Abstract
Hubert Schmidbaur has significantly influenced the field of gold chemistry. His work on preparing various aurocyclic digold compounds and studying their structures and reactivities has laid the foundation for unique applications in photophysics and homogeneous catalysis. The naming and characterization, both experimental and theoretical, of the aurophilicity phenomenon have led to numerous interdisciplinary applications. The emergence and development of dynamic gold chemistry in the excited state, exemplify this impact. Preparative methodologies, characterization techniques, and qualitative bonding theories have been tested through the rational preparation of ligated, element-centred gold clusters. The potential of this fascinating class of compounds remains largely untapped.
Acknowledgments
We thank Beatrice Elisabeth Cronje for drawing the Havana cigar and the hiking poles in the graphical abstract.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Puddephatt, R. J. The Chemistry Of Gold; Elsevier Scientific Publishing Company: Amsterdam, Oxford, New York, 1978.Search in Google Scholar
2. Armer, B.; Schmidbaur, H. Angew Chem. Int. Ed. Engl. 1970, 9, 101–113; https://doi.org/10.1002/anie.197001011.Search in Google Scholar
3. Raubenheimer, H. G.; Schmidbaur, H. J. Chem. Educ. 2014, 91, 2024–2036; https://doi.org/10.1021/ed400782p.Search in Google Scholar
4. Schmidbaur, H. From Chemical Craftmanship to the Art of Gilding Atoms; GNT-Verlag: Berlin, 2024.10.47261/1559Search in Google Scholar
5. Schmidbaur, H. Angew Chem. Int. Ed. Engl. 1976, 15, 728–740; https://doi.org/10.1002/anie.197607281.Search in Google Scholar
6. Coetzee, J.; Gabrielli, W. F.; Coetzee, K.; Schuster, O.; Nogai, S. D.; Cronje, S.; Raubenheimer, H. G. Angew. Chem. Int. Ed. 2007, 46, 2497–2500; https://doi.org/10.1002/anie.200604592.Search in Google Scholar PubMed
7. Schmidbaur, H.; Franke, R. Angew Chem. Int. Ed. Engl. 1973, 12, 416–417; https://doi.org/10.1002/anie.197304161.Search in Google Scholar
8. Cariati, F.; Naldini, L.; Simonetta, G.; Malatesta, L. Inorg. Chim. Acta 1967, 1, 315–318; https://doi.org/10.1016/s0020-1693(00)93194-3.Search in Google Scholar
9. Schmidbaur, H.; Franke, R. Inorg. Chim. Acta 1975, 13, 85–89; https://doi.org/10.1016/s0020-1693(00)90181-6.Search in Google Scholar
10. Schmidbaur, H.; Ebner von Eschenbach, J.; Kumberger, O.; Müller, G. Chem. Ber. 1990, 123, 2261–2265; https://doi.org/10.1002/cber.19901231206.Search in Google Scholar
11. Schmidbaur, H.; Wohlleben, A.; Wagner, F.; Orama, O.; Huttner, G. Chem. Ber. 1977, 110, 1748–1754; https://doi.org/10.1002/cber.19771100519.Search in Google Scholar
12. Wang, W.; Ji, C.-L.; Liu, K.; Zhao, C.-G.; Lia, W.; Xie, J. Chem. Soc. Rev. 2021, 50, 1874–1912; https://doi.org/10.1039/d0cs00254b.Search in Google Scholar PubMed
13. Witzel, S.; Hashmi, A. S. K.; Xie, J. Chem. Rev. 2021, 121, 8868–8925; https://doi.org/10.1021/acs.chemrev.0c00841.Search in Google Scholar PubMed
14. Schmidbaur, H.; Reber, G.; Schier, A.; Wagner, F. E.; Müller, G. Inorg. Chim. Acta 1988, 147, 143–150; https://doi.org/10.1016/s0020-1693(00)83363-0.Search in Google Scholar
15. Schmidbaur, H.; Grohmann, A.; Olmos, M. E. In Gold: Progress in Chemistry, Biochemistry and Technology; Schmidbaur, H., Ed.; John Wiley & Sons: New York, 1999; pp. 648–746. chapter 18.Search in Google Scholar
16. Fackler, J. P. Inorg. Chem. 2002, 41, 6959–6972; https://doi.org/10.1021/ic025734m.Search in Google Scholar PubMed
17. Laguna, A.; Laguna, M. Coord. Chem. Rev. 1999, 193–195, 837–856; https://doi.org/10.1016/s0010-8545(99)00141-1.Search in Google Scholar
18. Schmidbaur, H.; Raubenheimer, H. G. Angew. Chem. Int. Ed. 2020, 59, 14748–14771; https://doi.org/10.1002/anie.201916255.Search in Google Scholar PubMed PubMed Central
19. Raubenheimer, H. G. LitNet Akademies 2016, 13, 39–68.Search in Google Scholar
20. Scherbaum, F.; Grohmann, A.; Huber, B.; Krüger, C.; Schmidbaur, H. Angew Chem. Int. Ed. Engl. 1988, 27, 1544–1545; https://doi.org/10.1002/anie.198815441.Search in Google Scholar
21. Bayrakdar, T. A. C. A.; Scattolin, T.; Ma, X.; Nolan, S. P. Chem. Soc. Rev. 2020, 49, 7044–7100; https://doi.org/10.1039/d0cs00438c.Search in Google Scholar PubMed
22. Mirzadeh, N.; Privér, S. H.; Blake, A. J.; Schmidbaur, H.; Bhargava, S. K. Chem. Rev. 2020, 120, 7551–7591; https://doi.org/10.1021/acs.chemrev.9b00816.Search in Google Scholar PubMed
23. Schmidbaur, H.; Graf, W.; Müller, G. Angew Chem. Int. Ed. Engl. 1988, 27, 417–419; https://doi.org/10.1002/anie.198804171.Search in Google Scholar
24. Raubenheimer, H. G.; Cronje, S. LitNet Akademies 2024, 21, 463–514; https://doi.org/10.56273/1995-5928/2024/j21n1f1.Search in Google Scholar
25. Schmidbaur, H.; Schier, A. Chem. Soc. Rev. 2012, 41, 370–412; https://doi.org/10.1039/c1cs15182g.Search in Google Scholar PubMed
26. Pyykkö, P.; Schneider, W.; Bauer, A.; Bayler, A.; Schmidbaur, H. Chem. Commun. 1997, 1111–1112; https://doi.org/10.1039/a608428a.Search in Google Scholar
27. Schwerdtfeger, P.; Hermann, H. L.; Schmidbaur, H. Inorg. Chem. 2003, 42, 1334–1342; https://doi.org/10.1021/ic026098v.Search in Google Scholar PubMed
28. Pyykkö, P. Angew. Chem. Int. Ed. 2004, 43, 4412–4456; https://doi.org/10.1002/anie.200300624.Search in Google Scholar PubMed
29. Pyykkö, P. Chem. Soc. Rev. 2008, 37, 1967–1997; https://doi.org/10.1039/b708613j.Search in Google Scholar PubMed
30. Schwerdtfeger, P. Heteroatom Chem. 2002, 13, 578–584; https://doi.org/10.1002/hc.10093.Search in Google Scholar
31. Levine, I. N. Electron-correlation Methods. In Quantum Chemistry, 6th ed.; Prentice Hall Pearson Education: Upper Saddle River, New Jersey, 2009; chapter 16. pp. 566–635.Search in Google Scholar
32. Sherrill, C. D. Wavefunction Theory Approaches to Noncovalent Interactions. In Non-covalent interactions in quantum chemistry and physics: theory and applications; Otero de la Roza, A.; DiLabio, G. A., Eds.; Elsevier: Amsterdam, 2017; chapter 4. pp. 137–168.10.1016/B978-0-12-809835-6.00005-0Search in Google Scholar
33. Pyykkö, P.; Zhao, Y. Angew Chem. Int. Ed. Engl. 1991, 30, 604–605; https://doi.org/10.1002/anie.199106041.Search in Google Scholar
34. Das, K. K.; Balasubramanian, K. J. Mol. Spectr. 1990, 140, 280–294; https://doi.org/10.1016/0022-2852(90)90141-c.Search in Google Scholar
35. Geethalakshmi, K. R.; Ruipérez, F.; Knecht, S.; Ugalde, J. M.; Morse, M. D.; Infante, I. Phys. Chem. Chem. Phys. 2012, 14, 8732–8741; https://doi.org/10.1039/c2cp40898h.Search in Google Scholar PubMed
36. Uson, R.; Laguna, A.; Castrillo, M. V. Synth. React. Inorg. Met.-Org. Chem. 1979, 9, 317–324; https://doi.org/10.1080/00945717908069748.Search in Google Scholar
37. Nesmeyanov, A. N.; Perevalova, E. G.; Struchkov, Yu. T.; Antipin, M.Yu.; Grandberg, K. I.; Dyadhenko, V. P. J. Organomet. Chem. 1980, 201, 343–349; https://doi.org/10.1016/s0022-328x(00)92589-0.Search in Google Scholar
38. Perevalova, E. G.; Smyslova, E. I.; Dyadchenko, V. P.; Grandberg, K. I.; Nesmeyanov, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 1455.Search in Google Scholar
39. Raubenheimer, H. G.; Mapolie, S. F. Dalton Trans. 2021, 50, 17864–17878; https://doi.org/10.1039/d1dt02940a.Search in Google Scholar PubMed
40. Raubenheimer, H. G.; Schmidbaur, H. Organometallics 2012, 31, 2507–2522; https://doi.org/10.1021/om2010113.Search in Google Scholar
41. Schmidbaur, H. Chem. Soc. Rev. 1995, 24, 391–400; https://doi.org/10.1039/cs9952400391.Search in Google Scholar
42. Schmidbaur, H.; Cronje, S.; Djordjevic, B.; Schuster, O. Chem. Phys. 2005, 311, 151–161; https://doi.org/10.1016/j.chemphys.2004.09.023.Search in Google Scholar
43. Schmidbaur, H.; Schier, A. Chem. Soc. Rev. 2008, 37, 1931–1951; https://doi.org/10.1039/b708845k.Search in Google Scholar PubMed
44. Li, J.; Pyykkö, P. Inorg. Chem. 1993, 32, 2630–2634; https://doi.org/10.1021/ic00064a010.Search in Google Scholar
45. Häberlen, O. D.; Schmidbaur, H.; Rösch, N. J. Am. Chem. Soc. 1994, 116, 8241–8248; https://doi.org/10.1021/ja00097a034.Search in Google Scholar
46. Scherbaum, F.; Grohmann, A.; Müller, G.; Schmidbaur, H. Angew Chem. Int. Ed. Engl. 1989, 28, 463–465; https://doi.org/10.1002/anie.198904631.Search in Google Scholar
47. Zeller, E.; Beruda, H.; Kolb, A.; Bissinger, P.; Riede, J.; Schmidbaur, H. Nature 1991, 352, 141–143; https://doi.org/10.1038/352141a0.Search in Google Scholar
48. Schmidbaur, H.; Beruda, H.; Zeller, E. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 87, 245–255; https://doi.org/10.1080/10426509408037457.Search in Google Scholar
49. Canales, F.; Gimeno, M. C.; Jones, P. J.; Laguna, A. Angew Chem. Int. Ed. Engl. 1994, 33, 769–770; https://doi.org/10.1002/anie.199407691.Search in Google Scholar
50. Teo, B. K.; Zhang, H. J. Clust. Sci. 1990, 1, 223–228; https://doi.org/10.1007/bf00702721.Search in Google Scholar
51. Angermaier, K.; Schmidbaur, H. Inorg. Chem. 1994, 33, 2069–2070; https://doi.org/10.1021/ic00088a001.Search in Google Scholar
52. Pyykkö, P.; Zhao, Y. Chem. Phys. Lett. 1991, 177, 103–106; https://doi.org/10.1016/0009-2614(91)90183-a.Search in Google Scholar
53. Sladek, A.; Hofreiter, S.; Paul, M.; Schmidbaur, H. J. Organomet. Chem. 1995, 501, 47–51; https://doi.org/10.1016/0022-328x(95)05589-h.Search in Google Scholar
54. Shiotani, A.; Schmidbaur, H. J. Am. Chem. Soc. 1970, 92, 7003–7004; https://doi.org/10.1021/ja00726a067.Search in Google Scholar
55. Paul, M.; Schmidbaur, H. Z. Naturforsch. 1994, 49b, 647–649; https://doi.org/10.1515/znb-1994-0513.Search in Google Scholar
56. Shiotani, A.; Schmidbaur, H. J. Organomet. Chem. 1972, 37, C24–C26; https://doi.org/10.1016/s0022-328x(00)89250-5.Search in Google Scholar
57. Schneider, D.; Schuster, O.; Schmidbaur, H. Dalton Trans. 2005, 1940–1947; https://doi.org/10.1039/b502861b.Search in Google Scholar PubMed
58. Schneider, D.; Schier, A.; Schmidbaur, H. Dalton Trans. 2004, 1995–2005; https://doi.org/10.1039/b403005b.Search in Google Scholar PubMed
59. Grohmann, A.; Schmidbaur, H. In Comprehensive Organometallic Chemistry II; Abel, E. W.; Stone, F. G. A.; Wilkinson, G., Eds.; Pergamon, Elsevier: Oxford, Vol. 3, 1995; pp. 1–56; https://doi.org/10.1016/b978-008046519-7.00021-6.Search in Google Scholar
60. Schmidbaur, H.; Schier, A. In Comprehensive Organometallic Chemistry III: From Fundamentals to Applications; Mingos, D. M. P.; Crabtree, R. H., Eds.; Elsevier: Amsterdam, Vol. 2, 2007; pp. 251–307.10.1016/B0-08-045047-4/00039-XSearch in Google Scholar
61. Schier, A.; Schmidbaur, H. Encycl. Inorg. Bioinorg. Chem. 2005, 1–11; https://doi.org/10.1002/0470862106.ia082.Search in Google Scholar
62. Schmidbaur, H. Acc. Chem. Res. 1975, 8, 62–70; https://doi.org/10.1021/ar50086a003.Search in Google Scholar
63. Schmidbaur, H. Z. Naturforsch. 2008, 63b, 853–859; https://doi.org/10.1515/znb-2008-0708.Search in Google Scholar
64. Schmidbaur, H. Gold Bull 1990, 23, 11–21; https://doi.org/10.1007/bf03214710.Search in Google Scholar
65. Schmidbaur, H. Gold Bull 2000, 33, 3–10; https://doi.org/10.1007/bf03215477.Search in Google Scholar
66. Gray, T. G.; Sadighi, J. P. In Molecular Metal-Metal Bonds: Compounds, Synthesis, Properties; Liddle, S. T., Ed.; Wiley-VCH Verlag: Weinheim, 2015; pp. 397–428.10.1002/9783527673353.ch11Search in Google Scholar
67. Schmidbaur, H.; Mandl, J. E.; Richter, W.; Bejenke, V.; Frank, A.; Huttner, G. Chem. Ber. 1977, 110, 2236–2241; https://doi.org/10.1002/cber.19771100621.Search in Google Scholar
68. Jandik, P.; Schubert, U.; Schmidbaur, H. Angew Chem. Int. Ed. Engl. 1982, 21, 73; https://doi.org/10.1002/anie.198200731.Search in Google Scholar
69. Schmidbaur, H.; Scherm, H. P. Chem. Ber. 1977, 110, 1576–1585; https://doi.org/10.1002/cber.19771100440.Search in Google Scholar
70. Schmidbaur, H.; Füller, H.-J.; Bejenke, V.; Franck, A.; Huttner, G. Chem. Ber. 1977, 110, 3536–3543; https://doi.org/10.1002/cber.19771101109.Search in Google Scholar
71. Schmidbaur, H.; Müller, G.; Dash, K. C.; Milewski‐Mahrla, B. Chem. Ber. 1981, 114, 441–446; https://doi.org/10.1002/cber.19811140205.Search in Google Scholar
72. Krüger, C.; Sekutowski, J. C.; Goddard, R.; Füller, H.-J.; Gasser, O.; Schmidbaur, H. Isr. J. Chem. 1977, 15, 149–152; https://doi.org/10.1002/ijch.197600029.Search in Google Scholar
73. Usón, R.; Laguna, A. Coord. Chem. Rev. 1986, 70, 1–50; https://doi.org/10.1016/0010-8545(86)80034-0.Search in Google Scholar
74. Mohamed, A. A.; Abdou, H. E.; Fackler, J. P. Coord. Chem. Rev. 2010, 254, 1253–1259; https://doi.org/10.1016/j.ccr.2009.10.017.Search in Google Scholar
75. Waters, J. H.; Gray, H. B. J. Am. Chem. Soc. 1965, 87, 3534–3535; https://doi.org/10.1021/ja01093a064.Search in Google Scholar
76. Schmidbaur, H.; Mandl, J. R.; Frank, A.; Huttner, G. Chem. Ber. 1976, 109, 466–472; https://doi.org/10.1002/cber.19761090208.Search in Google Scholar
77. Schmidbaur, H.; Jandik, P. Inorg. Chim. Acta 1983, 74, 97–99; https://doi.org/10.1016/s0020-1693(00)81412-7.Search in Google Scholar
78. Schmidbaur, H.; Mandl, J. R. Sci. Nat. 1976, 63, 585; https://doi.org/10.1007/bf00622807.Search in Google Scholar
79. Schmidbaur, H.; Hartmann, C.; Riede, J.; Huber, B.; Müller, G. Organometallics 1986, 5, 1652–1656; https://doi.org/10.1021/om00139a023.Search in Google Scholar
80. Irwin, M. D.; Abdou, H. E.; Mohamed, A. A.; Fackler, J. P. Chem. Commun. 2003, 3, 2882–2883; https://doi.org/10.1039/b309724m.Search in Google Scholar PubMed
81. Joost, M.; Estévez, L.; Miqueu, K.; Amgoune, A.; Bourissou, D. Angew. Chem. Int. Ed. 2015, 54, 5236–5240; https://doi.org/10.1002/anie.201500458.Search in Google Scholar PubMed
82. Fackler, J. P. Polyhedron 1997, 16, 1–17; https://doi.org/10.1016/0277-5387(96)00190-8.Search in Google Scholar
83. Rigoulet, M.; Massou, S.; Daiann Sosa Carrizo, E.; Mallet-Ladeira, S.; Amgoune, A.; Miqueu, K.; Bourissou, D. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 46–51; https://doi.org/10.1073/pnas.1817194116.Search in Google Scholar PubMed PubMed Central
84. Straka, M.; Andris, E.; Vícha, J.; Růžička, A.; Roithová, J.; Rulíšek, L. Angew. Chem. Int. Ed. 2019, 58, 2011–2016; https://doi.org/10.1002/anie.201811982.Search in Google Scholar PubMed PubMed Central
85. Kleinhans, G.; Hansmann, M. M.; Guisado-Barrios, G.; Liles, D. C.; Bertrand, G.; Bezuidenhout, D. I. J. Am. Chem. Soc. 2016, 138, 15873–15876; https://doi.org/10.1021/jacs.6b11359.Search in Google Scholar PubMed
86. Amgoune, A.; Bourissou, D. Chem. Commun. 2011, 47, 859–871; https://doi.org/10.1039/c0cc04109b.Search in Google Scholar PubMed
87. Hicks, J.; Mansikkamäki, A.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Nat. Chem. 2019, 11, 237–241; https://doi.org/10.1038/s41557-018-0198-1.Search in Google Scholar PubMed
88. Bourissou, D. Nat. Chem. 2019, 11, 199–200; https://doi.org/10.1038/s41557-019-0223-z.Search in Google Scholar PubMed
89. Schmidbaur, H.; Wagner, F. E.; Wohlleben-Hammer, A. Chem. Ber. 1979, 112, 496–500; https://doi.org/10.1002/cber.19791120212.Search in Google Scholar
90. Mazany, A. M.; Fackler, J. P. J. Am. Chem. Soc. 1984, 106, 801–802; https://doi.org/10.1021/ja00315a062.Search in Google Scholar
91. Bardají, M.; Gimeno, M. C.; Jones, P. G.; Laguna, A.; Laguna, M. Organometallics 1994, 13, 3415–3419; https://doi.org/10.1021/om00021a015.Search in Google Scholar
92. Khan, M. N. I.; Fackler, J. P.; King, C.; Wang, J. C.; Wang, S. Inorg. Chem. 1988, 27, 1672–1673; https://doi.org/10.1021/ic00283a003.Search in Google Scholar
93. Bennett, M. A.; Bhargava, S. K.; Griffiths, K. D.; Robertson, G. B. Angew Chem. Int. Ed. Engl. 1987, 26, 260–261; https://doi.org/10.1002/anie.198702601.Search in Google Scholar
94. Mirzadeh, N.; Bennett, M. A.; Bhargava, S. K. Coord. Chem. Rev. 2013, 257, 2250–2273; https://doi.org/10.1016/j.ccr.2013.02.011.Search in Google Scholar
95. Abdou, H. E.; Mohamed, A. A.; Fackler, J. P. Z. Naturforsch. 2004, 59b, 1480–1482; https://doi.org/10.1515/znb-2004-11-1217.Search in Google Scholar
96. Usón, R.; Laguna, A.; Laguna, M.; Jiménez, J.; Jones, P. G. Angew Chem. Int. Ed. Engl. 1991, 30, 198–199; https://doi.org/10.1002/anie.199101981.Search in Google Scholar
97. Concepción Gimeno, M.; Jiménez, J.; Laguna, A.; Laguna, M.; Jones, P.G.; Parish, R. V. D. J. Organomet. Chem. 1994, 481, 37–44; https://doi.org/10.1016/0022-328X(94)85006-2.Search in Google Scholar
98. Schmidbaur, H.; Hartmann, C.; Reber, G.; Müller, G. Angew Chem. Int. Ed. Engl. 1987, 26, 1146–1148; https://doi.org/10.1002/anie.198711461.Search in Google Scholar
99. Laguna, A.; Laguna, M.; Jiménez, J.; Lahoz, F. J.; Olmos, E. Organometallics 1994, 13, 253–257; https://doi.org/10.1021/om00013a038.Search in Google Scholar
100. Xiong, X. G.; Pyykkö, P. Chem. Commun. 2013, 49, 2103–2105; https://doi.org/10.1039/c2cc37875b.Search in Google Scholar PubMed
101. Zopes, D.; Hegemann, C.; Tyrra, W.; Mathur, S. Chem. Commun. 2012, 48, 8805–8807; https://doi.org/10.1039/c2cc33735e.Search in Google Scholar PubMed
102. Mohr, F.; Sanz, S.; Tiekink, E. R. T.; Laguna, M. Organometallics 2006, 25, 3084–3087; https://doi.org/10.1021/om0602456.Search in Google Scholar
103. Murray, H. H.; Fackler, J. P.; Tocher, D. A. J. Chem. Soc., Chem. Commun. 1985, 1278–1280; https://doi.org/10.1039/c39850001278.Search in Google Scholar
104. Nesmeyanov, A. N.; Perevalova, E. G.; Grandberg, K. I.; Lemenovskii, D. A.; Baukova, T. V.; Afanassova, O. B. J. Organomet. Chem. 1974, 65, 131–144; https://doi.org/10.1016/s0022-328x(00)83895-4.Search in Google Scholar
105. Nesmeyanov, A. N.; Perevalova, E. G.; Afanasova, O. B.; Tolstaya, M. V.; Grandberg, K. I. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1978, 27, 969–973; https://doi.org/10.1007/bf00929002.Search in Google Scholar
106. Porter, K. A.; Schier, A.; Schmidbaur, H. Organometallics 2003, 22, 4922–4927; https://doi.org/10.1021/om030575f.Search in Google Scholar
107. Cheong, P. H. Y.; Morganelli, P.; Luzung, M. R.; Houk, K. N.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 4517–4526; https://doi.org/10.1021/ja711058f.Search in Google Scholar PubMed PubMed Central
108. Weber, D.; Tarselli, M. A.; Gagné, M. R. Angew. Chem. Int. Ed. 2009, 48, 5733–5736; https://doi.org/10.1002/anie.200902049.Search in Google Scholar PubMed PubMed Central
109. Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2–23; https://doi.org/10.1021/om900900u.Search in Google Scholar
110. Hashmi, A. S. K.; Braun, I.; Nösel, P.; Schädlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem. Int. Ed. 2012, 51, 4456–4460; https://doi.org/10.1002/anie.201109183.Search in Google Scholar PubMed
111. Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Nösel, P.; Jongbloed, L.; Rudolph, M.; Rominger, F. Adv. Synth. Catal. 2012, 354, 555–562; https://doi.org/10.1002/adsc.201200086.Search in Google Scholar
112. Schmidbaur, H.; Shiotani, A. Chem. Ber. 1971, 104, 2821–2830; https://doi.org/10.1002/cber.19711040921.Search in Google Scholar
113. Schmidbaur, H.; Wohlleben, A.; Schubert, U.; Frank, A.; Huttner, G. Chem. Ber. 1977, 110, 2751–2757; https://doi.org/10.1002/cber.19771100810.Search in Google Scholar
114. Porter, L. C.; Khan, M. N. I.; King, C.; Fackler, J. P. Acta Crystallogr. 1989, C45, 947–949; https://doi.org/10.1107/S2056989015013341.Search in Google Scholar PubMed PubMed Central
115. Schmidbaur, H.; Wohlleben, A.; Wagner, F. E.; Van de Vondel, D. F.; Van der Kelen, G. P. Chem. Ber. 1977, 110, 2758–2764; https://doi.org/10.1002/cber.19771100811.Search in Google Scholar
116. Schmidbaur, H.; Mandl, J. R. Angew Chem. Int. Ed. Engl. 1977, 16, 640–641; https://doi.org/10.1002/anie.197706401.Search in Google Scholar
117. Schmidbaur, H.; Mandl, J. R.; Bassett, J.-M.; Blaschke, G.; Zimmer-Gasser, B. Chem. Ber. 1981, 114, 433–440; https://doi.org/10.1002/cber.19811140204.Search in Google Scholar
118. Dziwok, K.; Lachmann, J.; Wilkinson, D. L.; Müller, G.; Schmidbaur, H. Chem. Ber. 1990, 123, 423–431; https://doi.org/10.1002/cber.19901230303.Search in Google Scholar
119. Schmidbaur, H.; Dziwok, K.; Grohmann, A.; Müller, G. Chem. Ber. 1989, 122, 893–895; https://doi.org/10.1002/cber.19891220517.Search in Google Scholar
120. Mirzadeh, N.; Reddy, T. S.; Bhargava, S. K. Coord. Chem. Rev. 2019, 388, 343–359; https://doi.org/10.1016/j.ccr.2019.02.027.Search in Google Scholar
121. Zidan, M.; Rohe, S.; McCallum, T.; Barriault, L. Catal. Sci. Technol. 2018, 8, 6019–6028; https://doi.org/10.1039/c8cy01765d.Search in Google Scholar
122. Puddephatt, R. J. Chem. Soc. Rev. 2008, 37, 2012–2027; https://doi.org/10.1039/b708622a.Search in Google Scholar PubMed
123. James, S. L. Chem. Soc. Rev. 2009, 38, 1744–1758; https://doi.org/10.1039/b814096k.Search in Google Scholar PubMed
124. Schmidbaur, H.; Mandl, J. R.; Wohlleben-Hammer, A.; Fügner, A. Z. Naturforsch. 1978, 33b, 1325–1329; https://doi.org/10.1515/znb-1978-1126.Search in Google Scholar
125. Mirabelli, C. K.; Johnson, R. K.; Sung, C. M.; Faucette, L.; Muirhead, K.; Crooke, S. T. Cancer Res. 1985, 45, 32–39.Search in Google Scholar
126. Berners-Price, S. J.; Mirabelli, C. K.; Johnson, R. K.; Mattern, M. R.; McCabe, F. L.; Faucette, L. F.; Sung, C. M.; Mong, S. M.; Sadler, P. J.; Crooke, S. T. Cancer Res. 1986, 46, 5486–5493.Search in Google Scholar
127. Mirabelli, C. K.; Hill, D. T.; Faucette, L. F.; Mccabe, F. L.; Girard, G. R.; Bryan, D. B.; Sutton, B. M.; Bartus, J. O. L.; Crooke, S. T.; Johnson, R. K. J. Med. Chem. 1987, 30, 2181–2190; https://doi.org/10.1021/jm00395a004.Search in Google Scholar PubMed
128. Horvath, U. E. I.; Dobrzańska, L.; Strasser, C. E.; Bouwer, W.; Joone, G.; Van Rensburg, C. E. J.; Cronje, S.; Raubenheimer, H. G. J. Inorg. Biochem. 2012, 111, 80–90; https://doi.org/10.1016/j.jinorgbio.2012.02.026.Search in Google Scholar PubMed
129. Altaf, M.; Monim-ul-Mehboob, M.; Isab, A. A.; Dhuna, V.; Bhatia, G.; Dhuna, K.; Altuwaijri, S. New J. Chem. 2015, 39, 377–385; https://doi.org/10.1039/c4nj00747f.Search in Google Scholar
130. Keter, F. K.; Guzei, I. A.; Nell, M.; van Zyl, W. E.; Darkwa, J. Inorg. Chem. 2014, 53, 2058–2067; https://doi.org/10.1021/ic4025926.Search in Google Scholar PubMed PubMed Central
131. Li, B. B.; Jia, Y. X.; Zhu, P. C.; Chew, R. J.; Li, Y.; Tan, N. S.; Leung, P. H. Eur. J. Med. Chem. 2015, 98, 250–255; https://doi.org/10.1016/j.ejmech.2015.05.027.Search in Google Scholar PubMed
132. Zou, T.; Lum, C. T.; Lok, C.-N. N.; To, W.-P. P.; Low, K.-H. H.; Che, C.-M. M. Angew. Chem. Int. Ed. 2014, 53, 5810–5814; https://doi.org/10.1002/anie.201400142.Search in Google Scholar PubMed
133. Kim, J. H.; Reeder, E.; Parkin, S.; Awuah, S. G. Sci. Rep. 2019, 9, 1–18; https://doi.org/10.1038/s41598-019-48584-5.Search in Google Scholar PubMed PubMed Central
134. Schmidbaur, H.; Schier, A. Z. Naturforsch. 2011, 66b, 329–350; https://doi.org/10.1515/znb-2011-0401.Search in Google Scholar
135. Nevado, C. Chimia 2010, 64, 247–251; https://doi.org/10.2533/chimia.2010.247.Search in Google Scholar PubMed
136. Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351–3378; https://doi.org/10.1021/cr068430g.Search in Google Scholar PubMed PubMed Central
137. Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208–3221; https://doi.org/10.1039/b816696j.Search in Google Scholar PubMed
138. Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395–403; https://doi.org/10.1038/nature05592.Search in Google Scholar PubMed
139. Hashmi, A. S. K. Acc. Chem. Res. 2014, 47, 864–876; https://doi.org/10.1021/ar500015k.Search in Google Scholar PubMed
140. Zhao, X.; Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2019, 55, 12127–12135; https://doi.org/10.1039/c9cc06078b.Search in Google Scholar PubMed
141. Gõmez-Suárez, A.; Nolan, S. P. Angew. Chem. Int. Ed. 2012, 51, 8156–8159; https://doi.org/10.1002/anie.201203587.Search in Google Scholar PubMed
142. Paz Muñoz, M.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293–1300; https://doi.org/10.1021/om0491645.Search in Google Scholar
143. LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452–2453; https://doi.org/10.1021/ja068819l.Search in Google Scholar PubMed
144. Hamilton, G. L.; Joo Kang, E.; Mba, M.; Toste, F. D. Science 2007, 317, 496–499; https://doi.org/10.1126/science.1145229.Search in Google Scholar PubMed
145. Tarselli, M. A.; Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem. Int. Ed. 2007, 46, 6670–6673; https://doi.org/10.1002/anie.200701959.Search in Google Scholar PubMed
146. Rodríguez, L. I.; Roth, T.; Lloret Fillol, J.; Wadepohl, H.; Gade, L. H. Chem. Eur. J. 2012, 18, 3721–3728; https://doi.org/10.1002/chem.201103140.Search in Google Scholar PubMed
147. Wang, M. Z.; Zhou, C. Y.; Guo, Z.; Wong, E. L. M.; Wong, M. K.; Che, C. M. Chem.–Asian J. 2011, 6, 812–824; https://doi.org/10.1002/asia.201000651.Search in Google Scholar PubMed
148. Teets, T. S.; Nocera, D. G. J. Am. Chem. Soc. 2009, 131, 7411–7420; https://doi.org/10.1021/ja9009937.Search in Google Scholar PubMed
149. Wolf, W. J.; Winston, M. S.; Toste, F. D. Nat. Chem. 2014, 6, 159–164; https://doi.org/10.1038/nchem.1822.Search in Google Scholar PubMed PubMed Central
150. Xie, J.; Pan, C.; Abdukader, A.; Zhu, C. Chem. Soc. Rev. 2014, 43, 5245–5256; https://doi.org/10.1039/c4cs00004h.Search in Google Scholar PubMed
151. Brenzovich, W. E.; Benitez, D.; Lackner, A. D.; Shunatona, H. P.; Tkatchouk, E.; Goddard, W. A.; Toste, F. D. Angew. Chem. Int. Ed. 2010, 49, 5519–5522; https://doi.org/10.1002/anie.201002739.Search in Google Scholar PubMed PubMed Central
152. Tkatchouk, E.; Mankad, N. P.; Benitez, D.; Goddard, W. A.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 14293–14300; https://doi.org/10.1021/ja2012627.Search in Google Scholar PubMed PubMed Central
153. Levin, M. D.; Toste, F. D. Angew. Chem. Int. Ed. 2014, 53, 6211–6215; https://doi.org/10.1002/anie.201402924.Search in Google Scholar PubMed PubMed Central
154. Peng, H.; Xi, Y.; Ronaghi, N.; Dong, B.; Akhmedov, N. G.; Shi, X. J. Am. Chem. Soc. 2014, 136, 13174–13177; https://doi.org/10.1021/ja5078365.Search in Google Scholar PubMed
155. Leyva-Pérez, A.; Doménech-Carbó, A.; Corma, A. Nat. Commun. 2015, 6, 6703 (8 pages); https://doi.org/10.1038/ncomms7703.Search in Google Scholar PubMed
156. Liu, K.; Li, N.; Ning, Y.; Zhu, C.; Xie, J. Chem 2019, 5, 2718–2730; https://doi.org/10.1016/j.chempr.2019.07.023.Search in Google Scholar
157. Himmelstrup, J.; Buendia, M. B.; Sun, X. W.; Kramer, S. Chem. Commun. 2019, 55, 12988–12991; https://doi.org/10.1039/c9cc07175j.Search in Google Scholar PubMed
158. Tsuchido, Y.; Abe, R.; Ide, T.; Osakada, K. Angew. Chem. Int. Ed. 2020, 59, 22928–22932; https://doi.org/10.1002/anie.202005482.Search in Google Scholar PubMed
159. Stevens, B.; Hutton, E. Nature 1960, 186, 1045–1046; https://doi.org/10.1038/1861045b0.Search in Google Scholar
160. Khan, M. N. I.; King, C.; Heinrich, D. D.; Fackler, J. P.; Porter, L. C. Inorg. Chem. 1989, 28, 2150–2154; https://doi.org/10.1021/ic00310a027.Search in Google Scholar
161. King, C.; Wang, J. C.; Khan, M. N. I.; Fackler, J. P. Inorg. Chem. 1989, 28, 2145–2149; https://doi.org/10.1021/ic00310a026.Search in Google Scholar
162. Che, C. M.; Kwong, H. L.; Yam, V. W. W.; Cho, K. C. J. Chem. Soc., Chem. Commun. 1989, 885–886; https://doi.org/10.1039/c39890000885.Search in Google Scholar
163. Che, C. M.; Kwong, H. L.; Poon, C. K.; Yam, V. W. W. J. Chem. Soc., Dalton Trans. 1990, 3215–3219; https://doi.org/10.1039/dt9900003215.Search in Google Scholar
164. Miskowski, V. M.; Nobinger, G. L.; Kliger, D. S.; Hammond, G. S.; Lewis, N. S.; Mann, K. R.; Gray, H. B. J. Am. Chem. Soc. 1978, 100, 485–488; https://doi.org/10.1021/ja00470a020.Search in Google Scholar
165. Dallinger, R. F.; Miskowski, V. M.; Gray, H. B.; Woodruff, W. H. J. Am. Chem. Soc. 1981, 103, 1595–1596; https://doi.org/10.1021/ja00396a066.Search in Google Scholar
166. Fu, W. F.; Chan, K. C.; Cheung, K. K.; Che, C. M. Chem. Eur. J. 2001, 7, 4656–4664; https://doi.org/10.1002/1521-3765(20011105)7:21<4656::aid-chem4656>3.0.co;2-d.10.1002/1521-3765(20011105)7:21<4656::AID-CHEM4656>3.0.CO;2-DSearch in Google Scholar
167. Fu, W. F.; Chan, K. C.; Miskowski, V. M.; Che, C. M. Angew. Chem. Int. Ed. 1999, 38, 2783–2785; https://doi.org/10.1002/(sici)1521-3773(19990917)38:18<2783::aid-anie2783>3.0.co;2-i.10.1002/(SICI)1521-3773(19990917)38:18<2783::AID-ANIE2783>3.0.CO;2-ISearch in Google Scholar
168. Zhang, H. X.; Che, C. M. Chem. Eur. J. 2001, 7, 4887–4893; https://doi.org/10.1002/1521-3765(20011119)7:22<4887::aid-chem4887>3.0.co;2-c.10.1002/1521-3765(20011119)7:22<4887::AID-CHEM4887>3.0.CO;2-CSearch in Google Scholar
169. Leung, K. H.; Phillips, D. L.; Tse, M. C.; Che, C. M.; Miskowski, V. M. J. Am. Chem. Soc. 1999, 121, 4799–4803; https://doi.org/10.1021/ja990195e.Search in Google Scholar
170. Ma, C.; Chan, C. T. L.; To, W. P.; Kwok, W. M.; Che, C. M. Chem. Eur. J. 2015, 21, 13888–13893; https://doi.org/10.1002/chem.201503045.Search in Google Scholar
171. De La Riva, H.; Pintado-Alba, A.; Nieuwenhuyzen, M.; Hardacre, C.; Lagunas, M. C. Chem. Commun. 2005, 4970–4972; https://doi.org/10.1039/b508863a.Search in Google Scholar
172. Bardají, M.; Jones, P. G.; Laguna, A.; Villacampa, M. D.; Villaverde, N. J. Chem. Soc., Dalton Trans. 2003, 3, 4529–4536; https://doi.org/10.1039/b309116c.Search in Google Scholar
173. Kathewad, N.; Kumar, N.; Dasgupta, R.; Ghosh, M.; Pal, S.; Khan, S. Dalton Trans. 2019, 48, 7274–7280; https://doi.org/10.1039/c8dt04471f.Search in Google Scholar
174. Koshevoy, I. O.; Chang, Y. C.; Chen, Y. A.; Karttunen, A. J.; Grachova, E. V.; Tunik, S. P.; Jänis, J.; Pakkanen, T. A.; Chou, P. T. Organometallics 2014, 33, 2363–2371; https://doi.org/10.1021/om5002952.Search in Google Scholar
175. Pawlowski, V.; Kunkely, H.; Vogler, A. Inorg. Chim. Acta 2004, 357, 1309–1312; https://doi.org/10.1016/j.ica.2003.09.020.Search in Google Scholar
176. Pintado-Alba, A.; De La Riva, H.; Nieuwhuyzen, M.; Bautista, D.; Raithby, P. R.; Sparkes, H. A.; Teat, S. J.; López-De-Luzuriaga, J. M.; Lagunas, M. C. Dalton Trans. 2004, 3459–3467; https://doi.org/10.1039/b410619a.Search in Google Scholar
177. Jobbágy, C.; Baranyai, P.; Szabó, P.; Holczbauer, T.; Rácz, B.; Li, L.; Naumov, P.; Deák, A. Dalton Trans. 2016, 45, 12569–12575; https://doi.org/10.1039/c6dt01528j.Search in Google Scholar
178. Glebko, N.; Dau, T. M.; Melnikov, A. S.; Grachova, E. V.; Solovyev, I. V.; Belyaev, A.; Karttunen, A. J.; Koshevoy, I. O. Chem. Eur. J. 2018, 24, 3021–3029; https://doi.org/10.1002/chem.201705544.Search in Google Scholar
179. Mohamed, A. A.; Mayer, A. P.; Abdou, H. E.; Irwin, M. D.; Pérez, L. M.; Fackler, J. P. Inorg. Chem. 2007, 46, 11165–11172; https://doi.org/10.1021/ic701399s.Search in Google Scholar
180. Narayanaswamy, R.; Young, M. A.; Parkhurst, E.; Ouellette, M.; Kerr, M. E.; Ho, D. M.; Elder, R. C.; Bruce, A. E.; Bruce, M. R. M. Inorg. Chem. 1993, 32, 2506–2517; https://doi.org/10.1021/ic00063a051.Search in Google Scholar
181. Jones, W. B.; Yuan, J.; Narayanaswamy, R.; Young, M. A.; Elder, R. C.; Bruce, A. E.; Bruce, M. R. M. Inorg. Chem. 1995, 34, 1996–2001; https://doi.org/10.1021/ic00112a008.Search in Google Scholar
182. Yam, V. W. W.; Li, C. K.; Chan, C. L. Angew. Chem. Int. Ed. 1998, 37, 2857–2859.10.1002/(SICI)1521-3773(19981102)37:20<2857::AID-ANIE2857>3.0.CO;2-GSearch in Google Scholar
183. Yam, V. W. W.; Chan, C. L.; Li, C. K.; Wong, K. M. C. Coord. Chem. Rev. 2001, 216–217, 173–194; https://doi.org/10.1016/s0010-8545(01)00310-1.Search in Google Scholar
184. Latouche, C.; Lee, Y. C.; Liao, J. H.; Furet, E.; Saillard, J. Y.; Liu, C. W.; Boucekkine, A. Inorg. Chem. 2012, 51, 11851–11859; https://doi.org/10.1021/ic301763k.Search in Google Scholar
185. Latouche, C.; Lin, Y. R.; Tobon, Y.; Furet, E.; Saillard, J. Y.; Liu, C. W.; Boucekkine, A. Phys. Chem. Chem. Phys. 2014, 16, 25840–25845; https://doi.org/10.1039/c4cp03990d.Search in Google Scholar
186. Jobbágy, C.; Molnár, M.; Baranyai, P.; Hamza, A.; Pálinkás, G.; Deák, A. Cryst. Eng. Comm. 2014, 16, 3192–3202; https://doi.org/10.1039/c3ce42474j.Search in Google Scholar
187. Huang, B.; Hu, M.; Toste, F. D. Trends Chem. 2020, 2, 707–720; https://doi.org/10.1016/j.trechm.2020.04.012.Search in Google Scholar
188. McGee, P.; Brousseau, J.; Barriault, L. Isr. J. Chem. 2018, 58, 511–520; https://doi.org/10.1002/ijch.201700054.Search in Google Scholar
189. Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem. Res. 2016, 49, 2261–2272; https://doi.org/10.1021/acs.accounts.6b00351.Search in Google Scholar PubMed
190. McCallum, T.; Rohe, S.; Barriault, L. Synlett 2017, 289–305; https://doi.org/10.1055/s-0036-1588644.Search in Google Scholar
191. Li, D.; Che, C. M.; Kwong, H. L.; Yam, V. W. W. J. Chem. Soc., Dalton Trans. 1992, 3325–3329; https://doi.org/10.1039/dt9920003325.Search in Google Scholar
192. Revol, G.; McCallum, T.; Morin, M.; Gagosz, F.; Barriault, L. Angew. Chem. Int. Ed. 2013, 52, 13342–13345; https://doi.org/10.1002/anie.201306727.Search in Google Scholar PubMed
193. McTiernan, C. D.; Morin, M.; McCallum, T.; Scaiano, J. C.; Barriault, L. Catal. Sci. Technol. 2016, 6, 201–207; https://doi.org/10.1039/c5cy01259g.Search in Google Scholar
194. Xie, J.; Shi, S.; Zhang, T.; Mehrkens, N.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2015, 54, 6046–6050; https://doi.org/10.1002/anie.201412399.Search in Google Scholar PubMed
195. Rohe, S.; McCallum, T.; Morris, A. O.; Barriault, L. J. Org. Chem. 2018, 83, 10015–10024; https://doi.org/10.1021/acs.joc.8b01380.Search in Google Scholar PubMed
196. Kaldas, S. J.; Cannillo, A.; McCallum, T.; Barriault, L. Org. Lett. 2015, 17, 2864–2866; https://doi.org/10.1021/acs.orglett.5b01260.Search in Google Scholar PubMed
197. Xie, J.; Zhang, T.; Chen, F.; Mehrkens, N.; Rominger, F.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 2934–2938; https://doi.org/10.1002/anie.201508622.Search in Google Scholar PubMed
198. McCallum, T.; Barriault, L. Chem. Sci. 2016, 7, 4754–4758; https://doi.org/10.1039/c6sc00807k.Search in Google Scholar PubMed PubMed Central
199. Xie, J.; Li, J.; Weingand, V.; Rudolph, M.; Hashmi, A. S. K. Chem. Eur. J. 2016, 22, 12646–12650; https://doi.org/10.1002/chem.201602939.Search in Google Scholar PubMed
200. Nzulu, F.; Telitel, S.; Stoffelbach, F.; Graff, B.; Morlet-Savary, F.; Lalevée, J.; Fensterbank, L.; Goddard, J. P.; Ollivier, C. Polym. Chem. 2015, 6, 4605–4611; https://doi.org/10.1039/c5py00435g.Search in Google Scholar
201. Zhang, L.; Si, X.; Yang, Y.; Witzel, S.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. ACS Catal. 2019, 9, 6118–6123; https://doi.org/10.1021/acscatal.9b01368.Search in Google Scholar
202. Cannillo, A.; Schwantje, T. R.; Bégin, M.; Barabé, F.; Barriault, L. Org. Lett. 2016, 18, 2592–2595; https://doi.org/10.1021/acs.orglett.6b00968.Search in Google Scholar PubMed
203. Miloserdov, F. M.; Kirillova, M. S.; Muratore, M. E.; Echavarren, A. M. J. Am. Chem. Soc. 2018, 140, 5393–5400; https://doi.org/10.1021/jacs.7b13484.Search in Google Scholar PubMed PubMed Central
204. Zidan, M.; McCallum, T.; Swann, R.; Barriault, L. Org. Lett. 2020, 22, 8401–8406; https://doi.org/10.1021/acs.orglett.0c03030.Search in Google Scholar PubMed
205. Zhang, L.; Si, X.; Rominger, F.; Hashmi, A. S. K. J. Am. Chem. Soc. 2020, 142, 10485–10493; https://doi.org/10.1021/jacs.0c03197.Search in Google Scholar PubMed
206. Ma, X.; Zhao, Y.; Caligiuri, I.; Rizzolio, F.; Bracho Pozsoni, N.; Van Hecke, K.; Scattolin, T.; Nolan, S. P. Dalton Trans. 2024, 53, 7939–7945; https://doi.org/10.1039/d4dt00890a.Search in Google Scholar PubMed
207. Trevisan, G.; Vitali, V.; Tubaro, C.; Graiff, C.; Marchenko, A.; Koidan, G.; Hurieva, A. N.; Kostyuk, A.; Mauceri, M.; Rizzolio, F.; Accorsi, G.; Biffis, A. Dalton Trans. 2021, 50, 13554–13560; https://doi.org/10.1039/d1dt02444b.Search in Google Scholar PubMed
208. Tresin, F.; Stoppa, V.; Baron, M.; Biffis, A.; Annunziata, A.; D’Elia, L.; Monti, D. M.; Ruffo, F.; Roverso, M.; Sgarbossa, P.; Bogialli, S.; Tubaro, C. Molecules 2020, 25, 3850 (13 pages); https://doi.org/10.3390/molecules25173850.Search in Google Scholar PubMed PubMed Central
209. Kaußler, C.; Wragg, D.; Schmidt, C.; Moreno-Alcántar, G.; Jandl, C.; Stephan, J.; Fischer, R. A.; Leoni, S.; Casini, A.; Bonsignore, R. Inorg. Chem. 2022, 61, 20405–20423; https://doi.org/10.1021/acs.inorgchem.2c03041.Search in Google Scholar PubMed PubMed Central
210. Baron, M.; Bellemin-Laponnaz, S.; Tubaro, C.; Basato, M.; Bogialli, S.; Dolmella, A. J. Inorg. Biochem. 2014, 141, 94–102; https://doi.org/10.1016/j.jinorgbio.2014.08.013.Search in Google Scholar PubMed
211. Bayrakdar, T. A. C. A.; Nahra, F.; Davis, J. V.; Gamage, M. M.; Captain, B.; Temprado, M.; Marazzi, M.; Saab, M.; Van Hecke, K.; Ormerod, D.; Hoff, C. D.; Nolan, S. P. Organometallics 2020, 39, 2907–2916; https://doi.org/10.1021/acs.organomet.0c00404.Search in Google Scholar
212. Baron, M.; Battistel, E.; Tubaro, C.; Biffis, A.; Armelao, L.; Rancan, M.; Graiff, C. Organometallics 2018, 37, 4213–4223; https://doi.org/10.1021/acs.organomet.8b00531.Search in Google Scholar
213. Hettmanczyk, L.; Schulze, D.; Suntrup, L.; Sarkar, B. Organometallics 2016, 35, 3828–3836; https://doi.org/10.1021/acs.organomet.6b00675.Search in Google Scholar
214. Huang, W.; Zhang, Y. C.; Jin, R.; Chen, B.-L.; Chen, Z. Organometallics 2018, 37, 3196–3209; https://doi.org/10.1021/acs.organomet.8b00524.Search in Google Scholar
215. Poethig, A.; Strassner, T. Organometallics 2012, 31, 3431–3434; https://doi.org/10.1021/om3000345.Search in Google Scholar
216. Baron, M.; Tubaro, C.; Biffis, A.; Basato, M.; Graiff, C.; Poater, A.; Cavallo, L.; Armaroli, N.; Accorsi, G. Inorg. Chem. 2012, 51, 1778–1784; https://doi.org/10.1021/ic2020786.Search in Google Scholar PubMed
217. Bestgen, S.; Gamer, M. T.; Lebedkin, S.; Kappes, M. M.; Roesky, P. W. Chem. Eur. J. 2015, 21, 601–614; https://doi.org/10.1002/chem.201404985.Search in Google Scholar PubMed
218. Li, W. L.; Liu, H. T.; Jian, T.; Lopez, G. V.; Piazza, Z. A.; Huang, D. L.; Chen, T. T.; Su, J.; Yang, P.; Chen, X.; Wang, L. S.; Li, J. Chem. Sci. 2016, 7, 475–481; https://doi.org/10.1039/c5sc03568f.Search in Google Scholar PubMed PubMed Central
219. Ma, X.; Voloshkin, V. A.; Martynova, E. A.; Beliš, M.; Peng, M.; Villa, M.; Tzouras, N. V.; Janssens, W.; Van Hecke, K.; Ceroni, P.; Nolan, S. P. Catal. Sci. Technol. 2023, 13, 4168–4175; https://doi.org/10.1039/d3cy00716b.Search in Google Scholar
220. Jones, P. G. Gold Bull 1983, 16, 114–124; https://doi.org/10.1007/bf03214635.Search in Google Scholar
221. Schmidbaur, H.; Weidenhiller, G.; Steigelmann, O.; Müller, G. Chem. Ber. 1990, 123, 285–287; https://doi.org/10.1002/cber.19901230210.Search in Google Scholar
222. Angermaier, K.; Zeller, E.; Schmidbaur, H. J. Organomet. Chem. 1994, 472, 371–376; https://doi.org/10.1016/0022-328x(94)80225-4.Search in Google Scholar
223. Schmidbaur, H.; Weidenhiller, G.; Steigelmann, O.; Müller, G. Z. Naturforsch. 1990, 45b, 747–752; https://doi.org/10.1515/znb-1990-0604.Search in Google Scholar
224. Schmidbaur, H.; Graf, W.; Müller, G. Helv. Chim. Acta 1986, 69, 1748–1756; https://doi.org/10.1002/hlca.19860690732.Search in Google Scholar
225. Bauer, A.; Schmidbaur, H. J. Am. Chem. Soc. 1996, 118, 5324–5325; https://doi.org/10.1021/ja960715v.Search in Google Scholar
226. Schneider, W.; Bauer, A.; Schmidbaur, H. Organometallics 1996, 15, 5445–5446; https://doi.org/10.1021/om960682s.Search in Google Scholar
227. Hollatz, C.; Schier, A.; Schmidbaur, H. J. Am. Chem. Soc. 1997, 119, 8115–8116; https://doi.org/10.1021/ja9714503.Search in Google Scholar
228. Mathieson, T.; Schier, A.; Schmidbaur, H. J. Chem. Soc., Dalton Trans. 2001, 1196–1200; https://doi.org/10.1039/b100117p.Search in Google Scholar
229. Tzeng, B. C.; Schier, A.; Schmidbaur, H. Inorg. Chem. 1999, 38, 3978–3984; https://doi.org/10.1021/ic990308v.Search in Google Scholar
230. Hunks, W. J.; Jennings, M. C.; Puddephatt, R. J. Inorg. Chem. 2002, 41, 4590–4598; https://doi.org/10.1021/ic020178h.Search in Google Scholar PubMed
231. Li, X.; Patterson, H. H. Materials 2013, 6, 2595–2611; https://doi.org/10.3390/ma6072595.Search in Google Scholar PubMed PubMed Central
232. Rawashdeh-Omary, M. A.; Omary, M. A.; Patterson, H. H.; Fackler, J. P. J. Am. Chem. Soc. 2001, 123, 11237–11247; https://doi.org/10.1021/ja011176j.Search in Google Scholar PubMed
233. Smolin, L. The Trouble with Physics; Mariner: New York, 2007.Search in Google Scholar
234. Iwamura, M.; Nozaki, K.; Takeuchi, S.; Tahara, T. J. Am. Chem. Soc. 2013, 135, 538–541; https://doi.org/10.1021/ja310004z.Search in Google Scholar PubMed
235. Kim, K. H.; Kim, J. G.; Nozawa, S.; Sato, T.; Oang, K. Y.; Kim, T. W.; Ki, H.; Jo, J.; Park, S.; Song, C.; Sato, T.; Ogawa, K.; Togashi, T.; Tono, K.; Yabashi, M.; Ishikawa, T.; Kim, J.; Ryoo, R.; Kim, J.; Ihee, H.; Adachi, S.-I. Nature 2015, 518, 385–389; https://doi.org/10.1038/nature14163.Search in Google Scholar PubMed
236. Iwamura, M.; Wakabayashi, R.; Maeba, J.; Nozaki, K.; Takeuchi, S.; Tahara, T. Phys. Chem. Chem. Phys. 2016, 18, 5103–5107; https://doi.org/10.1039/c5cp06651d.Search in Google Scholar PubMed
237. Kuramochi, H.; Takeuchi, S.; Iwamura, M.; Nozaki, K.; Tahara, T. J. Am. Chem. Soc. 2019, 141, 19296–19303; https://doi.org/10.1021/jacs.9b06950.Search in Google Scholar PubMed
238. Sohn, S. H.; Heo, W.; Lee, C.; Kim, J.; Joo, T. J. Phys. Chem. A 2019, 123, 6904–6910; https://doi.org/10.1021/acs.jpca.9b05613.Search in Google Scholar PubMed
239. Cui, G.; Cao, X.-Y.; Fang, W.-H.; Dolg, M.; Thiel, W. Angew. Chem. Int. Ed. 2013, 52, 10281–10285; https://doi.org/10.1002/anie.201305487.Search in Google Scholar PubMed
240. Kim, J. G.; Nozawa, S.; Kim, H.; Choi, E. H.; Sato, T.; Kim, T. W.; Kim, K. H.; Ki, H.; Kim, J.; Choi, M.; Lee, Y.; Heo, J.; Oang, K. Y.; Ichiyanagi, K.; Fukaya, R.; Lee, J. H.; Park, J.; Eom, I.; Hwan Chun, S.; Kim, S.; Kim, M.; Katayama, T.; Togashi, T.; Owada, S.; Yabashi, M.; Jin Lee, S.; Lee, S.; Woo Ahn, C.; Ahn, D. S.; Moon, J.; Choi, S.; Kim, J.; Joo, T.; Kim, J.; Adachi, S.-I.; Ihee, H. Nature 2020, 582, 520–524; https://doi.org/10.1038/s41586-020-2417-3.Search in Google Scholar PubMed
241. Kuhn, T. S. The Structure of Scientific Revolutions, 2nd ed.; University of Chicago Press: Chicago, 1970.Search in Google Scholar
242. Popper, K. The Logic of Scientific Discovery, 2nd ed.; Routledge: New York, 2002.Search in Google Scholar
243. Li, J.; Pyykkö, P. Chem. Phys. Lett. 1992, 197, 586–590; https://doi.org/10.1016/0009-2614(92)85820-z.Search in Google Scholar
244. Wesendrup, R.; Laerdahl, J. K.; Schwerdtfeger, P. J. Chem. Phys. 1999, 110, 9457–9462; https://doi.org/10.1063/1.478911.Search in Google Scholar
245. Pyykkö, P. Chem. Rev. 1997, 97, 597–636; https://doi.org/10.1021/cr940396v.Search in Google Scholar PubMed
246. Jensen, F. Introduction to Computational Chemistry, 1st ed.; John Wiley & Sons: Chichester, 2001.Search in Google Scholar
247. Andris, E.; Andrikopoulos, P. C.; Schulz, J.; Turek, J.; Růžička, A.; Roithová, J.; Rulíšek, L. J. Am. Chem. Soc. 2018, 140, 2316–2325; https://doi.org/10.1021/jacs.7b12509.Search in Google Scholar PubMed
248. Andrejić, M.; Mata, R. A. Phys. Chem. Chem. Phys. 2013, 15, 18115–18122; https://doi.org/10.1039/c3cp52931b.Search in Google Scholar PubMed
249. O’Grady, E.; Kaltsoyannis, N. Phys. Chem. Chem. Phys. 2004, 2, 680–687; https://doi.org/10.1039/b312242e.Search in Google Scholar
250. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553–566; https://doi.org/10.1080/00268977000101561.Search in Google Scholar
251. Simon, S.; Duran, M.; Dannenberg, J. J. J. Chem. Phys. 1996, 105, 11024–11031; https://doi.org/10.1063/1.472902.Search in Google Scholar
252. Otero-De-La-Roza, A.; Mallory, J. D.; Johnson, E. R. J. Chem. Phys. 2014, 140, 18A504 (11 pages); https://doi.org/10.1063/1.4862896.Search in Google Scholar PubMed
253. Grimme, S.; Djukic, J. P. Inorg. Chem. 2011, 50, 2619–2628; https://doi.org/10.1021/ic102489k.Search in Google Scholar PubMed
254. Vaccarelli, O.; Fedorov, D. V.; Stöhr, M.; Tkatchenko, A. Phys. Rev. Res. 2021, 3, 033181 (15 pages); https://doi.org/10.1103/physrevresearch.3.033181.Search in Google Scholar
255. Pawlȩdzio, S.; Malinska, M.; Kleemiss, F.; Grabowsky, S.; Woźniak, K. Inorg. Chem. 2022, 61, 4235–4239; https://doi.org/10.1021/acs.inorgchem.1c03333.Search in Google Scholar PubMed PubMed Central
256. Jiang, Y.; Alvarez, S.; Hoffmann, R. Inorg. Chem. 1985, 24, 749–757; https://doi.org/10.1021/ic00199a023.Search in Google Scholar
257. Pyykkö, P. Chem. Rev. 1988, 88, 563–594; https://doi.org/10.1021/cr00085a006.Search in Google Scholar
258. Van Lenthe, E.; Snijders, J. G.; Baerends, E. J. J. Chem. Phys. 1996, 105, 6505–6516; https://doi.org/10.1063/1.472460.Search in Google Scholar
259. Burguera, S.; Bauzá, A.; Frontera, A. Phys. Chem. Chem. Phys. 2024, 26, 16550–16560; https://doi.org/10.1039/d4cp00410h.Search in Google Scholar PubMed
260. Jerabek, P.; Santhosh, A.; Schwerdtfeger, P. Inorg. Chem. 2022, 61, 13077–13084; https://doi.org/10.1021/acs.inorgchem.2c01512.Search in Google Scholar PubMed
261. Pinter, B.; Broeckaert, L.; Turek, J.; Růžička, A.; De Proft, F. Chem. Eur. J. 2014, 20, 734–744; https://doi.org/10.1002/chem.201302171.Search in Google Scholar PubMed
262. Zheng, Q.; Borsley, S.; Nichol, G. S.; Duarte, F.; Cockroft, S. L. Angew. Chem. Int. Ed. 2019, 58, 12617–12623; https://doi.org/10.1002/anie.201904207.Search in Google Scholar PubMed
263. Liu, R. F.; Franzese, C. A.; Malek, R.; Zuchowski, P. S.; Ángyán, J. G.; Szczȩśniak, M. M.; Chałasiński, G. J. Chem. Theory Comput. 2011, 7, 2399–2407; https://doi.org/10.1021/ct200243s.Search in Google Scholar PubMed
264. Wan, Q.; Yang, J.; To, W. P.; Che, C. M. Proc. Natl. Acad. Sci. U. S. A. 2021, 118 (10 pages); https://doi.org/10.1073/pnas.2019265118.Search in Google Scholar PubMed PubMed Central
265. Portugués, A.; González, L.; Bautista, D.; Gil-Rubio, J. Angew. Chem. Int. Ed. 2020, 59, 15220–15225; https://doi.org/10.1002/anie.202006440.Search in Google Scholar PubMed
266. Wuttke, A.; Feldt, M.; Mata, R. A. J. Phys. Chem. A 2018, 122, 6918–6925; https://doi.org/10.1021/acs.jpca.8b06546.Search in Google Scholar PubMed
267. Brands, M. B.; Nitsch, J.; Guerra, C. F. Inorg. Chem. 2018, 57, 2603–2608; https://doi.org/10.1021/acs.inorgchem.7b02994.Search in Google Scholar PubMed PubMed Central
268. Fang, H.; Wang, S. J. Phys. Chem. A 2007, 111, 1562–1566; https://doi.org/10.1021/jp064656b.Search in Google Scholar PubMed
269. Pyykkö, P.; Zaleski-Ejgierd, P. J. Chem. Phys. 2008, 128, 124309; https://doi.org/10.1063/1.2842081.Search in Google Scholar PubMed
270. Kowala, C.; Swan, J. M. Aust. J. Chem. 1966, 19, 547–554; https://doi.org/10.1071/ch9660547.Search in Google Scholar
271. Abel, E. W.; Jenkins, C. R. J. Organomet. Chem. 1968, 14, 285–289; https://doi.org/10.1016/s0022-328x(00)87668-8.Search in Google Scholar
272. Jones, P. G.; Sheldrick, G. M.; Uson, R.; Laguna, A. Acta Crystallogr. 1980, B36, 1486–1488; https://doi.org/10.1107/S0567740880006358.Search in Google Scholar
273. Bayler, A.; Bauer, A.; Schmidbaur, H. Chem. Ber. 1997, 130, 115–118; https://doi.org/10.1002/cber.19971300119.Search in Google Scholar
274. Schmidbaur, H.; Hamel, A.; Mitzel, N. W.; Schier, A.; Nogai, S. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4916–4921; https://doi.org/10.1073/pnas.062643599.Search in Google Scholar PubMed PubMed Central
275. Schmidbaur, H.; Hofreiter, S.; Paul, M. Nature 1995, 377, 503–504; https://doi.org/10.1038/377503a0.Search in Google Scholar
276. Peltier, J. L.; Soleilhavoup, M.; Martin, D.; Jazzar, R.; Bertrand, G. J. Am. Chem. Soc. 2020, 142, 16479–16485; https://doi.org/10.1021/jacs.0c07990.Search in Google Scholar PubMed
277. Angermaier, K.; Schmidbaur, H. Chem. Ber. 1994, 127, 2387–2391; https://doi.org/10.1002/cber.19941271208.Search in Google Scholar
278. Schmidbaur, H.; Kolb, A.; Zeller, E.; Schier, A.; Beruda, H. Z. Anorg. Allg. Chem. 1993, 619, 1575–1579; https://doi.org/10.1002/zaac.19936190912.Search in Google Scholar
279. Canales, F.; Gimeno, C.; Laguna, A.; Villacampa, M. D. Inorg. Chim. Acta 1996, 244, 95–103; https://doi.org/10.1016/0020-1693(95)04759-x.Search in Google Scholar
280. Slovokhotov, Y. L.; Struchkov, Y. T. J. Organomet. Chem. 1984, 277, 143–146; https://doi.org/10.1016/0022-328x(84)80689-0.Search in Google Scholar
281. Angermaier, K.; Schmidbaur, H. J. Chem. Soc., Dalton Trans. 1995, 559–564; https://doi.org/10.1039/dt9950000559.Search in Google Scholar
282. Grohmann, A.; Riede, J.; Schmidbaur, H. Nature 1990, 345, 140–142; https://doi.org/10.1038/345140a0.Search in Google Scholar
283. Schmidbaur, H.; Weidenhiller, G.; Steigelmann, O. Angew. Chem. Int. Ed. Engl. 1991, 30, 433–435; https://doi.org/10.1002/anie.199104331.Search in Google Scholar
284. Bachman, R. E.; Schmidbaur, H. Inorg. Chem. 1996, 35, 1399–1401; https://doi.org/10.1021/ic950946n.Search in Google Scholar PubMed
285. Zeller, E.; Schmidbaur, H. J. Chem. Soc., Chem. Commun. 1993, 69–70; https://doi.org/10.1039/c39930000069.Search in Google Scholar
286. Zeller, E.; Beruda, H.; Schmidbaur, H. Chem. Ber. 1993, 126, 2033–2036; https://doi.org/10.1002/cber.19931260911.Search in Google Scholar
287. Schmidbaur, H.; Brachthäuser, B.; Steigelmann, O.; Beruda, H. Chem. Ber. 1992, 125, 2705–2710; https://doi.org/10.1002/cber.19921251214.Search in Google Scholar
288. Schmidbaur, H.; Steigelmann, O. Z. Naturforsch. 1992, 47b, 1721–1724; https://doi.org/10.1515/znb-1992-1213.Search in Google Scholar
289. Lei, Z.; Wang, Q. M. Coord. Chem. Rev. 2019, 378, 382–394; https://doi.org/10.1016/j.ccr.2017.11.001.Search in Google Scholar
290. Pei, X. L.; Zhao, P.; Ube, H.; Lei, Z.; Ehara, M.; Shionoya, M. Nat. Commun. 2024, 15, 5024 (10 pages); https://doi.org/10.1038/s41467-024-49295-w.Search in Google Scholar PubMed PubMed Central
291. Sun, Y.; Cao, Y.; Wang, L.; Mu, X.; Zhao, Q.; Si, R.; Zhu, X.; Chen, S.; Zhang, B.; Chen, D.; Wan, Y. Nat. Commun. 2020, 11, 4600 (9 pages); https://doi.org/10.1038/s41467-020-18322-x.Search in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Hubert Schmidbaur 90 years – an appreciation
- Reviews
- ‘Schmidbaur gold chemistry’ and beyond
- The ligand polyhedral model and its application to the structures and fluxional behaviour of the metal carbonyls
- Research Articles
- Equiatomic transition metal (T) silicides TT′Si: systematics of 29Si NMR Knight shifts
- New alkaline earth and rare earth representatives adopting the Ce2Al16Pt9-type structure
- Bis(2-chloroethyl)sulfane revisited: (ClH4C2)2S⋯S(C2H4Cl) dimers by S⋯S interaction in the solid state
- Structural studies of (2R,3R)-(+)-bis(diphenylphosphino)butane and (R)-(+)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl
- High-pressure synthesis and crystal structure of Al3BO6
- LiEu[BO3]: a lithium europium(II) ortho-oxoborate with a familiar crystal structure
- Fluorescence analysis of wood chips and their constituents
- C–S–H–PCE nanocomposites as hydration accelerator in calcined clay-limestone-blended low carbon cement
- An intermolecular Lewis pair based on tin acid and phosphonium ylide base functions
- Cyanopyridine adducts of SiF4 and SiCl4
- A [Zn4O(fcCO2)6] oxocarboxylate cluster: synthesis, chemical and physical properties
- Homo- and heteronuclear complexes derived from N-picoline-functionalized benzimidazolin-2-ylidene ligands
- “Coordination caps” of graded electron-donor capacity
- The hare and the hedgehog – Similar thermal expansion of argento- and aurophilic contacts for different reasons
- Atomic migration and phase transformation processes in dental amalgams over 27 years, monitored by X-ray spectroscopy and X-ray powder diffraction
- Book Review
- Hubert Schmidbaur: From Chemical Craftsmanship to the Art of Gilding Atoms. (Lives in Chemistry.)
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Hubert Schmidbaur 90 years – an appreciation
- Reviews
- ‘Schmidbaur gold chemistry’ and beyond
- The ligand polyhedral model and its application to the structures and fluxional behaviour of the metal carbonyls
- Research Articles
- Equiatomic transition metal (T) silicides TT′Si: systematics of 29Si NMR Knight shifts
- New alkaline earth and rare earth representatives adopting the Ce2Al16Pt9-type structure
- Bis(2-chloroethyl)sulfane revisited: (ClH4C2)2S⋯S(C2H4Cl) dimers by S⋯S interaction in the solid state
- Structural studies of (2R,3R)-(+)-bis(diphenylphosphino)butane and (R)-(+)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl
- High-pressure synthesis and crystal structure of Al3BO6
- LiEu[BO3]: a lithium europium(II) ortho-oxoborate with a familiar crystal structure
- Fluorescence analysis of wood chips and their constituents
- C–S–H–PCE nanocomposites as hydration accelerator in calcined clay-limestone-blended low carbon cement
- An intermolecular Lewis pair based on tin acid and phosphonium ylide base functions
- Cyanopyridine adducts of SiF4 and SiCl4
- A [Zn4O(fcCO2)6] oxocarboxylate cluster: synthesis, chemical and physical properties
- Homo- and heteronuclear complexes derived from N-picoline-functionalized benzimidazolin-2-ylidene ligands
- “Coordination caps” of graded electron-donor capacity
- The hare and the hedgehog – Similar thermal expansion of argento- and aurophilic contacts for different reasons
- Atomic migration and phase transformation processes in dental amalgams over 27 years, monitored by X-ray spectroscopy and X-ray powder diffraction
- Book Review
- Hubert Schmidbaur: From Chemical Craftsmanship to the Art of Gilding Atoms. (Lives in Chemistry.)