Home Rare earth-rich cadmium compounds RE10TCd3 (RE=Y, Tb, Dy, Ho, Er, Tm, Lu; T=Rh, Pd, Ir, Pt) with an ordered Co2Al5-type structure
Article
Licensed
Unlicensed Requires Authentication

Rare earth-rich cadmium compounds RE10TCd3 (RE=Y, Tb, Dy, Ho, Er, Tm, Lu; T=Rh, Pd, Ir, Pt) with an ordered Co2Al5-type structure

  • Theresa Block , Steffen Klenner , Lukas Heletta and Rainer Pöttgen EMAIL logo
Published/Copyright: December 23, 2017
Become an author with De Gruyter Brill

Abstract

Eighteen new rare earth-rich intermetallic phases RE10TCd3 (RE=Y, Tb, Dy, Ho, Er, Tm, Lu; T=Rh, Pd, Ir, Pt) were obtained by induction melting of the elements in sealed niobium ampoules followed by annealing in muffle furnaces. All samples were characterized by X-ray powder diffraction. The structures of four representatives were refined from single-crystal X-ray diffractometer data: ordered Co2Al5 type, P63/mmc, a=951.2(1), c=962.9(2) pm, wR=0.0460, 595 F2 values, 20 parameters for Er10RhCd3; a=945.17(4), c=943.33(4), wR=0.0395, 582 F2 values, 21 parameters for Lu9.89PdCd3.11; a=964.16(6), c=974.93(6) pm, wR=0.0463, 614 F2 values, 21 parameters for Y10Ir1.09Cd2.91; a=955.33(3), c=974.56(3) pm, wR=0.0508, 607 F2 values, 22 refined parameters for Dy9.92IrCd3.08. Refinements of the occupancy parameters revealed small homogeneity ranges resulting from RE/Cd, respectively T/Cd mixing. The basic building units of the RE10TCd3 phases are transition metal-centered RE6 trigonal prisms (TP) that are condensed with double-pairs of empty RE6 octahedra via common triangular faces. A second type of rods is formed by slightly distorted RE3@Cd6RE6 icosahedra which are condensed via Cd3 triangular faces. The shortest interatomic distances occur for RET, compatible with strong covalent bonding interactions. Temperature dependent magnetic susceptibility measurements were performed for RE10RhCd3 (RE=Dy–Tm, Lu), RE10IrCd3 (RE=Er, Tm, Lu) and RE10PtCd3 (RE=Y, Lu). While Y10PtCd3 and Lu10TCd3 (T=Rh, Ir, Pt) show Pauli paramagnetic behavior, the compounds containing paramagnetic rare earth elements show Curie-Weiss behavior (the experimental magnetic moments indicate stable trivalent RE3+) and magnetic ordering at low temperatures: TC=80.5 K for Dy10RhCd3 and Neél temperatures of 42.1, 23.3, 12.6, 5.9, 10.0 K for Ho10RhCd3, Er10RhCd3, Er10IrCd3, Tm10RhCd3, Tm10IrCd3, respectively.

Acknowledgments

We thank Dipl.-Ing. U. Ch. Rodewald and Dr. R.-D. Hoffmann for the collection of the single crystal diffractometer data.

References

[1] U. Ch. Rodewald, B. Chevalier, R. Pöttgen, J. Solid State Chem. 2007, 180, 1720.10.1016/j.jssc.2007.03.007Search in Google Scholar

[2] U. Ch. Rodewald, S. Tuncel, B. Chevalier, R. Pöttgen, Z. Anorg. Allg. Chem. 2008, 634, 1011.10.1002/zaac.200700552Search in Google Scholar

[3] P. Solokha, S. De Negri, V. Pavlyuk, A. Saccone, Chem. Met. Alloys2009, 2, 39.10.30970/cma2.0088Search in Google Scholar

[4] F. Tappe, U. Ch. Rodewald, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 2011, 66b, 559.10.1515/znb-2011-0602Search in Google Scholar

[5] F. Tappe, R. Pöttgen, Rev. Inorg. Chem. 2011, 31, 5.10.1515/revic.2011.007Search in Google Scholar

[6] V. V. Shtender, V. Paul Boncour, A. B. Riabov, R. V. Denys, I. Y. Zavaliy, J. Solid State Chem. 2015, 229, 135.10.1016/j.jssc.2015.05.024Search in Google Scholar

[7] S. Stein, R. Pöttgen, Z. Kristallogr. 2018, 233, in press.Search in Google Scholar

[8] A. J. Bradley, C. S. Cheng, Z. Kristallogr. 1938, 99, 480.10.1524/zkri.1938.99.1.480Search in Google Scholar

[9] J. B. Newkirk, P. J. Black, A. Damjanovic, Acta Crystallogr. 1961, 14, 532.10.1107/S0365110X61001637Search in Google Scholar

[10] A. Ormeci, Yu. Grin, Isr. J. Chem. 2011, 51, 1349.10.1002/ijch.201100147Search in Google Scholar

[11] M. Johnscher, T. Block, R. Pöttgen, Z. Anorg. Allg. Chem. 2015, 641, 369.10.1002/zaac.201400475Search in Google Scholar

[12] O. Niehaus, M. Johnscher, T. Block, B. Gerke, R. Pöttgen, Z. Naturforsch. 2016, 71b, 57.10.1515/znb-2015-0145Search in Google Scholar

[13] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133.Search in Google Scholar

[14] R. Pöttgen, A. Lang, R.-D. Hoffmann, B. Künnen, G. Kotzyba, R. Müllmann, B. D. Mosel, C. Rosenhahn, Z. Kristallogr. 1999, 214, 143.10.1524/zkri.1999.214.3.143Search in Google Scholar

[15] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr.1977, 10, 73.10.1107/S0021889877012898Search in Google Scholar

[16] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

[17] C. Benndorf, H. Eckert, O. Janka, Dalton Trans. 2017, 46, 1083.10.1039/C6DT04314CSearch in Google Scholar

[18] N. Nasri, M. Pasturel, V. Dorcet, B. Belgacem, R. Ben Hassen, O. Tougait, J. Alloys Compd. 2015, 650, 528.10.1016/j.jallcom.2015.07.277Search in Google Scholar

[19] R. Zaremba, U. Ch. Rodewald, R.-D. Hoffmann, R. Pöttgen, Monatsh. Chem. 2007, 138, 523.10.1007/s00706-007-0663-9Search in Google Scholar

[20] F. M. Schappacher, R. Pöttgen, Monatsh. Chem. 2008, 139, 1137.10.1007/s00706-008-0908-2Search in Google Scholar

[21] F. M. Schappacher, U. Ch. Rodewald, R. Pöttgen, Z. Naturforsch. 2008, 63b, 1127.10.1515/znb-2008-0918Search in Google Scholar

[22] F. Tappe, C. Schwickert, S. Linsinger, R. Pöttgen, Monatsh. Chem. 2011, 142, 1087.10.1007/s00706-011-0622-3Search in Google Scholar

[23] A. Doğan, S. Rayaprol, R. Pöttgen, J. Phys.: Condens. Matter2007, 19, 076213.10.1088/0953-8984/19/7/076213Search in Google Scholar PubMed

[24] J. Donohue, The Structures of the Elements, Wiley, New York, 1974.Search in Google Scholar

[25] J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Search in Google Scholar

[26] S. Tuncel, B. Chevalier, S. F. Matar, R. Pöttgen, Z. Anorg. Allg. Chem. 2007, 633, 2019.10.1002/zaac.200700252Search in Google Scholar

[27] M. V. Dzevenko, R. I. Zaremba, V. H. Hlukhyy, U. Ch. Rodewald, R. Pöttgen, Ya. M. Kalychak, Z. Anorg. Allg. Chem. 2007, 633, 724.10.1002/zaac.200600328Search in Google Scholar

[28] V. I. Zaremba, Ya. M. Kalychak, M. V. Dzevenko, U. Ch. Rodewald, R.-D. Hoffmann, R. Pöttgen, Monatsh. Chem. 2007, 138, 101.10.1007/s00706-006-0572-3Search in Google Scholar

[29] S. Tuncel, J. G. Roquefère, C. Stan, J.-L. Bobet, B. Chevalier, E.Gaudin, R.-D. Hoffmann, U. Ch. Rodewald, R. Pöttgen, J. Solid State Chem. 2009, 182, 229.10.1016/j.jssc.2008.10.026Search in Google Scholar

[30] Y. Liu, Y. Cao, L. Huang, M. Gao, H. Pan, J. Alloys Compd. 2011, 509, 675.10.1016/j.jallcom.2010.08.157Search in Google Scholar

[31] K.-B. Wu, Q. Luo, S.-L. Chen, Q.-F. Gu, K.-C. Chou, X.-L. Wang, Q. Li, Int. J. Hydrogen Energy2016, 41, 1725.10.1016/j.ijhydene.2015.11.068Search in Google Scholar

[32] V. V. Shtender, O. Ya. Zelinska, V. V. Pavlyuk, R. V. Denys, V. Paul-Boncour, I. Yu. Zavaliy, B. Marciniak, E. Różycka-Sokołowska, Intermetallics2017, 87, 61.10.1016/j.intermet.2017.04.006Search in Google Scholar

[33] I. Yu. Zavaliy, R. Černý, I. V. Koval’chuk, A. B. Riabov, R. V. Denys, J. Alloys Compd. 2005, 404–406, 118.10.1016/j.jallcom.2004.12.168Search in Google Scholar

[34] I. V. Koval’chuk, R. Černý, R. V. Denys, I. Yu. Zavaliy, Chem. Met. Alloys2008, 1, 180.10.30970/cma1.0055Search in Google Scholar

[35] K. H. J. Buschow, J. Chem. Phys.1974, 61, 4666.10.1063/1.1681788Search in Google Scholar

[36] F. Tappe, F. M. Schappacher, W. Hermes, M. Eul, R. Pöttgen, Z. Naturforsch.2009, 64b, 356.10.1515/znb-2009-0320Search in Google Scholar

[37] R. Kraft, T. Fickenscher, G. Kotzyba, R.-D. Hoffmann, R. Pöttgen, Intermetallics2003, 11, 111.10.1016/S0966-9795(02)00189-9Search in Google Scholar

Received: 2017-11-8
Accepted: 2017-11-17
Published Online: 2017-12-23
Published in Print: 2018-1-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2017-0181/html
Scroll to top button