b = 3.5774(1) Å, c = 6.9742(2) Å, RI = 0.042. Examination of the X-ray emission spectra (XES) has revealed that the main maximum of the FeLα band coincides with the high-energy feature of the P LII,III bands, indicating strong hybridization of P s and Fe d electrons. High intensity of the FeKβ″ satellite has been observed and explained. Two components appear in the 57Fe Mössbauer spectruma measured at temperatures in the range 80–300 K, Fe1 (77(2)%) and Fe2 (23(2)%). The paramagnetic component reflects Fe in the crystallographic position 4c. The moderate value of the quadrupole splitting of 0.3758 mm s−1 indicates a slight anisotropy of the electric field created by Fe1 in its nearest environment. The second component (Fe2) is attributed to Fe atoms statistically substituting Ta atoms in the crystal structure. Its broader linewidth and distinct isomer shift support this assignment. The relative intensities and hyperfine parameters remain constant with temperature, indicating two thermally stable Fe environments. Results of ab initio calculations carried out using the fully relativistic spin-polarized linear muffin-tin orbital method show good agreement with the experimental data.
Funding source: Ivan Franko National University of Lviv P2–BF
Funding source: Simons Foundation
Award Identifier / Grant number: 00014574
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interests: The authors state no conflict of interest.
-
Research funding: This research was funded by Ivan Franko National University of Lviv P2–BF and Simons Foundation g. a. 00014574.
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Stein, S.; Block, T.; Klenner, S.; Heletta, L.; Pöttgen, R. Z. Naturforsch. 2019, 74b, 211–219.10.1515/znb-2018-0237Search in Google Scholar
2. Jeitschko, W.; Jordan, A. G.; Beck, P. A. Trans. Met. Soc. AIME 1969, 245, 335–339.Search in Google Scholar
3. Benndorf, C.; Heletta, L.; Heymann, G.; Huppertz, H.; Eckert, H.; Pöttgen, R. Solid State Sci. 2017, 68, 32–38; https://doi.org/10.1016/j.solidstatesciences.2017.04.002.Search in Google Scholar
4. Shirotani, I.; Konno, Y.; Okada, Y.; Sekine, C.; Todo, S.; Yagi, T. Solid State Commun. 1998, 108, 967–970.10.1016/S0038-1098(98)00469-4Search in Google Scholar
5. Benndorf, C. Multinukleare Festkörper NMR spektroskopische Untersuchungen ausgewählter intermetallischer Verbindungen. Dissertation, Universität Münster: Münster, 2016.Search in Google Scholar
6. Benndorf, C.; Eckert, H.; Pöttgen, R. Dalton Trans. 2016, 45, 8215–8223; https://doi.org/10.1039/c6dt00861e.Search in Google Scholar PubMed
7. Villars, P.; Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2023/24); ASM International®: Materials Park, Ohio (USA), 2023.Search in Google Scholar
8. Lomnytska, Ya.; Dzevenko, M.; Babizhetskyy, V.; Toma, O.; Smolyak, O.; Gordon, E. E.; Whangbo, M.-H.; Köhler, J. K. J. Alloys Compd. 2018, 732, 777–783; https://doi.org/10.1016/j.jallcom.2017.10.247.Search in Google Scholar
9. Lomnytska, Ya.; Dzevenko, M.; Kushnir, A. Proc. Shevchenko Sci. Soc. Chem. Sci. 2019, 56, 56–63.10.37827/ntsh.chem.2019.56.056Search in Google Scholar
10. Lomnytska, Ya.; Babizhetskyy, V.; Oliynyk, A.; Toma, O.; Dzevenko, M.; Mar, A. J. Solid State Chem. 2016, 235, 50–57; https://doi.org/10.1016/j.jssc.2015.12.010.Search in Google Scholar
11. Lomnytska, Ya.; Dzevenko, M.; Babizhetskyy, V.; Schöneich, M.; Köhler, J. J. Solid State Chem. 2019, 277, 77–82; https://doi.org/10.1016/j.jssc.2019.05.045.Search in Google Scholar
12. Lomnytska, Ya.; Babizhetskyy, V.; Dzevenko, M.; Kushnir, A. Visnyk Lviv Univ. Ser. Chem. 2021, 62, 36–45; https://doi.org/10.30970/vch.6201.036.Search in Google Scholar
13. Babizhetskyy, V.; Lomnytska, Ya.; Dzevenko, M.; Zheng, C.; Smetana, V.; Mudring, A.-V. J. Alloys Compd. 2021, 864, 158122 (14 pages); https://doi.org/10.1016/j.jallcom.2020.158122.Search in Google Scholar
14. Paulsen, C.; Gerdes, J. M.; Svitlyk, V.; Reimann, M. K.; Rabenbauer, A.; Nilges, T.; Hansen, M. R.; Pöttgen, R. Z. Kristallogr. 2023, 238 (3–4), 105–117.Search in Google Scholar
15. Lomnitskaya, Ya. F.; Kuz’ma, Yu. B. Powder Metall. Met. Ceram. 1991, 2, 82–86.Search in Google Scholar
16. Lomnitskaya, Ya. F.; Kuz’ma, Yu. B. Zh. Neorg. Khim. 1989, 34, 2113–2116.Search in Google Scholar
17. Lomnitskaya, Ya. F.; Kondratyuk, H. D.; Zakharets, L. I. Zh. Neorg. Khim. 1988, 33, 734–737.10.1520/JFS12481JSearch in Google Scholar
18. Oryshchyn, S. V.; Ustyak, O. V.; Kuz’ma, Yu. B. Visnyk L’viv. Univ., Ser. Khim. 1981, 23, 69–70.Search in Google Scholar
19. Lomnytska, Ya. F.; Kuz’ma, Yu.B. J. Alloys Compd. 1998, 269, 133–137.10.1016/S0925-8388(98)00134-0Search in Google Scholar
20. Lomnytska, Y. F.; Kuz’ma, Y. B. Inorg. Mater. 1980, 16, 705–707.Search in Google Scholar
21. Rundqvist, S.; Nawapong, P. C.; Rymo, L.; Bowie, J. H.; Williams, D. H.; Bunnenberg, E.; Djerassi, C.; Records, R. Acta Chem. Scand. 1966, 20, 2250–2254; https://doi.org/10.3891/acta.chem.scand.20-2250.Search in Google Scholar
22. Chaichit, N.; Chalugune, P.; Rukvichai, S.; Choosang, P.; Kaewchansilp, V.; Pontchour, C. O.; Phavanantha, P.; Pramatus, S. Acta Chem. Scand., Ser. A 1978, 32, 309–311.10.3891/acta.chem.scand.32a-0309Search in Google Scholar
23. Akselrud, L.; Grin, Y. J. Appl. Crystallogr. 2014, 47, 803–805; https://doi.org/10.1107/s1600576714001058.Search in Google Scholar
24. Shcherba, I. D.; Bekenov, L. V.; Antonov, V. N.; Noga, H.; Uskokovic, D.; Zhak, O.; Kovalska, M. V. J. Electron Spectrosc. Relat. Phenom. 2016, 212, 5–10; https://doi.org/10.1016/j.elspec.2016.07.002.Search in Google Scholar
25. Duraj, Ł.; Ruebenbauer, K. Nukleonika 2013, 58, 13–16.Search in Google Scholar
26. Antonov, V. N.; Jepsen, O.; Yaresko, A. N.; Shpak, A. P. J. Appl. Phys. 2006, 100, 043711 (7 pages); https://doi.org/10.1063/1.2234809.Search in Google Scholar
27. Antonov, V. N.; Harmon, B. N.; Yaresko, A. N.; Shpak, A. P. Phys. Rev. B 2007, 75, 184422 (10 pages); https://doi.org/10.1103/physrevb.75.184422.Search in Google Scholar
28. Antonov, V. N.; Yaresko, A. N.; Jepsen, O. Phys. Rev. B 2010, 81, 075209 (19 pages); https://doi.org/10.1103/physrevb.81.075209.Search in Google Scholar
29. Antonov, V. N.; Kukusta, D. A.; Bekenov, L. V. Phys. Rev. B 2022, 105, 155144 (9 pages); https://doi.org/10.1103/physrevb.105.155144.Search in Google Scholar
30. Andersen, O. K. Phys. Rev. B 1975, 12, 3060–3083; https://doi.org/10.1103/physrevb.12.3060.Search in Google Scholar
31. Antonov, V.; Harmon, B.; Yaresko, A. Electronic Structure and Magneto-Optical Properties of Solids; Kluwer: Dordrecht, 2004.Search in Google Scholar
32. Nemoshkalenko, V. V.; Krasovskii, A. E.; Antonov, V. N.; Antonov, Vl. N.; Fleck, U.; Wonn, H.; Ziesche, P. Phys. Status Solidi B 1983, 120, 283–296; https://doi.org/10.1002/pssb.2221200130.Search in Google Scholar
33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
34. Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Phys. Rev. B 1994, 49, 16223–16233; https://doi.org/10.1103/physrevb.49.16223.Search in Google Scholar PubMed
35. Yaresko, A. N.; Antonov, V. N.; Fulde, P. Phys. Rev. B 2003, 67, 155103 (10 pages); https://doi.org/10.1103/physrevb.67.155103.Search in Google Scholar
36. Dederichs, P. H.; Blügel, S.; Zeller, R.; Akai, H. Phys. Rev. Lett. 1984, 53, 2512–2515.10.1103/PhysRevLett.53.2512Search in Google Scholar
37. Pickett, W. E.; Erwin, S. C.; Ethridge, E. C. Phys. Rev. B 1998, 58, 1201–1209; https://doi.org/10.1103/physrevb.58.1201.Search in Google Scholar
38. Campbell, J. L.; Papp, T. At. Data Nucl. Data Tables 2001, 77, 1–56; https://doi.org/10.1006/adnd.2000.0848.Search in Google Scholar
39. Shoemaker, C. B.; Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900–905; https://doi.org/10.1107/s0365110x65002189.Search in Google Scholar
40. Wiberg, E.; Wiberg, N. Holleman-Wiberg Lehrbuch der Anorganischen Chemie; Walter de Gruyter: Berlin, New York, 1995.Search in Google Scholar
41. Hoffmann, R.-D.; Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145.10.1524/zkri.216.3.127.20327Search in Google Scholar
42. Shcherba, I.; Babizhetskyy, V.; Antonov, V. N.; Noga, H.; Zhak, O.; Bekenov, L.; Köhler, J.; Kremer, R. K.; Kuzhel, B.; Jasinski, M. J. Electron Spectrosc. Relat. Phenom. 2024, 275, 147471 (9 pages); https://doi.org/10.1016/j.elspec.2024.147471.Search in Google Scholar
43. Nemoshkalenko, V. V.; Tomashevskii, N. A.; Chernogorenko, V. B.; Solomatina, L. Ya. Powder Metall. Met. Ceram. 1982, 21, 50–53; https://doi.org/10.1007/bf00791726.Search in Google Scholar
44. Nishida, H.; Hirata, M.; Hirano, T.; Ohki, T.; Nasu, S.; Nakaue, A. Nucl. Instrum. Methods Phys. Res. 1993, B76, 376–377.10.1016/0168-583X(93)95244-YSearch in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston