Home ‘Schmidbaur gold chemistry’ and beyond
Article
Licensed
Unlicensed Requires Authentication

‘Schmidbaur gold chemistry’ and beyond

  • Daniela I. Bezuidenhout ORCID logo , Catharine Esterhuysen ORCID logo , Liliana Dobrzańska ORCID logo , Stephanie Cronje ORCID logo and Helgard G. Raubenheimer ORCID logo EMAIL logo
Published/Copyright: January 13, 2025
Become an author with De Gruyter Brill

Abstract

Hubert Schmidbaur has significantly influenced the field of gold chemistry. His work on preparing various aurocyclic digold compounds and studying their structures and reactivities has laid the foundation for unique applications in photophysics and homogeneous catalysis. The naming and characterization, both experimental and theoretical, of the aurophilicity phenomenon have led to numerous interdisciplinary applications. The emergence and development of dynamic gold chemistry in the excited state, exemplify this impact. Preparative methodologies, characterization techniques, and qualitative bonding theories have been tested through the rational preparation of ligated, element-centred gold clusters. The potential of this fascinating class of compounds remains largely untapped.


Corresponding author: Helgard G. Raubenheimer, Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa, E-mail:
Dedicated to gold chemistry maestro and crusader, Prof. Dr. Dr. h.c. Hubert Schmidbaur on the occasion of his 90th birthday.

Acknowledgments

We thank Beatrice Elisabeth Cronje for drawing the Havana cigar and the hiking poles in the graphical abstract.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Puddephatt, R. J. The Chemistry Of Gold; Elsevier Scientific Publishing Company: Amsterdam, Oxford, New York, 1978.Search in Google Scholar

2. Armer, B.; Schmidbaur, H. Angew Chem. Int. Ed. Engl. 1970, 9, 101–113; https://doi.org/10.1002/anie.197001011.Search in Google Scholar

3. Raubenheimer, H. G.; Schmidbaur, H. J. Chem. Educ. 2014, 91, 2024–2036; https://doi.org/10.1021/ed400782p.Search in Google Scholar

4. Schmidbaur, H. From Chemical Craftmanship to the Art of Gilding Atoms; GNT-Verlag: Berlin, 2024.10.47261/1559Search in Google Scholar

5. Schmidbaur, H. Angew Chem. Int. Ed. Engl. 1976, 15, 728–740; https://doi.org/10.1002/anie.197607281.Search in Google Scholar

6. Coetzee, J.; Gabrielli, W. F.; Coetzee, K.; Schuster, O.; Nogai, S. D.; Cronje, S.; Raubenheimer, H. G. Angew. Chem. Int. Ed. 2007, 46, 2497–2500; https://doi.org/10.1002/anie.200604592.Search in Google Scholar PubMed

7. Schmidbaur, H.; Franke, R. Angew Chem. Int. Ed. Engl. 1973, 12, 416–417; https://doi.org/10.1002/anie.197304161.Search in Google Scholar

8. Cariati, F.; Naldini, L.; Simonetta, G.; Malatesta, L. Inorg. Chim. Acta 1967, 1, 315–318; https://doi.org/10.1016/s0020-1693(00)93194-3.Search in Google Scholar

9. Schmidbaur, H.; Franke, R. Inorg. Chim. Acta 1975, 13, 85–89; https://doi.org/10.1016/s0020-1693(00)90181-6.Search in Google Scholar

10. Schmidbaur, H.; Ebner von Eschenbach, J.; Kumberger, O.; Müller, G. Chem. Ber. 1990, 123, 2261–2265; https://doi.org/10.1002/cber.19901231206.Search in Google Scholar

11. Schmidbaur, H.; Wohlleben, A.; Wagner, F.; Orama, O.; Huttner, G. Chem. Ber. 1977, 110, 1748–1754; https://doi.org/10.1002/cber.19771100519.Search in Google Scholar

12. Wang, W.; Ji, C.-L.; Liu, K.; Zhao, C.-G.; Lia, W.; Xie, J. Chem. Soc. Rev. 2021, 50, 1874–1912; https://doi.org/10.1039/d0cs00254b.Search in Google Scholar PubMed

13. Witzel, S.; Hashmi, A. S. K.; Xie, J. Chem. Rev. 2021, 121, 8868–8925; https://doi.org/10.1021/acs.chemrev.0c00841.Search in Google Scholar PubMed

14. Schmidbaur, H.; Reber, G.; Schier, A.; Wagner, F. E.; Müller, G. Inorg. Chim. Acta 1988, 147, 143–150; https://doi.org/10.1016/s0020-1693(00)83363-0.Search in Google Scholar

15. Schmidbaur, H.; Grohmann, A.; Olmos, M. E. In Gold: Progress in Chemistry, Biochemistry and Technology; Schmidbaur, H., Ed.; John Wiley & Sons: New York, 1999; pp. 648–746. chapter 18.Search in Google Scholar

16. Fackler, J. P. Inorg. Chem. 2002, 41, 6959–6972; https://doi.org/10.1021/ic025734m.Search in Google Scholar PubMed

17. Laguna, A.; Laguna, M. Coord. Chem. Rev. 1999, 193–195, 837–856; https://doi.org/10.1016/s0010-8545(99)00141-1.Search in Google Scholar

18. Schmidbaur, H.; Raubenheimer, H. G. Angew. Chem. Int. Ed. 2020, 59, 14748–14771; https://doi.org/10.1002/anie.201916255.Search in Google Scholar PubMed PubMed Central

19. Raubenheimer, H. G. LitNet Akademies 2016, 13, 39–68.Search in Google Scholar

20. Scherbaum, F.; Grohmann, A.; Huber, B.; Krüger, C.; Schmidbaur, H. Angew Chem. Int. Ed. Engl. 1988, 27, 1544–1545; https://doi.org/10.1002/anie.198815441.Search in Google Scholar

21. Bayrakdar, T. A. C. A.; Scattolin, T.; Ma, X.; Nolan, S. P. Chem. Soc. Rev. 2020, 49, 7044–7100; https://doi.org/10.1039/d0cs00438c.Search in Google Scholar PubMed

22. Mirzadeh, N.; Privér, S. H.; Blake, A. J.; Schmidbaur, H.; Bhargava, S. K. Chem. Rev. 2020, 120, 7551–7591; https://doi.org/10.1021/acs.chemrev.9b00816.Search in Google Scholar PubMed

23. Schmidbaur, H.; Graf, W.; Müller, G. Angew Chem. Int. Ed. Engl. 1988, 27, 417–419; https://doi.org/10.1002/anie.198804171.Search in Google Scholar

24. Raubenheimer, H. G.; Cronje, S. LitNet Akademies 2024, 21, 463–514; https://doi.org/10.56273/1995-5928/2024/j21n1f1.Search in Google Scholar

25. Schmidbaur, H.; Schier, A. Chem. Soc. Rev. 2012, 41, 370–412; https://doi.org/10.1039/c1cs15182g.Search in Google Scholar PubMed

26. Pyykkö, P.; Schneider, W.; Bauer, A.; Bayler, A.; Schmidbaur, H. Chem. Commun. 1997, 1111–1112; https://doi.org/10.1039/a608428a.Search in Google Scholar

27. Schwerdtfeger, P.; Hermann, H. L.; Schmidbaur, H. Inorg. Chem. 2003, 42, 1334–1342; https://doi.org/10.1021/ic026098v.Search in Google Scholar PubMed

28. Pyykkö, P. Angew. Chem. Int. Ed. 2004, 43, 4412–4456; https://doi.org/10.1002/anie.200300624.Search in Google Scholar PubMed

29. Pyykkö, P. Chem. Soc. Rev. 2008, 37, 1967–1997; https://doi.org/10.1039/b708613j.Search in Google Scholar PubMed

30. Schwerdtfeger, P. Heteroatom Chem. 2002, 13, 578–584; https://doi.org/10.1002/hc.10093.Search in Google Scholar

31. Levine, I. N. Electron-correlation Methods. In Quantum Chemistry, 6th ed.; Prentice Hall Pearson Education: Upper Saddle River, New Jersey, 2009; chapter 16. pp. 566–635.Search in Google Scholar

32. Sherrill, C. D. Wavefunction Theory Approaches to Noncovalent Interactions. In Non-covalent interactions in quantum chemistry and physics: theory and applications; Otero de la Roza, A.; DiLabio, G. A., Eds.; Elsevier: Amsterdam, 2017; chapter 4. pp. 137–168.10.1016/B978-0-12-809835-6.00005-0Search in Google Scholar

33. Pyykkö, P.; Zhao, Y. Angew Chem. Int. Ed. Engl. 1991, 30, 604–605; https://doi.org/10.1002/anie.199106041.Search in Google Scholar

34. Das, K. K.; Balasubramanian, K. J. Mol. Spectr. 1990, 140, 280–294; https://doi.org/10.1016/0022-2852(90)90141-c.Search in Google Scholar

35. Geethalakshmi, K. R.; Ruipérez, F.; Knecht, S.; Ugalde, J. M.; Morse, M. D.; Infante, I. Phys. Chem. Chem. Phys. 2012, 14, 8732–8741; https://doi.org/10.1039/c2cp40898h.Search in Google Scholar PubMed

36. Uson, R.; Laguna, A.; Castrillo, M. V. Synth. React. Inorg. Met.-Org. Chem. 1979, 9, 317–324; https://doi.org/10.1080/00945717908069748.Search in Google Scholar

37. Nesmeyanov, A. N.; Perevalova, E. G.; Struchkov, Yu. T.; Antipin, M.Yu.; Grandberg, K. I.; Dyadhenko, V. P. J. Organomet. Chem. 1980, 201, 343–349; https://doi.org/10.1016/s0022-328x(00)92589-0.Search in Google Scholar

38. Perevalova, E. G.; Smyslova, E. I.; Dyadchenko, V. P.; Grandberg, K. I.; Nesmeyanov, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 1455.Search in Google Scholar

39. Raubenheimer, H. G.; Mapolie, S. F. Dalton Trans. 2021, 50, 17864–17878; https://doi.org/10.1039/d1dt02940a.Search in Google Scholar PubMed

40. Raubenheimer, H. G.; Schmidbaur, H. Organometallics 2012, 31, 2507–2522; https://doi.org/10.1021/om2010113.Search in Google Scholar

41. Schmidbaur, H. Chem. Soc. Rev. 1995, 24, 391–400; https://doi.org/10.1039/cs9952400391.Search in Google Scholar

42. Schmidbaur, H.; Cronje, S.; Djordjevic, B.; Schuster, O. Chem. Phys. 2005, 311, 151–161; https://doi.org/10.1016/j.chemphys.2004.09.023.Search in Google Scholar

43. Schmidbaur, H.; Schier, A. Chem. Soc. Rev. 2008, 37, 1931–1951; https://doi.org/10.1039/b708845k.Search in Google Scholar PubMed

44. Li, J.; Pyykkö, P. Inorg. Chem. 1993, 32, 2630–2634; https://doi.org/10.1021/ic00064a010.Search in Google Scholar

45. Häberlen, O. D.; Schmidbaur, H.; Rösch, N. J. Am. Chem. Soc. 1994, 116, 8241–8248; https://doi.org/10.1021/ja00097a034.Search in Google Scholar

46. Scherbaum, F.; Grohmann, A.; Müller, G.; Schmidbaur, H. Angew Chem. Int. Ed. Engl. 1989, 28, 463–465; https://doi.org/10.1002/anie.198904631.Search in Google Scholar

47. Zeller, E.; Beruda, H.; Kolb, A.; Bissinger, P.; Riede, J.; Schmidbaur, H. Nature 1991, 352, 141–143; https://doi.org/10.1038/352141a0.Search in Google Scholar

48. Schmidbaur, H.; Beruda, H.; Zeller, E. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 87, 245–255; https://doi.org/10.1080/10426509408037457.Search in Google Scholar

49. Canales, F.; Gimeno, M. C.; Jones, P. J.; Laguna, A. Angew Chem. Int. Ed. Engl. 1994, 33, 769–770; https://doi.org/10.1002/anie.199407691.Search in Google Scholar

50. Teo, B. K.; Zhang, H. J. Clust. Sci. 1990, 1, 223–228; https://doi.org/10.1007/bf00702721.Search in Google Scholar

51. Angermaier, K.; Schmidbaur, H. Inorg. Chem. 1994, 33, 2069–2070; https://doi.org/10.1021/ic00088a001.Search in Google Scholar

52. Pyykkö, P.; Zhao, Y. Chem. Phys. Lett. 1991, 177, 103–106; https://doi.org/10.1016/0009-2614(91)90183-a.Search in Google Scholar

53. Sladek, A.; Hofreiter, S.; Paul, M.; Schmidbaur, H. J. Organomet. Chem. 1995, 501, 47–51; https://doi.org/10.1016/0022-328x(95)05589-h.Search in Google Scholar

54. Shiotani, A.; Schmidbaur, H. J. Am. Chem. Soc. 1970, 92, 7003–7004; https://doi.org/10.1021/ja00726a067.Search in Google Scholar

55. Paul, M.; Schmidbaur, H. Z. Naturforsch. 1994, 49b, 647–649; https://doi.org/10.1515/znb-1994-0513.Search in Google Scholar

56. Shiotani, A.; Schmidbaur, H. J. Organomet. Chem. 1972, 37, C24–C26; https://doi.org/10.1016/s0022-328x(00)89250-5.Search in Google Scholar

57. Schneider, D.; Schuster, O.; Schmidbaur, H. Dalton Trans. 2005, 1940–1947; https://doi.org/10.1039/b502861b.Search in Google Scholar PubMed

58. Schneider, D.; Schier, A.; Schmidbaur, H. Dalton Trans. 2004, 1995–2005; https://doi.org/10.1039/b403005b.Search in Google Scholar PubMed

59. Grohmann, A.; Schmidbaur, H. In Comprehensive Organometallic Chemistry II; Abel, E. W.; Stone, F. G. A.; Wilkinson, G., Eds.; Pergamon, Elsevier: Oxford, Vol. 3, 1995; pp. 1–56; https://doi.org/10.1016/b978-008046519-7.00021-6.Search in Google Scholar

60. Schmidbaur, H.; Schier, A. In Comprehensive Organometallic Chemistry III: From Fundamentals to Applications; Mingos, D. M. P.; Crabtree, R. H., Eds.; Elsevier: Amsterdam, Vol. 2, 2007; pp. 251–307.10.1016/B0-08-045047-4/00039-XSearch in Google Scholar

61. Schier, A.; Schmidbaur, H. Encycl. Inorg. Bioinorg. Chem. 2005, 1–11; https://doi.org/10.1002/0470862106.ia082.Search in Google Scholar

62. Schmidbaur, H. Acc. Chem. Res. 1975, 8, 62–70; https://doi.org/10.1021/ar50086a003.Search in Google Scholar

63. Schmidbaur, H. Z. Naturforsch. 2008, 63b, 853–859; https://doi.org/10.1515/znb-2008-0708.Search in Google Scholar

64. Schmidbaur, H. Gold Bull 1990, 23, 11–21; https://doi.org/10.1007/bf03214710.Search in Google Scholar

65. Schmidbaur, H. Gold Bull 2000, 33, 3–10; https://doi.org/10.1007/bf03215477.Search in Google Scholar

66. Gray, T. G.; Sadighi, J. P. In Molecular Metal-Metal Bonds: Compounds, Synthesis, Properties; Liddle, S. T., Ed.; Wiley-VCH Verlag: Weinheim, 2015; pp. 397–428.10.1002/9783527673353.ch11Search in Google Scholar

67. Schmidbaur, H.; Mandl, J. E.; Richter, W.; Bejenke, V.; Frank, A.; Huttner, G. Chem. Ber. 1977, 110, 2236–2241; https://doi.org/10.1002/cber.19771100621.Search in Google Scholar

68. Jandik, P.; Schubert, U.; Schmidbaur, H. Angew Chem. Int. Ed. Engl. 1982, 21, 73; https://doi.org/10.1002/anie.198200731.Search in Google Scholar

69. Schmidbaur, H.; Scherm, H. P. Chem. Ber. 1977, 110, 1576–1585; https://doi.org/10.1002/cber.19771100440.Search in Google Scholar

70. Schmidbaur, H.; Füller, H.-J.; Bejenke, V.; Franck, A.; Huttner, G. Chem. Ber. 1977, 110, 3536–3543; https://doi.org/10.1002/cber.19771101109.Search in Google Scholar

71. Schmidbaur, H.; Müller, G.; Dash, K. C.; Milewski‐Mahrla, B. Chem. Ber. 1981, 114, 441–446; https://doi.org/10.1002/cber.19811140205.Search in Google Scholar

72. Krüger, C.; Sekutowski, J. C.; Goddard, R.; Füller, H.-J.; Gasser, O.; Schmidbaur, H. Isr. J. Chem. 1977, 15, 149–152; https://doi.org/10.1002/ijch.197600029.Search in Google Scholar

73. Usón, R.; Laguna, A. Coord. Chem. Rev. 1986, 70, 1–50; https://doi.org/10.1016/0010-8545(86)80034-0.Search in Google Scholar

74. Mohamed, A. A.; Abdou, H. E.; Fackler, J. P. Coord. Chem. Rev. 2010, 254, 1253–1259; https://doi.org/10.1016/j.ccr.2009.10.017.Search in Google Scholar

75. Waters, J. H.; Gray, H. B. J. Am. Chem. Soc. 1965, 87, 3534–3535; https://doi.org/10.1021/ja01093a064.Search in Google Scholar

76. Schmidbaur, H.; Mandl, J. R.; Frank, A.; Huttner, G. Chem. Ber. 1976, 109, 466–472; https://doi.org/10.1002/cber.19761090208.Search in Google Scholar

77. Schmidbaur, H.; Jandik, P. Inorg. Chim. Acta 1983, 74, 97–99; https://doi.org/10.1016/s0020-1693(00)81412-7.Search in Google Scholar

78. Schmidbaur, H.; Mandl, J. R. Sci. Nat. 1976, 63, 585; https://doi.org/10.1007/bf00622807.Search in Google Scholar

79. Schmidbaur, H.; Hartmann, C.; Riede, J.; Huber, B.; Müller, G. Organometallics 1986, 5, 1652–1656; https://doi.org/10.1021/om00139a023.Search in Google Scholar

80. Irwin, M. D.; Abdou, H. E.; Mohamed, A. A.; Fackler, J. P. Chem. Commun. 2003, 3, 2882–2883; https://doi.org/10.1039/b309724m.Search in Google Scholar PubMed

81. Joost, M.; Estévez, L.; Miqueu, K.; Amgoune, A.; Bourissou, D. Angew. Chem. Int. Ed. 2015, 54, 5236–5240; https://doi.org/10.1002/anie.201500458.Search in Google Scholar PubMed

82. Fackler, J. P. Polyhedron 1997, 16, 1–17; https://doi.org/10.1016/0277-5387(96)00190-8.Search in Google Scholar

83. Rigoulet, M.; Massou, S.; Daiann Sosa Carrizo, E.; Mallet-Ladeira, S.; Amgoune, A.; Miqueu, K.; Bourissou, D. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 46–51; https://doi.org/10.1073/pnas.1817194116.Search in Google Scholar PubMed PubMed Central

84. Straka, M.; Andris, E.; Vícha, J.; Růžička, A.; Roithová, J.; Rulíšek, L. Angew. Chem. Int. Ed. 2019, 58, 2011–2016; https://doi.org/10.1002/anie.201811982.Search in Google Scholar PubMed PubMed Central

85. Kleinhans, G.; Hansmann, M. M.; Guisado-Barrios, G.; Liles, D. C.; Bertrand, G.; Bezuidenhout, D. I. J. Am. Chem. Soc. 2016, 138, 15873–15876; https://doi.org/10.1021/jacs.6b11359.Search in Google Scholar PubMed

86. Amgoune, A.; Bourissou, D. Chem. Commun. 2011, 47, 859–871; https://doi.org/10.1039/c0cc04109b.Search in Google Scholar PubMed

87. Hicks, J.; Mansikkamäki, A.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Nat. Chem. 2019, 11, 237–241; https://doi.org/10.1038/s41557-018-0198-1.Search in Google Scholar PubMed

88. Bourissou, D. Nat. Chem. 2019, 11, 199–200; https://doi.org/10.1038/s41557-019-0223-z.Search in Google Scholar PubMed

89. Schmidbaur, H.; Wagner, F. E.; Wohlleben-Hammer, A. Chem. Ber. 1979, 112, 496–500; https://doi.org/10.1002/cber.19791120212.Search in Google Scholar

90. Mazany, A. M.; Fackler, J. P. J. Am. Chem. Soc. 1984, 106, 801–802; https://doi.org/10.1021/ja00315a062.Search in Google Scholar

91. Bardají, M.; Gimeno, M. C.; Jones, P. G.; Laguna, A.; Laguna, M. Organometallics 1994, 13, 3415–3419; https://doi.org/10.1021/om00021a015.Search in Google Scholar

92. Khan, M. N. I.; Fackler, J. P.; King, C.; Wang, J. C.; Wang, S. Inorg. Chem. 1988, 27, 1672–1673; https://doi.org/10.1021/ic00283a003.Search in Google Scholar

93. Bennett, M. A.; Bhargava, S. K.; Griffiths, K. D.; Robertson, G. B. Angew Chem. Int. Ed. Engl. 1987, 26, 260–261; https://doi.org/10.1002/anie.198702601.Search in Google Scholar

94. Mirzadeh, N.; Bennett, M. A.; Bhargava, S. K. Coord. Chem. Rev. 2013, 257, 2250–2273; https://doi.org/10.1016/j.ccr.2013.02.011.Search in Google Scholar

95. Abdou, H. E.; Mohamed, A. A.; Fackler, J. P. Z. Naturforsch. 2004, 59b, 1480–1482; https://doi.org/10.1515/znb-2004-11-1217.Search in Google Scholar

96. Usón, R.; Laguna, A.; Laguna, M.; Jiménez, J.; Jones, P. G. Angew Chem. Int. Ed. Engl. 1991, 30, 198–199; https://doi.org/10.1002/anie.199101981.Search in Google Scholar

97. Concepción Gimeno, M.; Jiménez, J.; Laguna, A.; Laguna, M.; Jones, P.G.; Parish, R. V. D. J. Organomet. Chem. 1994, 481, 37–44; https://doi.org/10.1016/0022-328X(94)85006-2.Search in Google Scholar

98. Schmidbaur, H.; Hartmann, C.; Reber, G.; Müller, G. Angew Chem. Int. Ed. Engl. 1987, 26, 1146–1148; https://doi.org/10.1002/anie.198711461.Search in Google Scholar

99. Laguna, A.; Laguna, M.; Jiménez, J.; Lahoz, F. J.; Olmos, E. Organometallics 1994, 13, 253–257; https://doi.org/10.1021/om00013a038.Search in Google Scholar

100. Xiong, X. G.; Pyykkö, P. Chem. Commun. 2013, 49, 2103–2105; https://doi.org/10.1039/c2cc37875b.Search in Google Scholar PubMed

101. Zopes, D.; Hegemann, C.; Tyrra, W.; Mathur, S. Chem. Commun. 2012, 48, 8805–8807; https://doi.org/10.1039/c2cc33735e.Search in Google Scholar PubMed

102. Mohr, F.; Sanz, S.; Tiekink, E. R. T.; Laguna, M. Organometallics 2006, 25, 3084–3087; https://doi.org/10.1021/om0602456.Search in Google Scholar

103. Murray, H. H.; Fackler, J. P.; Tocher, D. A. J. Chem. Soc., Chem. Commun. 1985, 1278–1280; https://doi.org/10.1039/c39850001278.Search in Google Scholar

104. Nesmeyanov, A. N.; Perevalova, E. G.; Grandberg, K. I.; Lemenovskii, D. A.; Baukova, T. V.; Afanassova, O. B. J. Organomet. Chem. 1974, 65, 131–144; https://doi.org/10.1016/s0022-328x(00)83895-4.Search in Google Scholar

105. Nesmeyanov, A. N.; Perevalova, E. G.; Afanasova, O. B.; Tolstaya, M. V.; Grandberg, K. I. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1978, 27, 969–973; https://doi.org/10.1007/bf00929002.Search in Google Scholar

106. Porter, K. A.; Schier, A.; Schmidbaur, H. Organometallics 2003, 22, 4922–4927; https://doi.org/10.1021/om030575f.Search in Google Scholar

107. Cheong, P. H. Y.; Morganelli, P.; Luzung, M. R.; Houk, K. N.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 4517–4526; https://doi.org/10.1021/ja711058f.Search in Google Scholar PubMed PubMed Central

108. Weber, D.; Tarselli, M. A.; Gagné, M. R. Angew. Chem. Int. Ed. 2009, 48, 5733–5736; https://doi.org/10.1002/anie.200902049.Search in Google Scholar PubMed PubMed Central

109. Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2–23; https://doi.org/10.1021/om900900u.Search in Google Scholar

110. Hashmi, A. S. K.; Braun, I.; Nösel, P.; Schädlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem. Int. Ed. 2012, 51, 4456–4460; https://doi.org/10.1002/anie.201109183.Search in Google Scholar PubMed

111. Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Nösel, P.; Jongbloed, L.; Rudolph, M.; Rominger, F. Adv. Synth. Catal. 2012, 354, 555–562; https://doi.org/10.1002/adsc.201200086.Search in Google Scholar

112. Schmidbaur, H.; Shiotani, A. Chem. Ber. 1971, 104, 2821–2830; https://doi.org/10.1002/cber.19711040921.Search in Google Scholar

113. Schmidbaur, H.; Wohlleben, A.; Schubert, U.; Frank, A.; Huttner, G. Chem. Ber. 1977, 110, 2751–2757; https://doi.org/10.1002/cber.19771100810.Search in Google Scholar

114. Porter, L. C.; Khan, M. N. I.; King, C.; Fackler, J. P. Acta Crystallogr. 1989, C45, 947–949; https://doi.org/10.1107/S2056989015013341.Search in Google Scholar PubMed PubMed Central

115. Schmidbaur, H.; Wohlleben, A.; Wagner, F. E.; Van de Vondel, D. F.; Van der Kelen, G. P. Chem. Ber. 1977, 110, 2758–2764; https://doi.org/10.1002/cber.19771100811.Search in Google Scholar

116. Schmidbaur, H.; Mandl, J. R. Angew Chem. Int. Ed. Engl. 1977, 16, 640–641; https://doi.org/10.1002/anie.197706401.Search in Google Scholar

117. Schmidbaur, H.; Mandl, J. R.; Bassett, J.-M.; Blaschke, G.; Zimmer-Gasser, B. Chem. Ber. 1981, 114, 433–440; https://doi.org/10.1002/cber.19811140204.Search in Google Scholar

118. Dziwok, K.; Lachmann, J.; Wilkinson, D. L.; Müller, G.; Schmidbaur, H. Chem. Ber. 1990, 123, 423–431; https://doi.org/10.1002/cber.19901230303.Search in Google Scholar

119. Schmidbaur, H.; Dziwok, K.; Grohmann, A.; Müller, G. Chem. Ber. 1989, 122, 893–895; https://doi.org/10.1002/cber.19891220517.Search in Google Scholar

120. Mirzadeh, N.; Reddy, T. S.; Bhargava, S. K. Coord. Chem. Rev. 2019, 388, 343–359; https://doi.org/10.1016/j.ccr.2019.02.027.Search in Google Scholar

121. Zidan, M.; Rohe, S.; McCallum, T.; Barriault, L. Catal. Sci. Technol. 2018, 8, 6019–6028; https://doi.org/10.1039/c8cy01765d.Search in Google Scholar

122. Puddephatt, R. J. Chem. Soc. Rev. 2008, 37, 2012–2027; https://doi.org/10.1039/b708622a.Search in Google Scholar PubMed

123. James, S. L. Chem. Soc. Rev. 2009, 38, 1744–1758; https://doi.org/10.1039/b814096k.Search in Google Scholar PubMed

124. Schmidbaur, H.; Mandl, J. R.; Wohlleben-Hammer, A.; Fügner, A. Z. Naturforsch. 1978, 33b, 1325–1329; https://doi.org/10.1515/znb-1978-1126.Search in Google Scholar

125. Mirabelli, C. K.; Johnson, R. K.; Sung, C. M.; Faucette, L.; Muirhead, K.; Crooke, S. T. Cancer Res. 1985, 45, 32–39.Search in Google Scholar

126. Berners-Price, S. J.; Mirabelli, C. K.; Johnson, R. K.; Mattern, M. R.; McCabe, F. L.; Faucette, L. F.; Sung, C. M.; Mong, S. M.; Sadler, P. J.; Crooke, S. T. Cancer Res. 1986, 46, 5486–5493.Search in Google Scholar

127. Mirabelli, C. K.; Hill, D. T.; Faucette, L. F.; Mccabe, F. L.; Girard, G. R.; Bryan, D. B.; Sutton, B. M.; Bartus, J. O. L.; Crooke, S. T.; Johnson, R. K. J. Med. Chem. 1987, 30, 2181–2190; https://doi.org/10.1021/jm00395a004.Search in Google Scholar PubMed

128. Horvath, U. E. I.; Dobrzańska, L.; Strasser, C. E.; Bouwer, W.; Joone, G.; Van Rensburg, C. E. J.; Cronje, S.; Raubenheimer, H. G. J. Inorg. Biochem. 2012, 111, 80–90; https://doi.org/10.1016/j.jinorgbio.2012.02.026.Search in Google Scholar PubMed

129. Altaf, M.; Monim-ul-Mehboob, M.; Isab, A. A.; Dhuna, V.; Bhatia, G.; Dhuna, K.; Altuwaijri, S. New J. Chem. 2015, 39, 377–385; https://doi.org/10.1039/c4nj00747f.Search in Google Scholar

130. Keter, F. K.; Guzei, I. A.; Nell, M.; van Zyl, W. E.; Darkwa, J. Inorg. Chem. 2014, 53, 2058–2067; https://doi.org/10.1021/ic4025926.Search in Google Scholar PubMed PubMed Central

131. Li, B. B.; Jia, Y. X.; Zhu, P. C.; Chew, R. J.; Li, Y.; Tan, N. S.; Leung, P. H. Eur. J. Med. Chem. 2015, 98, 250–255; https://doi.org/10.1016/j.ejmech.2015.05.027.Search in Google Scholar PubMed

132. Zou, T.; Lum, C. T.; Lok, C.-N. N.; To, W.-P. P.; Low, K.-H. H.; Che, C.-M. M. Angew. Chem. Int. Ed. 2014, 53, 5810–5814; https://doi.org/10.1002/anie.201400142.Search in Google Scholar PubMed

133. Kim, J. H.; Reeder, E.; Parkin, S.; Awuah, S. G. Sci. Rep. 2019, 9, 1–18; https://doi.org/10.1038/s41598-019-48584-5.Search in Google Scholar PubMed PubMed Central

134. Schmidbaur, H.; Schier, A. Z. Naturforsch. 2011, 66b, 329–350; https://doi.org/10.1515/znb-2011-0401.Search in Google Scholar

135. Nevado, C. Chimia 2010, 64, 247–251; https://doi.org/10.2533/chimia.2010.247.Search in Google Scholar PubMed

136. Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351–3378; https://doi.org/10.1021/cr068430g.Search in Google Scholar PubMed PubMed Central

137. Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208–3221; https://doi.org/10.1039/b816696j.Search in Google Scholar PubMed

138. Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395–403; https://doi.org/10.1038/nature05592.Search in Google Scholar PubMed

139. Hashmi, A. S. K. Acc. Chem. Res. 2014, 47, 864–876; https://doi.org/10.1021/ar500015k.Search in Google Scholar PubMed

140. Zhao, X.; Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2019, 55, 12127–12135; https://doi.org/10.1039/c9cc06078b.Search in Google Scholar PubMed

141. Gõmez-Suárez, A.; Nolan, S. P. Angew. Chem. Int. Ed. 2012, 51, 8156–8159; https://doi.org/10.1002/anie.201203587.Search in Google Scholar PubMed

142. Paz Muñoz, M.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293–1300; https://doi.org/10.1021/om0491645.Search in Google Scholar

143. LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452–2453; https://doi.org/10.1021/ja068819l.Search in Google Scholar PubMed

144. Hamilton, G. L.; Joo Kang, E.; Mba, M.; Toste, F. D. Science 2007, 317, 496–499; https://doi.org/10.1126/science.1145229.Search in Google Scholar PubMed

145. Tarselli, M. A.; Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem. Int. Ed. 2007, 46, 6670–6673; https://doi.org/10.1002/anie.200701959.Search in Google Scholar PubMed

146. Rodríguez, L. I.; Roth, T.; Lloret Fillol, J.; Wadepohl, H.; Gade, L. H. Chem. Eur. J. 2012, 18, 3721–3728; https://doi.org/10.1002/chem.201103140.Search in Google Scholar PubMed

147. Wang, M. Z.; Zhou, C. Y.; Guo, Z.; Wong, E. L. M.; Wong, M. K.; Che, C. M. Chem.–Asian J. 2011, 6, 812–824; https://doi.org/10.1002/asia.201000651.Search in Google Scholar PubMed

148. Teets, T. S.; Nocera, D. G. J. Am. Chem. Soc. 2009, 131, 7411–7420; https://doi.org/10.1021/ja9009937.Search in Google Scholar PubMed

149. Wolf, W. J.; Winston, M. S.; Toste, F. D. Nat. Chem. 2014, 6, 159–164; https://doi.org/10.1038/nchem.1822.Search in Google Scholar PubMed PubMed Central

150. Xie, J.; Pan, C.; Abdukader, A.; Zhu, C. Chem. Soc. Rev. 2014, 43, 5245–5256; https://doi.org/10.1039/c4cs00004h.Search in Google Scholar PubMed

151. Brenzovich, W. E.; Benitez, D.; Lackner, A. D.; Shunatona, H. P.; Tkatchouk, E.; Goddard, W. A.; Toste, F. D. Angew. Chem. Int. Ed. 2010, 49, 5519–5522; https://doi.org/10.1002/anie.201002739.Search in Google Scholar PubMed PubMed Central

152. Tkatchouk, E.; Mankad, N. P.; Benitez, D.; Goddard, W. A.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 14293–14300; https://doi.org/10.1021/ja2012627.Search in Google Scholar PubMed PubMed Central

153. Levin, M. D.; Toste, F. D. Angew. Chem. Int. Ed. 2014, 53, 6211–6215; https://doi.org/10.1002/anie.201402924.Search in Google Scholar PubMed PubMed Central

154. Peng, H.; Xi, Y.; Ronaghi, N.; Dong, B.; Akhmedov, N. G.; Shi, X. J. Am. Chem. Soc. 2014, 136, 13174–13177; https://doi.org/10.1021/ja5078365.Search in Google Scholar PubMed

155. Leyva-Pérez, A.; Doménech-Carbó, A.; Corma, A. Nat. Commun. 2015, 6, 6703 (8 pages); https://doi.org/10.1038/ncomms7703.Search in Google Scholar PubMed

156. Liu, K.; Li, N.; Ning, Y.; Zhu, C.; Xie, J. Chem 2019, 5, 2718–2730; https://doi.org/10.1016/j.chempr.2019.07.023.Search in Google Scholar

157. Himmelstrup, J.; Buendia, M. B.; Sun, X. W.; Kramer, S. Chem. Commun. 2019, 55, 12988–12991; https://doi.org/10.1039/c9cc07175j.Search in Google Scholar PubMed

158. Tsuchido, Y.; Abe, R.; Ide, T.; Osakada, K. Angew. Chem. Int. Ed. 2020, 59, 22928–22932; https://doi.org/10.1002/anie.202005482.Search in Google Scholar PubMed

159. Stevens, B.; Hutton, E. Nature 1960, 186, 1045–1046; https://doi.org/10.1038/1861045b0.Search in Google Scholar

160. Khan, M. N. I.; King, C.; Heinrich, D. D.; Fackler, J. P.; Porter, L. C. Inorg. Chem. 1989, 28, 2150–2154; https://doi.org/10.1021/ic00310a027.Search in Google Scholar

161. King, C.; Wang, J. C.; Khan, M. N. I.; Fackler, J. P. Inorg. Chem. 1989, 28, 2145–2149; https://doi.org/10.1021/ic00310a026.Search in Google Scholar

162. Che, C. M.; Kwong, H. L.; Yam, V. W. W.; Cho, K. C. J. Chem. Soc., Chem. Commun. 1989, 885–886; https://doi.org/10.1039/c39890000885.Search in Google Scholar

163. Che, C. M.; Kwong, H. L.; Poon, C. K.; Yam, V. W. W. J. Chem. Soc., Dalton Trans. 1990, 3215–3219; https://doi.org/10.1039/dt9900003215.Search in Google Scholar

164. Miskowski, V. M.; Nobinger, G. L.; Kliger, D. S.; Hammond, G. S.; Lewis, N. S.; Mann, K. R.; Gray, H. B. J. Am. Chem. Soc. 1978, 100, 485–488; https://doi.org/10.1021/ja00470a020.Search in Google Scholar

165. Dallinger, R. F.; Miskowski, V. M.; Gray, H. B.; Woodruff, W. H. J. Am. Chem. Soc. 1981, 103, 1595–1596; https://doi.org/10.1021/ja00396a066.Search in Google Scholar

166. Fu, W. F.; Chan, K. C.; Cheung, K. K.; Che, C. M. Chem. Eur. J. 2001, 7, 4656–4664; https://doi.org/10.1002/1521-3765(20011105)7:21<4656::aid-chem4656>3.0.co;2-d.10.1002/1521-3765(20011105)7:21<4656::AID-CHEM4656>3.0.CO;2-DSearch in Google Scholar

167. Fu, W. F.; Chan, K. C.; Miskowski, V. M.; Che, C. M. Angew. Chem. Int. Ed. 1999, 38, 2783–2785; https://doi.org/10.1002/(sici)1521-3773(19990917)38:18<2783::aid-anie2783>3.0.co;2-i.10.1002/(SICI)1521-3773(19990917)38:18<2783::AID-ANIE2783>3.0.CO;2-ISearch in Google Scholar

168. Zhang, H. X.; Che, C. M. Chem. Eur. J. 2001, 7, 4887–4893; https://doi.org/10.1002/1521-3765(20011119)7:22<4887::aid-chem4887>3.0.co;2-c.10.1002/1521-3765(20011119)7:22<4887::AID-CHEM4887>3.0.CO;2-CSearch in Google Scholar

169. Leung, K. H.; Phillips, D. L.; Tse, M. C.; Che, C. M.; Miskowski, V. M. J. Am. Chem. Soc. 1999, 121, 4799–4803; https://doi.org/10.1021/ja990195e.Search in Google Scholar

170. Ma, C.; Chan, C. T. L.; To, W. P.; Kwok, W. M.; Che, C. M. Chem. Eur. J. 2015, 21, 13888–13893; https://doi.org/10.1002/chem.201503045.Search in Google Scholar

171. De La Riva, H.; Pintado-Alba, A.; Nieuwenhuyzen, M.; Hardacre, C.; Lagunas, M. C. Chem. Commun. 2005, 4970–4972; https://doi.org/10.1039/b508863a.Search in Google Scholar

172. Bardají, M.; Jones, P. G.; Laguna, A.; Villacampa, M. D.; Villaverde, N. J. Chem. Soc., Dalton Trans. 2003, 3, 4529–4536; https://doi.org/10.1039/b309116c.Search in Google Scholar

173. Kathewad, N.; Kumar, N.; Dasgupta, R.; Ghosh, M.; Pal, S.; Khan, S. Dalton Trans. 2019, 48, 7274–7280; https://doi.org/10.1039/c8dt04471f.Search in Google Scholar

174. Koshevoy, I. O.; Chang, Y. C.; Chen, Y. A.; Karttunen, A. J.; Grachova, E. V.; Tunik, S. P.; Jänis, J.; Pakkanen, T. A.; Chou, P. T. Organometallics 2014, 33, 2363–2371; https://doi.org/10.1021/om5002952.Search in Google Scholar

175. Pawlowski, V.; Kunkely, H.; Vogler, A. Inorg. Chim. Acta 2004, 357, 1309–1312; https://doi.org/10.1016/j.ica.2003.09.020.Search in Google Scholar

176. Pintado-Alba, A.; De La Riva, H.; Nieuwhuyzen, M.; Bautista, D.; Raithby, P. R.; Sparkes, H. A.; Teat, S. J.; López-De-Luzuriaga, J. M.; Lagunas, M. C. Dalton Trans. 2004, 3459–3467; https://doi.org/10.1039/b410619a.Search in Google Scholar

177. Jobbágy, C.; Baranyai, P.; Szabó, P.; Holczbauer, T.; Rácz, B.; Li, L.; Naumov, P.; Deák, A. Dalton Trans. 2016, 45, 12569–12575; https://doi.org/10.1039/c6dt01528j.Search in Google Scholar

178. Glebko, N.; Dau, T. M.; Melnikov, A. S.; Grachova, E. V.; Solovyev, I. V.; Belyaev, A.; Karttunen, A. J.; Koshevoy, I. O. Chem. Eur. J. 2018, 24, 3021–3029; https://doi.org/10.1002/chem.201705544.Search in Google Scholar

179. Mohamed, A. A.; Mayer, A. P.; Abdou, H. E.; Irwin, M. D.; Pérez, L. M.; Fackler, J. P. Inorg. Chem. 2007, 46, 11165–11172; https://doi.org/10.1021/ic701399s.Search in Google Scholar

180. Narayanaswamy, R.; Young, M. A.; Parkhurst, E.; Ouellette, M.; Kerr, M. E.; Ho, D. M.; Elder, R. C.; Bruce, A. E.; Bruce, M. R. M. Inorg. Chem. 1993, 32, 2506–2517; https://doi.org/10.1021/ic00063a051.Search in Google Scholar

181. Jones, W. B.; Yuan, J.; Narayanaswamy, R.; Young, M. A.; Elder, R. C.; Bruce, A. E.; Bruce, M. R. M. Inorg. Chem. 1995, 34, 1996–2001; https://doi.org/10.1021/ic00112a008.Search in Google Scholar

182. Yam, V. W. W.; Li, C. K.; Chan, C. L. Angew. Chem. Int. Ed. 1998, 37, 2857–2859.10.1002/(SICI)1521-3773(19981102)37:20<2857::AID-ANIE2857>3.0.CO;2-GSearch in Google Scholar

183. Yam, V. W. W.; Chan, C. L.; Li, C. K.; Wong, K. M. C. Coord. Chem. Rev. 2001, 216–217, 173–194; https://doi.org/10.1016/s0010-8545(01)00310-1.Search in Google Scholar

184. Latouche, C.; Lee, Y. C.; Liao, J. H.; Furet, E.; Saillard, J. Y.; Liu, C. W.; Boucekkine, A. Inorg. Chem. 2012, 51, 11851–11859; https://doi.org/10.1021/ic301763k.Search in Google Scholar

185. Latouche, C.; Lin, Y. R.; Tobon, Y.; Furet, E.; Saillard, J. Y.; Liu, C. W.; Boucekkine, A. Phys. Chem. Chem. Phys. 2014, 16, 25840–25845; https://doi.org/10.1039/c4cp03990d.Search in Google Scholar

186. Jobbágy, C.; Molnár, M.; Baranyai, P.; Hamza, A.; Pálinkás, G.; Deák, A. Cryst. Eng. Comm. 2014, 16, 3192–3202; https://doi.org/10.1039/c3ce42474j.Search in Google Scholar

187. Huang, B.; Hu, M.; Toste, F. D. Trends Chem. 2020, 2, 707–720; https://doi.org/10.1016/j.trechm.2020.04.012.Search in Google Scholar

188. McGee, P.; Brousseau, J.; Barriault, L. Isr. J. Chem. 2018, 58, 511–520; https://doi.org/10.1002/ijch.201700054.Search in Google Scholar

189. Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem. Res. 2016, 49, 2261–2272; https://doi.org/10.1021/acs.accounts.6b00351.Search in Google Scholar PubMed

190. McCallum, T.; Rohe, S.; Barriault, L. Synlett 2017, 289–305; https://doi.org/10.1055/s-0036-1588644.Search in Google Scholar

191. Li, D.; Che, C. M.; Kwong, H. L.; Yam, V. W. W. J. Chem. Soc., Dalton Trans. 1992, 3325–3329; https://doi.org/10.1039/dt9920003325.Search in Google Scholar

192. Revol, G.; McCallum, T.; Morin, M.; Gagosz, F.; Barriault, L. Angew. Chem. Int. Ed. 2013, 52, 13342–13345; https://doi.org/10.1002/anie.201306727.Search in Google Scholar PubMed

193. McTiernan, C. D.; Morin, M.; McCallum, T.; Scaiano, J. C.; Barriault, L. Catal. Sci. Technol. 2016, 6, 201–207; https://doi.org/10.1039/c5cy01259g.Search in Google Scholar

194. Xie, J.; Shi, S.; Zhang, T.; Mehrkens, N.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2015, 54, 6046–6050; https://doi.org/10.1002/anie.201412399.Search in Google Scholar PubMed

195. Rohe, S.; McCallum, T.; Morris, A. O.; Barriault, L. J. Org. Chem. 2018, 83, 10015–10024; https://doi.org/10.1021/acs.joc.8b01380.Search in Google Scholar PubMed

196. Kaldas, S. J.; Cannillo, A.; McCallum, T.; Barriault, L. Org. Lett. 2015, 17, 2864–2866; https://doi.org/10.1021/acs.orglett.5b01260.Search in Google Scholar PubMed

197. Xie, J.; Zhang, T.; Chen, F.; Mehrkens, N.; Rominger, F.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 2934–2938; https://doi.org/10.1002/anie.201508622.Search in Google Scholar PubMed

198. McCallum, T.; Barriault, L. Chem. Sci. 2016, 7, 4754–4758; https://doi.org/10.1039/c6sc00807k.Search in Google Scholar PubMed PubMed Central

199. Xie, J.; Li, J.; Weingand, V.; Rudolph, M.; Hashmi, A. S. K. Chem. Eur. J. 2016, 22, 12646–12650; https://doi.org/10.1002/chem.201602939.Search in Google Scholar PubMed

200. Nzulu, F.; Telitel, S.; Stoffelbach, F.; Graff, B.; Morlet-Savary, F.; Lalevée, J.; Fensterbank, L.; Goddard, J. P.; Ollivier, C. Polym. Chem. 2015, 6, 4605–4611; https://doi.org/10.1039/c5py00435g.Search in Google Scholar

201. Zhang, L.; Si, X.; Yang, Y.; Witzel, S.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. ACS Catal. 2019, 9, 6118–6123; https://doi.org/10.1021/acscatal.9b01368.Search in Google Scholar

202. Cannillo, A.; Schwantje, T. R.; Bégin, M.; Barabé, F.; Barriault, L. Org. Lett. 2016, 18, 2592–2595; https://doi.org/10.1021/acs.orglett.6b00968.Search in Google Scholar PubMed

203. Miloserdov, F. M.; Kirillova, M. S.; Muratore, M. E.; Echavarren, A. M. J. Am. Chem. Soc. 2018, 140, 5393–5400; https://doi.org/10.1021/jacs.7b13484.Search in Google Scholar PubMed PubMed Central

204. Zidan, M.; McCallum, T.; Swann, R.; Barriault, L. Org. Lett. 2020, 22, 8401–8406; https://doi.org/10.1021/acs.orglett.0c03030.Search in Google Scholar PubMed

205. Zhang, L.; Si, X.; Rominger, F.; Hashmi, A. S. K. J. Am. Chem. Soc. 2020, 142, 10485–10493; https://doi.org/10.1021/jacs.0c03197.Search in Google Scholar PubMed

206. Ma, X.; Zhao, Y.; Caligiuri, I.; Rizzolio, F.; Bracho Pozsoni, N.; Van Hecke, K.; Scattolin, T.; Nolan, S. P. Dalton Trans. 2024, 53, 7939–7945; https://doi.org/10.1039/d4dt00890a.Search in Google Scholar PubMed

207. Trevisan, G.; Vitali, V.; Tubaro, C.; Graiff, C.; Marchenko, A.; Koidan, G.; Hurieva, A. N.; Kostyuk, A.; Mauceri, M.; Rizzolio, F.; Accorsi, G.; Biffis, A. Dalton Trans. 2021, 50, 13554–13560; https://doi.org/10.1039/d1dt02444b.Search in Google Scholar PubMed

208. Tresin, F.; Stoppa, V.; Baron, M.; Biffis, A.; Annunziata, A.; D’Elia, L.; Monti, D. M.; Ruffo, F.; Roverso, M.; Sgarbossa, P.; Bogialli, S.; Tubaro, C. Molecules 2020, 25, 3850 (13 pages); https://doi.org/10.3390/molecules25173850.Search in Google Scholar PubMed PubMed Central

209. Kaußler, C.; Wragg, D.; Schmidt, C.; Moreno-Alcántar, G.; Jandl, C.; Stephan, J.; Fischer, R. A.; Leoni, S.; Casini, A.; Bonsignore, R. Inorg. Chem. 2022, 61, 20405–20423; https://doi.org/10.1021/acs.inorgchem.2c03041.Search in Google Scholar PubMed PubMed Central

210. Baron, M.; Bellemin-Laponnaz, S.; Tubaro, C.; Basato, M.; Bogialli, S.; Dolmella, A. J. Inorg. Biochem. 2014, 141, 94–102; https://doi.org/10.1016/j.jinorgbio.2014.08.013.Search in Google Scholar PubMed

211. Bayrakdar, T. A. C. A.; Nahra, F.; Davis, J. V.; Gamage, M. M.; Captain, B.; Temprado, M.; Marazzi, M.; Saab, M.; Van Hecke, K.; Ormerod, D.; Hoff, C. D.; Nolan, S. P. Organometallics 2020, 39, 2907–2916; https://doi.org/10.1021/acs.organomet.0c00404.Search in Google Scholar

212. Baron, M.; Battistel, E.; Tubaro, C.; Biffis, A.; Armelao, L.; Rancan, M.; Graiff, C. Organometallics 2018, 37, 4213–4223; https://doi.org/10.1021/acs.organomet.8b00531.Search in Google Scholar

213. Hettmanczyk, L.; Schulze, D.; Suntrup, L.; Sarkar, B. Organometallics 2016, 35, 3828–3836; https://doi.org/10.1021/acs.organomet.6b00675.Search in Google Scholar

214. Huang, W.; Zhang, Y. C.; Jin, R.; Chen, B.-L.; Chen, Z. Organometallics 2018, 37, 3196–3209; https://doi.org/10.1021/acs.organomet.8b00524.Search in Google Scholar

215. Poethig, A.; Strassner, T. Organometallics 2012, 31, 3431–3434; https://doi.org/10.1021/om3000345.Search in Google Scholar

216. Baron, M.; Tubaro, C.; Biffis, A.; Basato, M.; Graiff, C.; Poater, A.; Cavallo, L.; Armaroli, N.; Accorsi, G. Inorg. Chem. 2012, 51, 1778–1784; https://doi.org/10.1021/ic2020786.Search in Google Scholar PubMed

217. Bestgen, S.; Gamer, M. T.; Lebedkin, S.; Kappes, M. M.; Roesky, P. W. Chem. Eur. J. 2015, 21, 601–614; https://doi.org/10.1002/chem.201404985.Search in Google Scholar PubMed

218. Li, W. L.; Liu, H. T.; Jian, T.; Lopez, G. V.; Piazza, Z. A.; Huang, D. L.; Chen, T. T.; Su, J.; Yang, P.; Chen, X.; Wang, L. S.; Li, J. Chem. Sci. 2016, 7, 475–481; https://doi.org/10.1039/c5sc03568f.Search in Google Scholar PubMed PubMed Central

219. Ma, X.; Voloshkin, V. A.; Martynova, E. A.; Beliš, M.; Peng, M.; Villa, M.; Tzouras, N. V.; Janssens, W.; Van Hecke, K.; Ceroni, P.; Nolan, S. P. Catal. Sci. Technol. 2023, 13, 4168–4175; https://doi.org/10.1039/d3cy00716b.Search in Google Scholar

220. Jones, P. G. Gold Bull 1983, 16, 114–124; https://doi.org/10.1007/bf03214635.Search in Google Scholar

221. Schmidbaur, H.; Weidenhiller, G.; Steigelmann, O.; Müller, G. Chem. Ber. 1990, 123, 285–287; https://doi.org/10.1002/cber.19901230210.Search in Google Scholar

222. Angermaier, K.; Zeller, E.; Schmidbaur, H. J. Organomet. Chem. 1994, 472, 371–376; https://doi.org/10.1016/0022-328x(94)80225-4.Search in Google Scholar

223. Schmidbaur, H.; Weidenhiller, G.; Steigelmann, O.; Müller, G. Z. Naturforsch. 1990, 45b, 747–752; https://doi.org/10.1515/znb-1990-0604.Search in Google Scholar

224. Schmidbaur, H.; Graf, W.; Müller, G. Helv. Chim. Acta 1986, 69, 1748–1756; https://doi.org/10.1002/hlca.19860690732.Search in Google Scholar

225. Bauer, A.; Schmidbaur, H. J. Am. Chem. Soc. 1996, 118, 5324–5325; https://doi.org/10.1021/ja960715v.Search in Google Scholar

226. Schneider, W.; Bauer, A.; Schmidbaur, H. Organometallics 1996, 15, 5445–5446; https://doi.org/10.1021/om960682s.Search in Google Scholar

227. Hollatz, C.; Schier, A.; Schmidbaur, H. J. Am. Chem. Soc. 1997, 119, 8115–8116; https://doi.org/10.1021/ja9714503.Search in Google Scholar

228. Mathieson, T.; Schier, A.; Schmidbaur, H. J. Chem. Soc., Dalton Trans. 2001, 1196–1200; https://doi.org/10.1039/b100117p.Search in Google Scholar

229. Tzeng, B. C.; Schier, A.; Schmidbaur, H. Inorg. Chem. 1999, 38, 3978–3984; https://doi.org/10.1021/ic990308v.Search in Google Scholar

230. Hunks, W. J.; Jennings, M. C.; Puddephatt, R. J. Inorg. Chem. 2002, 41, 4590–4598; https://doi.org/10.1021/ic020178h.Search in Google Scholar PubMed

231. Li, X.; Patterson, H. H. Materials 2013, 6, 2595–2611; https://doi.org/10.3390/ma6072595.Search in Google Scholar PubMed PubMed Central

232. Rawashdeh-Omary, M. A.; Omary, M. A.; Patterson, H. H.; Fackler, J. P. J. Am. Chem. Soc. 2001, 123, 11237–11247; https://doi.org/10.1021/ja011176j.Search in Google Scholar PubMed

233. Smolin, L. The Trouble with Physics; Mariner: New York, 2007.Search in Google Scholar

234. Iwamura, M.; Nozaki, K.; Takeuchi, S.; Tahara, T. J. Am. Chem. Soc. 2013, 135, 538–541; https://doi.org/10.1021/ja310004z.Search in Google Scholar PubMed

235. Kim, K. H.; Kim, J. G.; Nozawa, S.; Sato, T.; Oang, K. Y.; Kim, T. W.; Ki, H.; Jo, J.; Park, S.; Song, C.; Sato, T.; Ogawa, K.; Togashi, T.; Tono, K.; Yabashi, M.; Ishikawa, T.; Kim, J.; Ryoo, R.; Kim, J.; Ihee, H.; Adachi, S.-I. Nature 2015, 518, 385–389; https://doi.org/10.1038/nature14163.Search in Google Scholar PubMed

236. Iwamura, M.; Wakabayashi, R.; Maeba, J.; Nozaki, K.; Takeuchi, S.; Tahara, T. Phys. Chem. Chem. Phys. 2016, 18, 5103–5107; https://doi.org/10.1039/c5cp06651d.Search in Google Scholar PubMed

237. Kuramochi, H.; Takeuchi, S.; Iwamura, M.; Nozaki, K.; Tahara, T. J. Am. Chem. Soc. 2019, 141, 19296–19303; https://doi.org/10.1021/jacs.9b06950.Search in Google Scholar PubMed

238. Sohn, S. H.; Heo, W.; Lee, C.; Kim, J.; Joo, T. J. Phys. Chem. A 2019, 123, 6904–6910; https://doi.org/10.1021/acs.jpca.9b05613.Search in Google Scholar PubMed

239. Cui, G.; Cao, X.-Y.; Fang, W.-H.; Dolg, M.; Thiel, W. Angew. Chem. Int. Ed. 2013, 52, 10281–10285; https://doi.org/10.1002/anie.201305487.Search in Google Scholar PubMed

240. Kim, J. G.; Nozawa, S.; Kim, H.; Choi, E. H.; Sato, T.; Kim, T. W.; Kim, K. H.; Ki, H.; Kim, J.; Choi, M.; Lee, Y.; Heo, J.; Oang, K. Y.; Ichiyanagi, K.; Fukaya, R.; Lee, J. H.; Park, J.; Eom, I.; Hwan Chun, S.; Kim, S.; Kim, M.; Katayama, T.; Togashi, T.; Owada, S.; Yabashi, M.; Jin Lee, S.; Lee, S.; Woo Ahn, C.; Ahn, D. S.; Moon, J.; Choi, S.; Kim, J.; Joo, T.; Kim, J.; Adachi, S.-I.; Ihee, H. Nature 2020, 582, 520–524; https://doi.org/10.1038/s41586-020-2417-3.Search in Google Scholar PubMed

241. Kuhn, T. S. The Structure of Scientific Revolutions, 2nd ed.; University of Chicago Press: Chicago, 1970.Search in Google Scholar

242. Popper, K. The Logic of Scientific Discovery, 2nd ed.; Routledge: New York, 2002.Search in Google Scholar

243. Li, J.; Pyykkö, P. Chem. Phys. Lett. 1992, 197, 586–590; https://doi.org/10.1016/0009-2614(92)85820-z.Search in Google Scholar

244. Wesendrup, R.; Laerdahl, J. K.; Schwerdtfeger, P. J. Chem. Phys. 1999, 110, 9457–9462; https://doi.org/10.1063/1.478911.Search in Google Scholar

245. Pyykkö, P. Chem. Rev. 1997, 97, 597–636; https://doi.org/10.1021/cr940396v.Search in Google Scholar PubMed

246. Jensen, F. Introduction to Computational Chemistry, 1st ed.; John Wiley & Sons: Chichester, 2001.Search in Google Scholar

247. Andris, E.; Andrikopoulos, P. C.; Schulz, J.; Turek, J.; Růžička, A.; Roithová, J.; Rulíšek, L. J. Am. Chem. Soc. 2018, 140, 2316–2325; https://doi.org/10.1021/jacs.7b12509.Search in Google Scholar PubMed

248. Andrejić, M.; Mata, R. A. Phys. Chem. Chem. Phys. 2013, 15, 18115–18122; https://doi.org/10.1039/c3cp52931b.Search in Google Scholar PubMed

249. O’Grady, E.; Kaltsoyannis, N. Phys. Chem. Chem. Phys. 2004, 2, 680–687; https://doi.org/10.1039/b312242e.Search in Google Scholar

250. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553–566; https://doi.org/10.1080/00268977000101561.Search in Google Scholar

251. Simon, S.; Duran, M.; Dannenberg, J. J. J. Chem. Phys. 1996, 105, 11024–11031; https://doi.org/10.1063/1.472902.Search in Google Scholar

252. Otero-De-La-Roza, A.; Mallory, J. D.; Johnson, E. R. J. Chem. Phys. 2014, 140, 18A504 (11 pages); https://doi.org/10.1063/1.4862896.Search in Google Scholar PubMed

253. Grimme, S.; Djukic, J. P. Inorg. Chem. 2011, 50, 2619–2628; https://doi.org/10.1021/ic102489k.Search in Google Scholar PubMed

254. Vaccarelli, O.; Fedorov, D. V.; Stöhr, M.; Tkatchenko, A. Phys. Rev. Res. 2021, 3, 033181 (15 pages); https://doi.org/10.1103/physrevresearch.3.033181.Search in Google Scholar

255. Pawlȩdzio, S.; Malinska, M.; Kleemiss, F.; Grabowsky, S.; Woźniak, K. Inorg. Chem. 2022, 61, 4235–4239; https://doi.org/10.1021/acs.inorgchem.1c03333.Search in Google Scholar PubMed PubMed Central

256. Jiang, Y.; Alvarez, S.; Hoffmann, R. Inorg. Chem. 1985, 24, 749–757; https://doi.org/10.1021/ic00199a023.Search in Google Scholar

257. Pyykkö, P. Chem. Rev. 1988, 88, 563–594; https://doi.org/10.1021/cr00085a006.Search in Google Scholar

258. Van Lenthe, E.; Snijders, J. G.; Baerends, E. J. J. Chem. Phys. 1996, 105, 6505–6516; https://doi.org/10.1063/1.472460.Search in Google Scholar

259. Burguera, S.; Bauzá, A.; Frontera, A. Phys. Chem. Chem. Phys. 2024, 26, 16550–16560; https://doi.org/10.1039/d4cp00410h.Search in Google Scholar PubMed

260. Jerabek, P.; Santhosh, A.; Schwerdtfeger, P. Inorg. Chem. 2022, 61, 13077–13084; https://doi.org/10.1021/acs.inorgchem.2c01512.Search in Google Scholar PubMed

261. Pinter, B.; Broeckaert, L.; Turek, J.; Růžička, A.; De Proft, F. Chem. Eur. J. 2014, 20, 734–744; https://doi.org/10.1002/chem.201302171.Search in Google Scholar PubMed

262. Zheng, Q.; Borsley, S.; Nichol, G. S.; Duarte, F.; Cockroft, S. L. Angew. Chem. Int. Ed. 2019, 58, 12617–12623; https://doi.org/10.1002/anie.201904207.Search in Google Scholar PubMed

263. Liu, R. F.; Franzese, C. A.; Malek, R.; Zuchowski, P. S.; Ángyán, J. G.; Szczȩśniak, M. M.; Chałasiński, G. J. Chem. Theory Comput. 2011, 7, 2399–2407; https://doi.org/10.1021/ct200243s.Search in Google Scholar PubMed

264. Wan, Q.; Yang, J.; To, W. P.; Che, C. M. Proc. Natl. Acad. Sci. U. S. A. 2021, 118 (10 pages); https://doi.org/10.1073/pnas.2019265118.Search in Google Scholar PubMed PubMed Central

265. Portugués, A.; González, L.; Bautista, D.; Gil-Rubio, J. Angew. Chem. Int. Ed. 2020, 59, 15220–15225; https://doi.org/10.1002/anie.202006440.Search in Google Scholar PubMed

266. Wuttke, A.; Feldt, M.; Mata, R. A. J. Phys. Chem. A 2018, 122, 6918–6925; https://doi.org/10.1021/acs.jpca.8b06546.Search in Google Scholar PubMed

267. Brands, M. B.; Nitsch, J.; Guerra, C. F. Inorg. Chem. 2018, 57, 2603–2608; https://doi.org/10.1021/acs.inorgchem.7b02994.Search in Google Scholar PubMed PubMed Central

268. Fang, H.; Wang, S. J. Phys. Chem. A 2007, 111, 1562–1566; https://doi.org/10.1021/jp064656b.Search in Google Scholar PubMed

269. Pyykkö, P.; Zaleski-Ejgierd, P. J. Chem. Phys. 2008, 128, 124309; https://doi.org/10.1063/1.2842081.Search in Google Scholar PubMed

270. Kowala, C.; Swan, J. M. Aust. J. Chem. 1966, 19, 547–554; https://doi.org/10.1071/ch9660547.Search in Google Scholar

271. Abel, E. W.; Jenkins, C. R. J. Organomet. Chem. 1968, 14, 285–289; https://doi.org/10.1016/s0022-328x(00)87668-8.Search in Google Scholar

272. Jones, P. G.; Sheldrick, G. M.; Uson, R.; Laguna, A. Acta Crystallogr. 1980, B36, 1486–1488; https://doi.org/10.1107/S0567740880006358.Search in Google Scholar

273. Bayler, A.; Bauer, A.; Schmidbaur, H. Chem. Ber. 1997, 130, 115–118; https://doi.org/10.1002/cber.19971300119.Search in Google Scholar

274. Schmidbaur, H.; Hamel, A.; Mitzel, N. W.; Schier, A.; Nogai, S. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4916–4921; https://doi.org/10.1073/pnas.062643599.Search in Google Scholar PubMed PubMed Central

275. Schmidbaur, H.; Hofreiter, S.; Paul, M. Nature 1995, 377, 503–504; https://doi.org/10.1038/377503a0.Search in Google Scholar

276. Peltier, J. L.; Soleilhavoup, M.; Martin, D.; Jazzar, R.; Bertrand, G. J. Am. Chem. Soc. 2020, 142, 16479–16485; https://doi.org/10.1021/jacs.0c07990.Search in Google Scholar PubMed

277. Angermaier, K.; Schmidbaur, H. Chem. Ber. 1994, 127, 2387–2391; https://doi.org/10.1002/cber.19941271208.Search in Google Scholar

278. Schmidbaur, H.; Kolb, A.; Zeller, E.; Schier, A.; Beruda, H. Z. Anorg. Allg. Chem. 1993, 619, 1575–1579; https://doi.org/10.1002/zaac.19936190912.Search in Google Scholar

279. Canales, F.; Gimeno, C.; Laguna, A.; Villacampa, M. D. Inorg. Chim. Acta 1996, 244, 95–103; https://doi.org/10.1016/0020-1693(95)04759-x.Search in Google Scholar

280. Slovokhotov, Y. L.; Struchkov, Y. T. J. Organomet. Chem. 1984, 277, 143–146; https://doi.org/10.1016/0022-328x(84)80689-0.Search in Google Scholar

281. Angermaier, K.; Schmidbaur, H. J. Chem. Soc., Dalton Trans. 1995, 559–564; https://doi.org/10.1039/dt9950000559.Search in Google Scholar

282. Grohmann, A.; Riede, J.; Schmidbaur, H. Nature 1990, 345, 140–142; https://doi.org/10.1038/345140a0.Search in Google Scholar

283. Schmidbaur, H.; Weidenhiller, G.; Steigelmann, O. Angew. Chem. Int. Ed. Engl. 1991, 30, 433–435; https://doi.org/10.1002/anie.199104331.Search in Google Scholar

284. Bachman, R. E.; Schmidbaur, H. Inorg. Chem. 1996, 35, 1399–1401; https://doi.org/10.1021/ic950946n.Search in Google Scholar PubMed

285. Zeller, E.; Schmidbaur, H. J. Chem. Soc., Chem. Commun. 1993, 69–70; https://doi.org/10.1039/c39930000069.Search in Google Scholar

286. Zeller, E.; Beruda, H.; Schmidbaur, H. Chem. Ber. 1993, 126, 2033–2036; https://doi.org/10.1002/cber.19931260911.Search in Google Scholar

287. Schmidbaur, H.; Brachthäuser, B.; Steigelmann, O.; Beruda, H. Chem. Ber. 1992, 125, 2705–2710; https://doi.org/10.1002/cber.19921251214.Search in Google Scholar

288. Schmidbaur, H.; Steigelmann, O. Z. Naturforsch. 1992, 47b, 1721–1724; https://doi.org/10.1515/znb-1992-1213.Search in Google Scholar

289. Lei, Z.; Wang, Q. M. Coord. Chem. Rev. 2019, 378, 382–394; https://doi.org/10.1016/j.ccr.2017.11.001.Search in Google Scholar

290. Pei, X. L.; Zhao, P.; Ube, H.; Lei, Z.; Ehara, M.; Shionoya, M. Nat. Commun. 2024, 15, 5024 (10 pages); https://doi.org/10.1038/s41467-024-49295-w.Search in Google Scholar PubMed PubMed Central

291. Sun, Y.; Cao, Y.; Wang, L.; Mu, X.; Zhao, Q.; Si, R.; Zhu, X.; Chen, S.; Zhang, B.; Chen, D.; Wan, Y. Nat. Commun. 2020, 11, 4600 (9 pages); https://doi.org/10.1038/s41467-020-18322-x.Search in Google Scholar PubMed PubMed Central

Received: 2024-10-08
Accepted: 2024-10-15
Published Online: 2025-01-13
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Hubert Schmidbaur 90 years – an appreciation
  5. Reviews
  6. ‘Schmidbaur gold chemistry’ and beyond
  7. The ligand polyhedral model and its application to the structures and fluxional behaviour of the metal carbonyls
  8. Research Articles
  9. Equiatomic transition metal (T) silicides TT′Si: systematics of 29Si NMR Knight shifts
  10. New alkaline earth and rare earth representatives adopting the Ce2Al16Pt9-type structure
  11. Bis(2-chloroethyl)sulfane revisited: (ClH4C2)2S⋯S(C2H4Cl) dimers by S⋯S interaction in the solid state
  12. Structural studies of (2R,3R)-(+)-bis(diphenylphosphino)butane and (R)-(+)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl
  13. High-pressure synthesis and crystal structure of Al3BO6
  14. LiEu[BO3]: a lithium europium(II) ortho-oxoborate with a familiar crystal structure
  15. Fluorescence analysis of wood chips and their constituents
  16. C–S–H–PCE nanocomposites as hydration accelerator in calcined clay-limestone-blended low carbon cement
  17. An intermolecular Lewis pair based on tin acid and phosphonium ylide base functions
  18. Cyanopyridine adducts of SiF4 and SiCl4
  19. A [Zn4O(fcCO2)6] oxocarboxylate cluster: synthesis, chemical and physical properties
  20. Homo- and heteronuclear complexes derived from N-picoline-functionalized benzimidazolin-2-ylidene ligands
  21. “Coordination caps” of graded electron-donor capacity
  22. The hare and the hedgehog – Similar thermal expansion of argento- and aurophilic contacts for different reasons
  23. Atomic migration and phase transformation processes in dental amalgams over 27 years, monitored by X-ray spectroscopy and X-ray powder diffraction
  24. Book Review
  25. Hubert Schmidbaur: From Chemical Craftsmanship to the Art of Gilding Atoms. (Lives in Chemistry.)
Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2024-0086/html
Scroll to top button