Abstract
The crystal and molecular structures of 2-benzoyl-5-phenylpyrazolidin-3-one have been characterized by X-ray diffraction along with density functional theory studies. Cinnamic acid chloride was reacted with benzhydrazide, yielding 2-benzoyl-5-phenylpyrazolidin-3-one. This product was formed in the transformation comprising the nucleophilic addition of benzhydrazide to the styryl fragment of the α,β-unsaturated arrangement and subsequent cyclization. The molecule contains two benzene rings and one five-membered heterocyclic ring with an N–N single bond. The five-membered ring is composed of three atoms of sp3 hybridization and two atoms of sp2 hybridization, which cause the flattening of the heterocyclic ring. The Harmonic Oscillator Model of Aromaticity and Nucleus-Independent Chemical Shift indexes, calculated for the benzene rings, demonstrate that there are no substantial interactions between the regions of π-electron delocalization in the molecule. In the crystal structure, there are N–H···O hydrogen bonds that link the molecules along the crystallographic c axis and weak intermolecular C–H···O hydrogen bonds.
Acknowledgements
The authors are thankful for the calculation facilities and software. Calculations were carried out at the Wroclaw Centre for Networking and Supercomputing (http://www.wcss.pl), grant no. 311.
References
[1] Ş. G. Küçükgüzel, S. Rollas, H. Erdeniz, M. Kiraz, A. Cevdet Ekinci, A. Vidin, Eur. J. Med. Chem. 2000, 35, 761.10.1016/S0223-5234(00)90179-XSearch in Google Scholar
[2] S. A. F. Rostom, I. M. El-Ashmawy, H. A. Abd El Razik, M. H. Badr, H. M. A. Ashour, Bioorg. Med. Chem.2009, 17, 882.10.1016/j.bmc.2008.11.035Search in Google Scholar PubMed
[3] S. Khode, V. Maddi, P. Aragade, M. Palkar, P. K. Ronad, S. Mamledesai, A. H. M. Thippeswamy, D. Satyanarayana, Eur. J. Med. Chem. 2009, 44, 1682.10.1016/j.ejmech.2008.09.020Search in Google Scholar PubMed
[4] M. Abdel-Aziz, G. E. A. Abuo-Rahma, A. A. Hassan, Eur. J. Med. Chem. 2009, 44, 3480.10.1016/j.ejmech.2009.01.032Search in Google Scholar PubMed
[5] Z. S. Quan, R. L. Li, Y. Z. Ling, Acta Pharm. Sin. B1992, 27, 711.Search in Google Scholar
[6] N. Das, A. Verma, P. K. Shrivastava, S. K. Shrivastava, Indian J. Chem. Sect. B2008, 47, 1555.Search in Google Scholar
[7] G. Ouyang, Z. Chen, X. Cai, B. A. Song, P. S. Bhadury, S. Yang, L. H. Jin, W. Xue, D. Y. Hu, S. Zeng, Bioorg. Med. Chem. 2008, 16, 9699.10.1016/j.bmc.2008.09.070Search in Google Scholar PubMed
[8] D. Castagnolo, F. Manetti, M. Radi, B. Bechi, M. Pagano, A. De Logu, R. Meleddu, M. Saddi, M. Botta, Bioorg. Med. Chem. Lett.2009, 17, 5716.10.1016/j.bmc.2009.05.058Search in Google Scholar PubMed
[9] K. B. Umesha, K. M. L. Rai, M. A. Harish Nayaka, Int. J. Biomed. Sci.2009, 5, 359.Search in Google Scholar
[10] R. Tripathy, A. Ghose, J. Singh, E. R. Bacon, T. S. Angeles, S. X. Yang, M. S. Albom, L. D. Aimone, J. L. Herman, J. P. Mallamo, Bioorg. Med. Chem. Lett. 2007, 17, 1793.10.1016/j.bmcl.2006.12.054Search in Google Scholar PubMed
[11] H. Park, K. Lee, S. Park, B. Ahn, J. Lee, H. Cho, K. Lee, Bioorg. Med. Chem. Lett.2005, 15, 3307.10.1016/j.bmcl.2005.03.082Search in Google Scholar PubMed
[12] H. Dorn, Chem. Heterocycl. Compd. 1981, 17, 1.10.1007/BF00507082Search in Google Scholar
[13] G. Varvounis, Y. Fiamegos, G. Pilidis, Adv. Heterocycl. Chem.2001, 80, 75.Search in Google Scholar
[14] T. Eicher, S. Hauptmann, The Chemistry of Heterocycles, 2nd edition, Wiley-VCH, Weinheim, 2003.10.1002/352760183XSearch in Google Scholar
[15] R. M. Claramunt, J. Elguero, Org. Prep. Proced. Int.1991, 23, 273.10.1080/00304949109458208Search in Google Scholar
[16] U. Grošelj, J. Svete, ARKIVOC2015, 6, 175.10.3998/ark.5550190.p009.129Search in Google Scholar
[17] F. H. Allen, Acta Crystallogr. 2002, B58, 380.10.1107/S0108768102003890Search in Google Scholar
[18] S. K. Mohamed, M. Akkurt, J. T. Mague, E. A. Ahmed, M. R. Albayati, Acta Crystallogr.2014, E70, 938.10.1107/S1600536814016766Search in Google Scholar
[19] O. Dideberg, L. Dupont, J. Toussaint, Acta Crystallogr.1974, B30, 2444.10.1107/S0567740874007278Search in Google Scholar
[20] G. Fritsch, G. Zinner, M. Beimel, D. Mootz, H. Wunderlich, Arch. Pharm. Chem. Life Sci.1986, 319, 70.10.1002/ardp.19863190114Search in Google Scholar
[21] R. A. Izydore, J. A. Bernal-Ramirez, P. Singh, J. Org. Chem.1990, 55, 3761.10.1021/jo00299a015Search in Google Scholar
[22] P. K. Mogensen, O. Simonsen, Acta Crystallogr.1991, C47, 1854.10.1107/S0108270191001002Search in Google Scholar
[23] X. Wang, W. Wang, Y. Wen, L. He, X. Zhu, Synthesis2008, 20, 3223.10.1055/s-0028-1083159Search in Google Scholar
[24] Q. Yang, N. Ni, X. Xu, Y. Tang. Acta Crystallogr.1994, C50, 648.10.1107/S0108270193009485Search in Google Scholar
[25] E. Gould, T. Lebl, A. M. Z. Slawin, M. Reid, T. Davies, A. D. Smith, Org. Biomol. Chem.2013, 11, 7877.10.1039/c3ob41719kSearch in Google Scholar
[26] F. H. Allen, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, in International Tables for Crystallography (Ed.: E. Prince), 3rd edition, Mathematical, Physical and Chemical Tables C, Springer Verlag, Berlin, 2004, p. 790.Search in Google Scholar
[27] J. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 1973, 14, 3839.10.1016/S0040-4039(01)87051-9Search in Google Scholar
[28] T. M. Krygowski, J. Chem. Inf. Comput. Sci. 1993, 33, 70.10.1021/ci00011a011Search in Google Scholar
[29] T. M. Krygowski, M. Cyrański, Tetrahedron1996, 52, 10255.10.1016/0040-4020(96)00560-1Search in Google Scholar
[30] P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van E. Hommes, J. Am. Chem. Soc.1996, 118, 6317.10.1021/ja960582dSearch in Google Scholar
[31] M. K. Cyrański, T. M. Krygowski, M. Wisiorowski, N. J. R. van E. Hommes, P. V. R. Schleyer, Angew. Chem. Int. Ed.1998, 37, 177.10.1002/(SICI)1521-3773(19980202)37:1/2<177::AID-ANIE177>3.0.CO;2-HSearch in Google Scholar
[32] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. V. R. Schleyer, Chem. Rev.2005, 105, 3842.10.1021/cr030088+Search in Google Scholar
[33] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT (USA) 2009.Search in Google Scholar
[34] E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO (version 3.1). See also: F. Weinhold, J. E. Carpenter, The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions In The Structure of Small Molecules and Ions (Eds.: R. Naaman, Z. Vager), Springer, Boston, 1988, p. 227. DOI: 10.1007/978-1-4684-7424-4.Search in Google Scholar
[35] CrysAlis CCD and CrysAlis Red, Oxford Diffraction Ltd., Abingdon, Oxford (UK) 2008.Search in Google Scholar
[36] M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar
[37] S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr.2013, B69, 249.10.1107/S2052519213010014Search in Google Scholar
[38] M. Sheldrick, Acta Crystallogr.2015, C71, 3.Search in Google Scholar
[39] A. D. Becke, Phys. Rev. A1988, 38, 3098.10.1103/PhysRevA.38.3098Search in Google Scholar
[40] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.10.1063/1.464913Search in Google Scholar
[41] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 1988, 37, 785.10.1103/PhysRevB.37.785Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- The lanthanide hydride oxides SmHO and HoHO
- Longiflorol, a bergenin α-d-apioside from the stem bark of Diospyros longiflora, and its antioxidant activity
- An expedient synthesis of 6-amino-5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl]-1,3-dimethyl-2,4,6(1H,3H)-pyrimidinedione derivatives using Fe3O4@TiO2 nanocomposite as an efficient, magnetically separable, and reusable catalyst
- Thiosugars, 17. Preparation and structure of a novel deoxythionucleoside
- Isolation of intermediates in the synthesis of new 3,4-dihydro-2H-chromeno[2,3-d]pyrimidines
- The 3D supramolecular architecture of copper(II) 6-methyl-2-pyridone-4-carboxylate: synthesis, structure, magnetic behavior and DFT studies
- Synthesis, crystal structure, and magnetic properties of the complex [(CH3)3NH]2 [Co(NCS)4]
- π-Electron delocalization in 2-benzoyl-5-phenylpyrazolidin-3-one
- Oxidative coupling of cycloalkanones with 3-(pyridin-2-yl)-1,2,4-triazinone coordinated to Pd(II)
- Influence of high-energy ball milling and additives on the formation of sphere-like α-Al2O3 powder by high-temperature calcination
- Encapsulation of ferrocenes by hydrogen-bonded pyrogallol[4]arene dimers
- Syntheses and crystal structures of guanidine hydrochlorides with two Schiff base functions as efficient colorimetric and selective sensors for fluoride
Articles in the same Issue
- Frontmatter
- In this Issue
- The lanthanide hydride oxides SmHO and HoHO
- Longiflorol, a bergenin α-d-apioside from the stem bark of Diospyros longiflora, and its antioxidant activity
- An expedient synthesis of 6-amino-5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl]-1,3-dimethyl-2,4,6(1H,3H)-pyrimidinedione derivatives using Fe3O4@TiO2 nanocomposite as an efficient, magnetically separable, and reusable catalyst
- Thiosugars, 17. Preparation and structure of a novel deoxythionucleoside
- Isolation of intermediates in the synthesis of new 3,4-dihydro-2H-chromeno[2,3-d]pyrimidines
- The 3D supramolecular architecture of copper(II) 6-methyl-2-pyridone-4-carboxylate: synthesis, structure, magnetic behavior and DFT studies
- Synthesis, crystal structure, and magnetic properties of the complex [(CH3)3NH]2 [Co(NCS)4]
- π-Electron delocalization in 2-benzoyl-5-phenylpyrazolidin-3-one
- Oxidative coupling of cycloalkanones with 3-(pyridin-2-yl)-1,2,4-triazinone coordinated to Pd(II)
- Influence of high-energy ball milling and additives on the formation of sphere-like α-Al2O3 powder by high-temperature calcination
- Encapsulation of ferrocenes by hydrogen-bonded pyrogallol[4]arene dimers
- Syntheses and crystal structures of guanidine hydrochlorides with two Schiff base functions as efficient colorimetric and selective sensors for fluoride