Sebastian Bräuchle, Markus Seibald and Hubert Huppertz*

Synthesis and structural characterization of Li₃K₃Eu₇(BO₃)₉

https://doi.org/10.1515/znb-2017-0146 Received August 8, 2017; accepted September 19, 2017

Abstract: Li₃K₃Eu₇(BO₃)₉ was prepared by high-temperature solid state synthesis at 900°C in a platinum crucible from lithium carbonate, potassium carbonate, boric acid, and europium(III) oxide. The title compound crystallizes in the orthorhombic space group $Pca2_1$ (no. 29) (Z=4). The structure was refined from single-crystal X-ray diffraction data: $a=21.126(2),\ b=6.502(2),\ c=17.619(2)$ Å, V=2420.1(2) ų, R1=0.0183 and wR2=0.0412 for all data. The crystal structure of Li₃K₃Eu₇(BO₃)₉ is isotypic to Li₃K₃Y₇(BO₃)₉ featuring isolated BO₃ units and LiO₆ octahedra forming [Li₃B₄O₂₁] units in the ac plane, which are linked by additional BO₃ units. The K⁺ and Eu³⁺ cations are arranged in the cavities of the structure.

Keywords: crystal structure; europium lithium potassium borate; solid-state reaction.

1 Introduction

Concerning their wide range of applications, borates have gained remarkable interest in the scientific community. They show a good chemical and thermal stability, high transparency in the UV, and non-linear optical properties [1–3]. Due to their large band gap, borates are possible host structures for luminescent ions, e.g. YBO₃ [4], GdBO₃ [4], GdBO₅O₉ [5], Li $RE_6O_5(BO_3)_3$ (RE=rare earth metal) [6], and Li $_3RE(BO_3)_2$ [7] doped with Ce³⁺, Eu³⁺, and Tb³⁺ are appropriate phosphors for use in plasma display panels (PDPs). Additionally, there exist several compounds in the ternary system $A_2O-RE_2O_3-B_2O_3$ (A= alkali metal) like Li $_6Y(BO_3)_3$ doped with Yb³⁺ being promising materials for short pulse laser applications [8–10], or Ce³⁺ doped Li $_6RE(BO_3)$

Weg 2, D-86830 Schwabmünchen, Germany

(*RE* = Gd, Y) as an efficient new scintillator material for neutron detection [11].

Just very recently, we reported the synthesis of $\operatorname{Li}_3K_3Y_7(BO_3)_9$ [12] in the quaternary system $A_2O-A'_2O-RE_2O_3-B_2O_3$ (A, A'= alkali metals). To date, this system exhibits only five other compounds, vic. $\operatorname{CsLi}_2\operatorname{Gd}_4(BO_3)_5$ [13], $\operatorname{K}_6\operatorname{Li}_3\operatorname{Sc}_2B_{15}O_{30}$ [14], $\operatorname{K}_9\operatorname{Li}_3\operatorname{Nd}_3(BO_3)_7$ [15], and $A_2\operatorname{LiNd}(BO_3)_2$ ($A=\operatorname{Rb}, \operatorname{Cs}$) [15]. With the synthesis of $\operatorname{Li}_3K_3\operatorname{Eu}_7(BO_3)_9$, we could now extend the list of known compounds in the field of rare earth borates possessing two different alkali cations with another example. In the following, we report the preparation and single-crystal X-ray structure determination of $\operatorname{Li}_3K_3\operatorname{Eu}_7(BO_3)_9$. Furthermore, the compound was characterized by infrared and luminescence spectroscopy.

2 Experimental section

2.1 Synthesis

As mentioned above, our synthesis was based on the system $\text{Li}_2\text{O}-\text{K}_2\text{O}-\text{Eu}_2\text{O}_3-\text{B}_2\text{O}_3$ leading to the new compound $\text{Li}_3\text{K}_3\text{Eu}_7(\text{BO}_3)_9$. The starting materials Li_2CO_3 (99.5%, Alfa Aesar, Karlsruhe, Germany), K_2CO_3 (99.99%, ChemPur, Karlsruhe, Germany), Eu_2O_3 (99.99%, Smart Elements, Wien, Austria) and H_3BO_3 (99.5%, Merck, Darmstadt, Germany) were weighed, finely ground in an agate mortar according to the molar ratio of 3:6:1:7, and filled into a platinum FKS 95/5 crucible (feinkornstabilisiert, 95% Pt, 5% Au, Ögussa, Wien, Austria).

The sample was positioned in an electric resistance furnace (Nabertherm muffle furnace) and heated up to 900°C with a rate of 90°C h^{-1} and maintained at that temperature for 24 h. After that period, the temperature was lowered to 500°C with a rate of 2°C h^{-1} followed by switching off the furnace. The product cooled down to room temperature by natural rate.

The product $\text{Li}_3 \text{K}_3 \text{Eu}_7 (\text{BO}_3)_9$ was obtained in form of colorless, air and water resistant crystals. Any effort to synthesize $\text{Li}_3 \text{K}_3 \text{Eu}_7 (\text{BO}_3)_9$ from a stoichiometric mixture of the starting materials failed. The synthesis was only possible with the exact composition and heating process mentioned above.

^{*}Corresponding author: Hubert Huppertz, Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria, Fax: +43 (512) 507-57099, E-mail: Hubert.Huppertz@uibk.ac.at Sebastian Bräuchle: Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria Markus Seibald: OSRAM GmbH, Corporate Innovation, Mittelstetter

2.2 Crystal structure analysis

The powder X-ray diffraction (PXRD) pattern of the reaction product was measured in transmission geometry using a Stoe Stadi P powder diffractometer with Ge(111)-monochromatized MoK_{cri} ($\lambda = 70.93$ pm) radiation. The comparison of the experimental and theoretical PXRD pattern simulated from single-crystal data of Li₂K₂Eu₇(BO₃)_o showed that they match well (Fig. 1). However, the experimental PXRD pattern has some additional reflections (marked with red asterisks), which do not belong to Li₂K₃Eu₇(BO₃)₉ and arise from side products, which could not be assigned until now.

For the single-crystal structure analysis, small crystals of Li₃K₃Eu₇(BO₃)₉ were isolated by mechanical fragmentation and picked using a polarization microscope. A Bruker D8 Quest Kappa diffractometer with MoK_a radiation ($\lambda = 71.073$ pm) was used to collect the single-crystal intensity data at room temperature of 298 K. A multi-scan absorption correction (SADABS-2014 [16]) was applied to the intensity data sets. All relevant details of the data collection and the refinement are listed in Table 1. The orthorhombic space group Pca2, was derived from the systematic extinctions of Li₃K₃Eu₇(BO₃)₀. The structure solution and parameter refinement were successfully performed with SHELXL-13 [17, 18]. All atoms were refined anisotropically and the final difference Fourier synthesis did not reveal any significant residual peaks. The structural refinement of Li₂K₃Eu₇(BO₃)_o was based on the positional

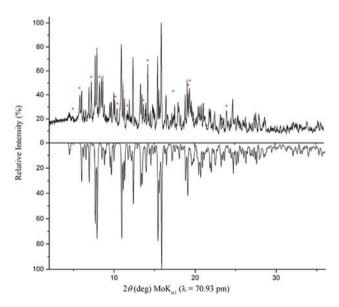


Fig. 1: Top: experimental powder pattern of Li₃K₃Eu₇(BO₃)₀. The reflections marked with red asterisks could not be assigned until now. Bottom: theoretical powder pattern of Li₂K₂Eu₂(BO₂)₀ based on single-crystal diffraction data.

Table 1: Crystal data and structure refinement of Li₂K₂Eu₂(BO₂)₂ (standard deviations in parentheses).

Empirical formula $ \begin{array}{lllllllllllllllllllllllllllllllllll$		
Crystal system $Pca2_1$ (no. 29) Powder data Powder diffractometer $Pca2_1$ (no. 29) Radiation; λ , A $Pca2_1$ (no. 29) Radiation; A , A $Pca2_1$	Empirical formula	Li ₃ K ₃ Eu ₇ (BO ₃) ₉
Space group $Pca2_1$ (no. 29) Powder data Fowder diffractometer Radiation; λ, Å Mo K_{a1} ; 0.7093 a , Å 21.153(8) b , Å 6.497(2) c , Å 17.601(7) V , ų 2418.9(5) Single-crystal data Bruker D8 Quest Kappa Single-crystal diffractometer Bruker D8 Quest Kappa Radiation; λ, Å Mo K_a ; 0.71073 a , Å 21.126(2) b , Å 6.502(2) c , Å 17.619(2) V , ų 2420.1(2) Formula units per cell 4 Calculated density, g cm ⁻³ 4.75 Crystal size, mm³ 0.15 × 0.10 × 0.03 Temperature, K 298(2) Absorption coefficient, mm ⁻¹ 18.494 $F(000)$, e 3072 θ Range, deg 2.3-37.9 Range in hkl ±36, ±11, ±30 Total no. of reflections 119 765 Independent reflections 13 059 Reflections with $l > 2 \sigma(l)$ 12 844 Data/	Molar mass, g·mol⁻¹	1731.1
Powder data Fowder diffractometer STOE Stadi P Radiation; λ, Å MoK_{a1} ; 0.7093 a, Å 21.153(8) b, Å 6.497(2) c, Å 17.601(7) V, ų 2418.9(5) Single-crystal data Bruker D8 Quest Kappa Single-crystal diffractometer Bruker D8 Quest Kappa Radiation; λ, Å MoK_a ; 0.71073 a, Å 21.126(2) b, Å 6.502(2) c, Å 17.619(2) V, ų 2420.1(2) Formula units per cell 4 Calculated density, g cm⁻³ 4.75 Crystal size, mm³ 0.15 × 0.10 × 0.03 Temperature, K 298(2) Absorption coefficient, mm⁻¹ 18.494 $F(000)$, e 3072 θ Range, deg 2.3–37.9 Range in hkl ± 36 , ± 11 , ± 30 Total no. of reflections 119 765 Independent reflections 13 059 Reflections with $l > 2 \sigma(l)$ 12 844 Data/parameters 13 059/443	Crystal system	Orthorhombic
Powder diffractometer STOE Stadi P Radiation; λ, Å Mo K_a ; 0.7093 a, Å 21.153(8) b, Å 6.497(2) c, Å 17.601(7) V, ų 2418.9(5) Single-crystal data Bruker D8 Quest Kappa Single-crystal diffractometer Bruker D8 Quest Kappa Radiation; λ, Å Mo K_a ; 0.71073 a, Å 21.126(2) b, Å 6.502(2) c, Å 17.619(2) V, ų 2420.1(2) Formula units per cell 4 Calculated density, g cm-³ 4.75 Crystal size, mm³ 0.15 × 0.10 × 0.03 Temperature, K 298(2) Absorption coefficient, mm-¹ 18.494 F(000), e 3072 θ Range, deg 2.3-37.9 Range in hkl ±36, ±11, ±30 Total no. of reflections 119 765 Independent reflections 13 059 Reflections with $l > 2$ $\sigma(l)$ 12 844 Data/parameters 13 059/443 Absorption correction <	Space group	Pca2 ₁ (no. 29)
Radiation; λ , \mathring{A}	Powder data	
a , Å $21.153(8)$ b , Å $6.497(2)$ c , Å $17.601(7)$ V , ų $2418.9(5)$ Single-crystal data Bruker D8 Quest Kappa Radiation; λ , Å MoK_a ; 0.71073 a , Å $21.126(2)$ b , Å $6.502(2)$ c , Å $17.619(2)$ V , ų $2420.1(2)$ Formula units per cell 4 Calculated density, g cm⁻³ 4.75 Crystal size, mm³ $0.15 \times 0.10 \times 0.03$ Temperature, K $298(2)$ Absorption coefficient, mm⁻¹ 18.494 $F(000)$, e 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $l > 2 \sigma(l)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ (all data) $0.0176/0.0410$ Flack parameter (x) $0.025(4)$	Powder diffractometer	STOE Stadi P
b , Å $6.497(2)$ c , Å $17.601(7)$ V , ų $2418.9(5)$ Single-crystal diffractometer Bruker D8 Quest Kappa Radiation; λ , Å MoK_a ; 0.71073 a , Å $21.126(2)$ b , Å $6.502(2)$ c , Å $17.619(2)$ V , ų $2420.1(2)$ Formula units per cell 4 Calculated density, g cm⁻³ 4.75 Crystal size, mm³ $0.15 \times 0.10 \times 0.03$ Temperature, K $298(2)$ Absorption coefficient, mm⁻¹ 18.494 $F(000)$, e 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $l > 2 \sigma(l)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ (all data) $0.0176/0.0410$ Flack parameter (x) $0.025(4)$	Radiation; λ, Å	MoK_{a1} ; 0.7093
c, Å $17.601(7)$ V, ų $2418.9(5)$ Single-crystal data Bruker D8 Quest Kappa Radiation; λ , Å MoK_a ; 0.71073 a, Å $21.126(2)$ b, Å $6.502(2)$ c, Å $17.619(2)$ V, ų $2420.1(2)$ Formula units per cell 4 Calculated density, g cm⁻³ 4.75 Crystal size, mm³ $0.15 \times 0.10 \times 0.03$ Temperature, K $298(2)$ Absorption coefficient, mm⁻¹ 18.494 $F(000)$, e 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $l > 2 \sigma(l)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ (all data) $0.0176/0.0410$ Flack parameter (x) $0.025(4)$	a, Å	21.153(8)
V , ų 2418.9(5) Single-crystal data Single-crystal diffractometer Radiation; λ , Å Bruker D8 Quest Kappa a , Å 21.126(2) b , Å 6.502(2) c , Å 17.619(2) V , ų 2420.1(2) Formula units per cell 4 Calculated density, g cm⁻³ 4.75 Crystal size, mm³ 0.15 × 0.10 × 0.03 Temperature, K 298(2) Absorption coefficient, mm⁻¹ 18.494 $F(000)$, e 3072 θ Range, deg 2.3 – 37.9 Range in hkl ± 36 , ± 11 , ± 30 Total no. of reflections 119 765 Independent reflections 13 059 Reflections with $l > 2$ $\sigma(l)$ 12 844 Data/parameters 13 059/443 Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ (all data) 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	<i>b</i> , Å	6.497(2)
Single-crystal data Single-crystal diffractometer Bruker D8 Quest Kappa Radiation; $λ$, $Å$ MoK_a ; 0.71073 a , $Å$ $21.126(2)$ b , $Å$ $6.502(2)$ c , $Å$ $17.619(2)$ V , $Å^3$ $2420.1(2)$ Formula units per cell 4 Calculated density, g cm ⁻³ 4.75 Crystal size, mm³ $0.15 \times 0.10 \times 0.03$ Temperature, K $298(2)$ Absorption coefficient, mm ⁻¹ 18.494 $F(000)$, e 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $l > 2 \sigma(l)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ (all data) $0.0176/0.0410$ Flack parameter (x) $0.025(4)$	c, Å	17.601(7)
Single-crystal diffractometer Bruker D8 Quest Kappa Radiation; $λ$, $Å$ MoK_a ; 0.71073 a , $Å$ $21.126(2)$ b , $Å$ $6.502(2)$ c , $Å$ $17.619(2)$ V , $Å^3$ $2420.1(2)$ Formula units per cell 4 Calculated density, $g cm^{-3}$ 4.75 Crystal size, mm^3 $0.15 \times 0.10 \times 0.03$ Temperature, K $298(2)$ Absorption coefficient, mm^{-1} 18.494 $F(000)$, e 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $l > 2 \sigma(l)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ (all data) $0.0176/0.0410$ Flack parameter (x) $0.025(4)$	<i>V</i> , ų	2418.9(5)
Radiation; λ , \mathring{A}	Single-crystal data	
a , \mathring{A} $21.126(2)$ b , \mathring{A} $6.502(2)$ c , \mathring{A} $17.619(2)$ V , \mathring{A}^3 $2420.1(2)$ Formula units per cell 4 Calculated density, g cm ⁻³ 4.75 Crystal size, mm^3 $0.15 \times 0.10 \times 0.03$ Temperature, K $298(2)$ Absorption coefficient, mm^{-1} 18.494 $F(000)$, e 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $I > 2 \sigma(I)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$I > 2 \sigma(I)$] $0.0176/0.0410$ Final $R1/wR2$ (all data) $0.0183/0.0412$ Flack parameter (x) $0.025(4)$	Single-crystal diffractometer	Bruker D8 Quest Kappa
b , Å $6.502(2)$ c , Å $17.619(2)$ V , ų $2420.1(2)$ Formula units per cell 4 Calculated density, g cm-³ 4.75 Crystal size, mm³ $0.15 \times 0.10 \times 0.03$ Temperature, K $298(2)$ Absorption coefficient, mm-¹ 18.494 $F(000)$, e 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $l > 2 \sigma(l)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$l > 2 \sigma(l)$] $0.0176/0.0410$ Final $R1/wR2$ (all data) $0.0183/0.0412$ Flack parameter (x) $0.025(4)$	Radiation; λ, Å	MoK_a ; 0.71073
c, Å $17.619(2)$ V, ų $2420.1(2)$ Formula units per cell 4 Calculated density, g cm⁻³ 4.75 Crystal size, mm³ $0.15 \times 0.10 \times 0.03$ Temperature, K $298(2)$ Absorption coefficient, mm⁻¹ 18.494 $F(000)$, e 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $l > 2 \sigma(l)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$l > 2 \sigma(l)$] $0.0176/0.0410$ Final $R1/wR2$ (all data) $0.0183/0.0412$ Flack parameter (x) $0.025(4)$	a, Å	21.126(2)
V , \mathring{A}^3 $2420.1(2)$ Formula units per cell 4 Calculated density, $g \text{ cm}^{-3}$ 4.75 Crystal size, mm^3 $0.15 \times 0.10 \times 0.03$ Temperature, K $298(2)$ Absorption coefficient, mm^{-1} 18.494 $F(000)$, e 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $I > 2 \sigma(I)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$I > 2 \sigma(I)$] $0.0176/0.0410$ Final $R1/wR2$ (all data) $0.0183/0.0412$ Flack parameter (x) $0.025(4)$	b, Å	6.502(2)
Formula units per cell Calculated density, g cm ⁻³ Crystal size, mm ³ $0.15 \times 0.10 \times 0.03$ Temperature, K 298(2) Absorption coefficient, mm ⁻¹ $f(000)$, e θ Range, deg Range in hkl Total no. of reflections Independent reflections Independent reflections Reflections with $l > 2 \sigma(l)$ Data/parameters Absorption correction Goodness-of-fit on F^2 Final $R1/wR2$ [$l > 2 \sigma(l)$] Final $R1/wR2$ (all data) Flack parameter (x) $0.025(4)$		17.619(2)
Calculated density, g cm $^{-3}$ 4.75 Crystal size, mm 3 0.15 × 0.10 × 0.03 Temperature, K 298(2) Absorption coefficient, mm $^{-1}$ 18.494 $F(000)$, e 3072 θ Range, deg 2.3-37.9 Range in hkl ± 36 , ± 11 , ± 30 Total no. of reflections 119 765 Independent reflections 13 059 Reflections with $l > 2 \sigma(l)$ 12 844 Data/parameters 13 059/443 Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$l > 2 \sigma(l)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	<i>V</i> , ų	2420.1(2)
Crystal size, mm³ $0.15 \times 0.10 \times 0.03$ Temperature, K $298(2)$ Absorption coefficient, mm⁻¹ 18.494 $F(000)$, e 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $l > 2 \sigma(l)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$l > 2 \sigma(l)$] $0.0176/0.0410$ Final $R1/wR2$ (all data) $0.0183/0.0412$ Flack parameter (x) $0.025(4)$	Formula units per cell	4
Temperature, K 298(2) Absorption coefficient, mm $^{-1}$ 18.494 $F(000)$, e 3072 θ Range, deg 2.3-37.9 Range in hkl ± 36 , ± 11 , ± 30 Total no. of reflections 119 765 Independent reflections 13 059 Reflections with $l > 2 \sigma(l)$ 12 844 Data/parameters 13 059/443 Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$l > 2 \sigma(l)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	Calculated density, g cm ⁻³	4.75
Absorption coefficient, mm $^{-1}$ 18.494 $F(000)$, e 3072 θ Range, deg 2.3–37.9 Range in hkl ± 36 , ± 11 , ± 30 Total no. of reflections 119 765 Independent reflections 13 059 Reflections with $l > 2 \sigma(l)$ 12 844 Data/parameters 13 059/443 Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$l > 2 \sigma(l)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	Crystal size, mm³	$0.15 \times 0.10 \times 0.03$
$F(000), e$ 3072 θ Range, deg $2.3-37.9$ Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119.765 Independent reflections 13.059 Reflections with $l > 2 \sigma(l)$ 12.844 Data/parameters $13.059/443$ Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$l > 2 \sigma(l)$] $0.0176/0.0410$ Final $R1/wR2$ (all data) $0.0183/0.0412$ Flack parameter (x) $0.025(4)$	Temperature, K	298(2)
θ Range, deg 2.3-37.9 Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119 765 Independent reflections 13 059 Reflections with $l > 2 \sigma(l)$ 12 844 Data/parameters 13 059/443 Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$l > 2 \sigma(l)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	Absorption coefficient, mm ⁻¹	18.494
Range in hkl $\pm 36, \pm 11, \pm 30$ Total no. of reflections 119 765 Independent reflections 13 059 Reflections with $l > 2 \sigma(l)$ 12 844 Data/parameters 13 059/443 Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$l > 2 \sigma(l)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	F(000), e	3072
Total no. of reflections 119 765 Independent reflections 13 059 Reflections with $I > 2 \sigma(I)$ 12 844 Data/parameters 13 059/443 Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$I > 2 \sigma(I)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	heta Range, deg	2.3-37.9
Independent reflections 13 059 Reflections with $I > 2 \sigma(I)$ 12 844 Data/parameters 13 059/443 Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$I > 2 \sigma(I)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	Range in <i>hkl</i>	$\pm 36, \pm 11, \pm 30$
Reflections with $I > 2 \sigma(I)$ 12 844 Data/parameters 13 059/443 Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2 [I > 2 \sigma(I)]$ 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	Total no. of reflections	119 765
Data/parameters 13 059/443 Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$I > 2 \sigma(I)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	Independent reflections	13 059
Absorption correction Multi-scan Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$I > 2$ $\sigma(I)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	Reflections with $I > 2 \sigma(I)$	12 844
Goodness-of-fit on F^2 1.072 Final $R1/wR2$ [$I > 2$ $\sigma(I)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	Data/parameters	13 059/443
Final $R1/wR2$ [$I > 2 \sigma(I)$] 0.0176/0.0410 Final $R1/wR2$ (all data) 0.0183/0.0412 Flack parameter (x) 0.025(4)	Absorption correction	Multi-scan
Final <i>R</i> 1/ <i>wR</i> 2 (all data) 0.0183/0.0412 Flack parameter (<i>x</i>) 0.025(4)	Goodness-of-fit on F^2	1.072
Flack parameter (x) 0.025(4)	Final $R1/wR2$ [$I > 2 \sigma(I)$]	0.0176/0.0410
	Final R1/wR2 (all data)	0.0183/0.0412
Largest diff. peak/hole, $e \mathring{A}^{-3}$ 4.08/-1.44	Flack parameter (x)	0.025(4)
	Largest diff. peak/hole, <i>e</i> Å ⁻³	4.08/-1.44

parameters of the isotypic compound Li₂K₂Y₇(BO₃)₀ [12]. Table 2 lists the interatomic distances. Atomic coordinates and anisotropic displacement parameters are listed in the Tables S1 and S2 of the Supplementary Information. Graphical representations of the structure were produced with the program DIAMOND [19].

Further details of the crystal structure investigation may be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de) on quoting the deposition number CSD-433210.

2.3 Vibrational spectra

The transmission FT-IR spectrum of a single-crystal of Li₃K₃Eu₇(BO₃)₉ was measured in the spectral range

Table 2: Interatomic distances (Å) in Li₃K₃Eu₇(BO₃)_o (standard deviations in parentheses).

Eu6-09 Eu6-027	2.587(4) 2.767(5)	Eu7-012 Eu7-023	2.706(3) 2.802(4)	K1-027	3.047(5)	K2-016 K2-01 K2-022	2.966(4) 2.997(4) 3.065(4)		
Eu6-014	2.547(3)	Eu7-09	2.584(4)	K1-02	2.870(4)	K2-05	2.945(4)	K3-022	3.175(6)
Eu6-017	2.487(3)	Eu7-021	2.529(3)	K1-010	2.864(3)	K2-017	2.936(4)	K3-026	3.130(5)
Eu6-012	2.481(3)	Eu7-019	2.478(3)	K1-015	2.859(4)	K2-025	2.924(4)	K3-017	3.113(4)
Eu6-010	2.469(3)	Eu7-024	2.457(4)	K1-022	2.840(4)	K2-03	2.873(4)	K3-07	2.979(4)
Eu6-019	2.455(3)	Eu7-011	2.437(3)	K1-014	2.802(3)	K2-07	2.869(4)	K3-01	2.944(4)
Eu6-013	2.403(4)	Eu7-02	2.323(3)	K1-011	2.777(4)	K2-04	2.739(3)	K3-024	2.827(4)
Eu6-015	2.285(3)	Eu7-027	2.294(4)	K1-018	2.770(3	K2-08	2.702(4)	K3-023	2.640(4)
Ø	2.387	Ø	2.657(4) 2.489	Ø	2.418	Ø	2.401	ø	2.451
Eu1-06	2.546(3)	Eu2-021 Eu2-01	2.635(3) 2.657(4)	EU3-012	2.625(3)	EU4-U4	2.447(3)	EU5-U9	2.613(4)
Eu1-018	2.438(3)	Eu2-06 Eu2-021	2.584(5)	Eu3-04 Eu3-012	2.465(4)	Eu4-020 Eu4-04	2.443(3) 2.447(3)	Eu5-016 Eu5-09	2.526(4)
Eu1-08	2.421(3)	Eu2-02	2.571(3)	Eu3-025	2.449(3)	Eu4-06	2.437(3)	Eu5-03	2.517(3)
Eu1-020	2.419(3)	Eu2-07	2.457(3)	Eu3-019	2.436(3)	Eu4-021	2.434(3)	Eu5-08	2.456(3)
Eu1-05	2.353(3)	Eu2-013	2.418(4)	Eu3-010	2.381(3)	Eu4-03	2.425(4)	Eu5-015	2.427(3)
Eu1-016	2.335(4)		2.412(3)	Eu3-05	2.377(3)	Eu4-026	2.420(3)	Eu5-023	2.424(4)
	2.326(3)	Eu2-020 Eu2-018	2.398(3)		2.322(3)		2.312(3)		
Eu1-026 Eu1-07		Eu2-011 Eu2-020		Eu3-017 Eu3-024		Eu4-025 Eu4-01		Eu5-022 Eu5-014	2.250(3)
છ Eu1–026	1.379 2.319(4)	ø Eu2–011	2.273(3)	ø Eu3–017	1.3// 2.285(3)	છ Eu4–025	2.288(3)	ø Eu5–022	2.250(3)
Ø	1.402(6)	B6-05 Ø	1.411(6) 1.381	B/-U3 Ø	1.389(6) 1.377	B8-02 Ø	1.384(5) 1.376	В9-024 Ø	1.381(6) 1.372
B5-04 B5-06	1.377(6)	B6-018	1.367(6)	B7-021 B7-03	1.379(6)	B8-014	1.376(6)	B9-023 B9-024	1.372(6)
B5-01	1.357(6)	B6-010	1.365(5)	B7-09	1.364(5)	B8-013	1.368(6)	B9-026	1.363(6)
Ø DF 04	1.373	Ø	1.379	Ø	1.375	Ø	1.377	DO 026	1 2(2(4)
B1-019	1.396(5)	B2-020	1.410(5)	B3-016	1.405(6)	B4-012	1.395(6)		
B1-025	1.364(6)	B2-08	1.364(6)	B3-015	1.379(6)	B4-011	1.376(5)		
B1-017	1.360(6)	B2-07	1.364(5)	B3-022	1.342(6)	B4-027	1.359(6)		
Ø	2.232	Ø	2.241	Ø	2.231				
Li1-025	2.617(15)	Li2-027	2.937(15)	Li3-022	2.941(18)				
Li1-08	2.381(17)	Li2-020	2.292(12)	Li3-019	2.335(13)				
Li1-04	2.200(16)	Li2-06	2.176(10)	Li3-012	2.074(11)				
Li1-016	2.132(15)	Li2-021	2.103(10)	Li3-09	2.053(10)				
Li1-05	2.119(13)	Li2-018	1.984(10)	Li3-010	1.995(11)				
Li1-03	1.945(13)	Li2-02	1.951(10)	Li3-014	1.989(10)				

Average values in bold characters.

of 600–4000 cm $^{-1}$ with a Vertex 70 FT-IR spectrometer (spectral resolution 4 cm $^{-1}$), which is equipped with a KBr beam splitter, an LN-MCT (Mercury Cadmium Telluride) detector, and a Hyperion 3000 microscope (Bruker, Vienna, Austria). One hundred and twenty scans of the sample were acquired using a Globar (silicon carbide) rod as mid-IR source and a 15× IR objective as focus. During the measurement, the sample was positioned on a BaF $_2$ window. A correction of atmospheric influences was performed with the software OPUS 6.5.

2.4 Luminescence

The title compound's emission signal was measured by exciting a single-crystal (exhibiting the above mentioned

unit-cell metrics) with a 460 nm laser (model Sapphire 460/10, 10 mW; COHERENT). The converted light was collected using a multi-mode optical fiber (QP 600-2-VIS/BX; Ocean Optics) and finally detected in a spectrometer (QE 65000; Ocean Optics).

3 Results and discussion

3.1 Crystal structure of Li₃K₃Eu₇(BO₃)_o

As already mentioned, $\text{Li}_3\text{K}_3\text{Eu}_7(\text{BO}_3)_9$ crystallizes isotypically to $\text{Li}_3\text{K}_3\text{Y}_7(\text{BO}_3)_9$ [12] in the orthorhombic space group $Pca2_1$ (no. 29) with lattice parameters of a=21.126(2), b=6.502(2), c=17.619(2) Å, V=2420.1(2) ų, and Z=4. The

structure features distorted LiO, octahedra, which are connected via planar BO₂ groups, forming [Li₂B₂O₃₁] units in the ac plane (Fig. 2). These units are furthermore connected by additional BO, groups, forming tunnels of 12-membered rings along the b axis (Fig. 2). The K^+ and Eu³⁺ cations are arranged in the cavities of the structure (Fig. 3). K(1) is eight-fold, K(2) is 10-fold, and K(3) is sevenfold coordinated by oxygen atoms. Eu(1), Eu(3), Eu(4) and Eu(5) are all coordinated by eight oxygen atoms, whereas Eu(2), Eu(6) and Eu(7) are nine-fold coordinated by oxygen atoms. For a detailed description of the crystal structure, the reader is referred to the description of the isotypic compound Li₂K₂Y₇(BO₂)₀ [12]. Below, a comparison of the two isotypic compounds $\text{Li}_2\text{K}_2\text{RE}_2(\text{BO}_2)_0$ (RE=Y, Eu) is given.

Table 3 shows a comparison of the lattice parameters of $\text{Li}_3\text{K}_3\text{Eu}_7(\text{BO}_3)_9$ and $\text{Li}_3\text{K}_3\text{Y}_7(\text{BO}_3)_9$. The increase of the lattice parameters corresponds to the increase of the ionic radii from Y³⁺ [1.159 Å for coordination number (CN) eight and 1.215 Å for CN nine] to Eu $^{3+}$ (1.206 Å for CN eight and 1.260 Å for CN nine) [20]. The differences of the lattice parameters also cause an increase of the interatomic distances in Li₃K₃Eu₇(BO₃)₉ compared to Li₃K₃Y₇(BO₃)₉, see Table 4. Due to the increase of the lattice parameters and interatomic

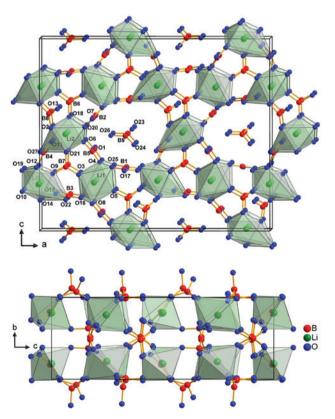


Fig. 2: Top: $[Li_3B_6O_{31}]$ units connected to each other via BO₃ groups along the crystallographic b axis. Bottom: connection of LiO₂ octahedra via BO₃ groups along the a axis.

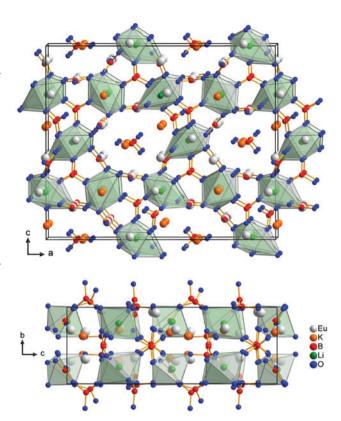


Fig. 3: Top: View of the structure of Li₃K₃Eu₇(BO₃)₀ along the crystallographic b axis. Bottom: structure along the a axis.

Table 3: Comparison of the isotypic compounds Li₂K₂Eu₂(BO₂)₀ and Li₂K₂Y₂(BO₂)₀ (standard deviations in parentheses).

Compound	Li ₃ K ₃ Eu ₇ (BO ₃) ₉	Li ₃ K ₃ Y ₇ (BO ₃) ₉		
a, Å	21.126(2)	20.756(8)		
b, Å	6.502(2)	6.322(2)		
c, Å	17.619(2)	17.413(7)		
<i>V</i> , ų	2420.1(2)	2284.9(5)		

distances, the coordination environment of several cations changes. Table 5 compares the interatomic distances of K(3)-O and of Eu(7)-O in comparison with Y(7)-O on the two compounds, which lead to a change of the CN of K(3) from six to seven, and from eight for Y(7) to nine for Eu(7). All other CNs remain the same as reported in Li₂K₂Y₂(BO₂)₀.

In Li₂K₂Eu₂(BO₂)₀, the K–O distances range from 2.640(4) to 3.175(6) Å, with average values of 2.854 (K1), 2.902 (K2) and 2.973 Å (K3). The distances within the EuO polyhedra are between 2.250(3) and 2.802(4) Å, with mean values of 2.387 (Eu1), 2.489 (Eu2), 2.418 (Eu3), 2.401 (Eu4), 2.451 (Eu5), 2.498 (Eu6) and 2.512 Å (Eu7). The average values of the B–O bonds range from 1.372 to 1.381 Å, which fit very well to the literature value of 1.37 Å [21] for common B-O distances in BO₂ groups. The Li-O distances range from 1.945(13) to

Table 4: Comparison of the av. distances (Å) of $\text{Li}_3\text{K}_3\text{Eu}_7(\text{BO}_3)_9$ and $\text{Li}_3\text{K}_3\text{Y}_7(\text{BO}_3)_9$.

Compound	Li ₃ K ₃ Eu ₇ (BO ₃) ₉	Li ₃ K ₃ Y ₇ (BO ₃) ₉
Li1-0	2.232	2.204
Li2-0	2.241	2.209
Li3-0	2.231	2.195
B1-0	1.373	1.370
B2-0	1.379	1.375
B3-0	1.375	1.37
B4-0	1.377	1.373
B5-0	1.379	1.379
B6-0	1.381	1.379
B7-0	1.377	1.373
B8-0	1.376	1.374
B9-0	1.372	1.373
<i>RE</i> 1-0	2.387	2.347
RE2-0	2.489	2.441
RE3-0	2.418	2.372
RE4-0	2.401	2.350
<i>RE</i> 5-0	2.451	2.389
RE6-0	2.498	2.458
<i>RE</i> 7-0	2.512	2.409
K1-0	2.854	2.836
K2-0	2.902	2.870
K3-0	2.973	2.884

Table 5: Comparison of the interatomic distances (Å) of Eu7, Y7 and K3 in $\text{Li}_3\text{K}_3\text{Eu}_7(\text{BO}_3)_9$ and $\text{Li}_3\text{K}_3\text{Y}_7(\text{BO}_3)_9$ indicating the different coordination numbers (CN; standard deviations in parentheses).

Compound			
Li ₃ K ₃ Eu ₇ (BO ₃) ₉		Li ₃ K ₃ Y ₇ (BO ₃) ₉	
Eu7-027	2.294(4)	Y7-027	2.228(4)
Eu7-02	2.323(3)	Y7-02	2.271(3)
Eu7-011	2.437(3)	Y7-011	2.375(3)
Eu7-024	2.457(4)	Y7-024	2.379(3)
Eu7-019	2.478(3)	Y7-019	2.435(3)
Eu7-021	2.529(3)	Y7-021	2.440(3)
Eu7-09	2.584(4)	Y7-09	2.482(3)
Eu7-012	2.706(3)	Y7-012	2.658(3)
Eu7-023	2.802(4)	Y7-023	3.068(4)
Eu7-017	4.083(4)		
CN	9	CN	8
K3-023	2.640(4)	K3-023	2.618(4)
K3-024	2.827(4)	K3-024	2.855(3)
K3-01	2.944(4)	K3-01	2.868(4)
K3-07	2.979(4)	K3-026	2.948(4)
K3-017	3.113(4)	K3-07	2.974(4)
K3-026	3.130(5)	K3-017	3.041(4)
K3-022	3.175(6)	K3-022	3.346(4)
K3-027	3.527(5)		
CN	7	CN	6

2.941(18) Å with mean values of 2.232, 2.241, and 2.231 Å for Li(1), Li(2) and Li(3), respectively.

We additionally calculated the bond valence sums for $\text{Li}_3K_3\text{Eu}_7(\text{BO}_3)_9$ with the bond-length/bond-strength concept (ΣV) [22, 23] and the CHARDI concept (charge distribution in solids, ΣQ) [24]. The results of these

calculations are listed in Table 6 and correspond well with the expected values of the formal ionic charge of each specific atom.

MAPLE values (Madelung Part of Lattice Energy) [25–27] of $\text{Li}_3\text{K}_3\text{Eu}_7(\text{BO}_3)_9$ were compared with those received from the summation of the data for the starting

Table 6: Charge distribution in Li₃K₃Eu₇(BO₃)_o calculated with the bond-length/bond-strength (ΣV) and the CHARDI (ΣQ) concept.

	Li1	Li2	Li3	Eu1	Eu2	Eu3	Eu4	Eu5	Eu6	Eu7
ΣV	0.88	0.97	0.98	3.43	3.09	3.41	3.34	3.00	3.03	2.99
ΣQ	1.00	0.96	0.98	3.00	2.95	2.97	3.02	3.03	3.01	3.03
	B1	B2	В3	B4	В5	В6	В7	B8	В9	
ΣV	3.02	2.91	2.97	2.95	2.94	2.96	2.93	2.96	2.98	
ΣQ	2.96	2.93	3.04	3.16	3.09	2.81	2.93	2.96	3.17	
	K1	K2	К3	01	02	03	04	05	06	07
ΣV	1.12	1.15	0.73	-1.98	-2.26	-2.19	-2.1	-2.34	-2.12	-2.27
ΣQ	0.97	0.99	1.02	-2.03	-2.15	-2.10	-1.95	-1.99	-1.84	-2.12
	08	09	010	011	012	013	014	015	016	017
ΣV	-2.22	-2.12	-2.3	-2.26	-2	-1.9	-2.18	-2.23	-2.12	-2.27
ΣQ	-1.98	-1.99	-2.21	-2.04	-1.85	-1.86	-2.11	-1.974	-1.90	-2.10
	018	019	020	021	022	023	024	025	026	027
ΣV	-2.3	-2.28	-2.37	-2.24	-2.06	-1.88	-2.08	-2.24	-2.15	-1.79
ΣQ	-2.18	-2.02	-2.05	-2.06	-2.03	-1.78	-1.97	-1.97	-1.94	-1.82

compounds Li₂O [28], K₂O [29], Eu₂O₂ [30] and B₂O₂ [31]. A value of 158777 kJ mol⁻¹ was obtained in comparison to 155254 kJ mol⁻¹ (deviation=0.03%) calculated from the binary oxides $[1\frac{1}{2} \text{ Li}_3\text{O} (5254 \text{ kJ mol}^{-1}) + 1\frac{1}{2}$ K_3O (3767 kJ mol⁻¹) + 3½ Eu₂O₂ (47574 kJ mol⁻¹) + 4½ B₂O₂ (98659 kJ mol⁻¹)]. The good accordance between the value of the product and the sum of the values of the binary compounds prove the plausibility of the crystal structure solution.

3.2 IR spectroscopy

Figure 4 shows the experimental FT-IR spectra of Li₂K₂Eu₂(BO₂)₀ and Li₂K₂Y₂(BO₂)₀ [12] in the range between 600 and 4000 cm⁻¹. The absorption bands of the two compounds correspond well with negligible shifts in wavelengths and relative intensities. As already reported for the isotypic compound Li₂K₃Y₇(BO₃)₉ [12], an assignments of the vibrational modes can be done based on previous investigations of borates containing trigonal [BO₃]³⁻ groups [32–36]. The absorption bands between 600 and 800 cm⁻¹ could be assigned as deformation and out-of-plane bending of BO3 groups. The bands in the region from 900 to 965 cm⁻¹ are typical for B–O symmetric stretching vibrations. The strong bands observed in the spectral range between 1150 and 1500 cm⁻¹ can be related to the antisymmetric B–O stretching vibrations. According to Mak et al. [36] the region between 2100 and 2650 cm⁻¹ can be related to combination- and overtone-bands of the BO₃ groups. The absorption peaks in the range of 2800-3000 cm⁻¹ most likely belong to the grease, which was used to fix the crystal on a glass fiber.

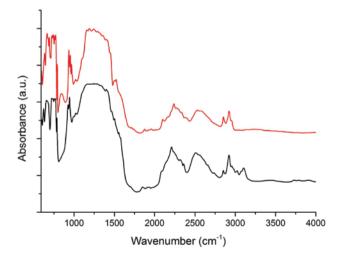


Fig. 4: FT-IR absorbance spectra of Li₃K₃Eu₇(BO₃)₉ (black) and the isotypic compound Li₃K₃Y₇(BO₃)_o (red).

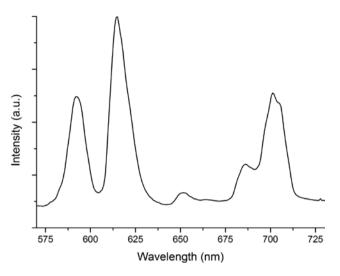


Fig. 5: Luminescence spectrum of a single-crystal of Li₂K₂Eu₂(BO₂)₀, obtained on excitation at 460 nm.

3.3 Luminescence

Figure 5 shows the title compound's emission signal on excitation at 460 nm. The profile can be assigned to typical Eu³⁺ luminescence regarding the transition ${}^{5}D_{o} \rightarrow {}^{7}F_{r}$ (J=0-4). From the relative intensities, one can conclude that there is no inversion symmetry around the Eu³⁺ activator ion which is in good agreement with the results of the crystal structure determination. To our astonishment, concentration quenching of Li₃K₃Eu₇(BO₃)₀ was not observed. Ortner et al. also reported this phenomenon in the europium borate Eu[B_cO_o(OH)_c]·H₂BO₂ [37], which could be expected due to the fact that the shortest Eu-Eu distance is 4.459(1) Å. Obviously an Eu-Eu distance of 3.556(2) Å in Li₂K₂Eu₂(BO₂)₀ does not lead to concentration quenching of the Eu³⁺ activator ion.

4 Conclusions

This report contains the description of the synthesis and crystal structure of the new mixed alkali rare earth borate Li₃K₃Eu₇(BO₃)₉. Furthermore, the compound was characterized by infrared and luminescence spectroscopy. With the successful synthesis of Li₂K₃Eu₇(BO₃)₀, this class of compounds could be extended by an additional example.

5 Supporting information

Additional crystallographic data for Li₂K₂Eu₂(BO₂)₀ (atomic coordinates and anisotropic displacement parameters) are given as Supporting Information available online (https://doi.org/10.1515/znb-2017-0146).

Acknowledgments: Special thanks go to Dr. G. Heymann for collecting the single-crystal diffraction data, to D. Vitzthum for the measurements of the single-crystal IR spectra (both from Institute for General, Inorganic, and Theoretical Chemistry, University of Innsbruck) and to Univ.-Prof. Dr. R. Stalder, Institute for Mineralogy and Petrography, University of Innsbruck, for the access to the FTIR spectrometer.

References

- [1] D. A. Keszler, Curr. Opin. Solid State Mater. Sci. 1996, 1, 204.
- [2] P. Becker, Adv. Mater. 1998, 10, 979.
- [3] J. Czirr, G. MacGillivray, R. MacGillivray, P. Seddon, *Nucl. Instrum. Methods A* **1999**, 424, 15.
- [4] J. Dexpert-Ghys, R. Mauricot, B. Caillier, P. Guillot, T. Beaudette, G. Jia, P. A. Tanner, B.-M. Cheng, J. Phys. Chem. C 2010, 114, 6681.
- [5] X. Sun, W. Gao, T. Yang, R. Cong, Dalton Trans. 2015, 44, 2276.
- [6] G. Abdullaev, K. S. Mamedov, P. Rza-Zade, S. A. Guseinova, G. Dzhafarov, Russ. J. Inorg. Chem. 1977, 22, 1765.
- [7] V. Jubera, P. Gravereau, J. P. Chaminade, Solid State Sci. 2001, 3, 469.
- [8] M. J. Delaigue, V. Jubera, J. Sablayrolles, J.-P. Chaminade, A. Garcia, I. Manek-Hönninger, Appl. Phys. B 2007, 87, 693.
- [9] J. Sablayrolles, V. Jubera, M. Delaigue, I. Manek-Hönninger, J.-P. Chaminade, J. Hejtmánek, R. Decourt, A. Garcia, *Mater. Chem. Phys.* 2009, 115, 512.
- [10] J. Sablayrolles, V. Jubera, J.-P. Chaminade, I. Manek-Hönninger, S. Murugan, T. Cardinal, R. Olazcuaga, A. Garcia, F. Salin, Opt. Mater. 2005, 27, 1681.
- [11] J. Chaminade, O. Viraphong, F. Guillen, C. Fouassier, B. Czirr, IEEE T. Nucl. Sci. 2001, 48, 1158.
- [12] S. Bräuchle, H. Huppertz, J. Solid State Chem. 2017, 253, 242.
- [13] M.-J. Xia, R. Li, Acta Crystallogr. 2007, E63, i173.
- [14] S. Zhao, G. Zhang, J. Yao, Y. Wu, Cryst. Eng. Comm. 2012, 14, 5209.

- [15] P. Chen, M. Xia, R. Li, Z. Anorg. Allg. Chem. 2016, 642, 424.
- [16] SADABS V5, Bruker AXS Inc., Madison, Wisconsin (USA) 2014.
- [17] G. M.Sheldrick, Shells-13 and Shell-13, Program Suite for the Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) **2013.**
- [18] G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.
- [19] K. Brandenburg, DIAMOND (version 3.2i), Crystal and Molecular Structure Visualization, Crystal Impact – H. Putz & K. Brandenburg GbR, Bonn (Germany) 2012.
- [20] R. T. Shannon, Acta Crystallogr. 1976, A32, 751.
- [21] E. Zobetz, Z. Kristallogr. 1982, 160, 81.
- [22] I. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244.
- [23] N. Brese, M. O'Keeffe, Acta Crystallogr. 1991, B47, 192.
- [24] R. Hoppe, S. Voigt, H. Glaum, J. Kissel, H. P. Müller, K. Bernet, J. Less-Common Met. 1989, 156, 105.
- [25] R. Hübenthal, M. Serafin, R. Hoppe, MAPLE (version 4.0), Program for the Calculation of Distances, Angles, Effective Coordination Numbers, Coordination Spheres, and Lattice Energies, University of Gießen, Gießen (Germany) 1993.
- [26] R. Hoppe, Angew. Chem., Int. Ed. Engl. 1970, 9, 25.
- [27] R. Hoppe, Angew. Chem., Int. Ed. Engl. 1966, 5, 95.
- [28] W. I. David, M. O. Jones, D. H. Gregory, C. M. Jewell, S. R. Johnson, A. Walton, P. P. Edwards, J. Am. Chem. Soc. 2007, 129, 1594.
- [29] E. Zintl, A. Harder, B. Dauth, Z. Elektrochem. 1934, 40, 588.
- [30] H. L. Yakel, Acta Crystallogr. 1979, B35, 564.
- [31] G. Gurr, P. Montgomery, C. Knutson, B. Gorres, Acta Crystallogr. 1970, B26, 906.
- [32] J. Laperches, P. Tarte, Spectrochim. Acta 1966, 22, 1201.
- [33] R. Böhlhoff, H. Bambauer, W. Hoffmann, Z. Kristallogr. 1971, 133, 386.
- [34] K. Machida, H. Hata, K. Okuno, G. Adachi, J. Shiokawa, J. Inorg. Nucl. Chem. 1979, 41, 1425.
- [35] A. Haberer, H. Huppertz, J. Solid State Chem. 2009, 182, 888.
- [36] C. Mak, P. Tanner, Z. Zhuo, J. Alloys Compd. 2001, 323, 292.
- [37] T. S. Ortner, K. Wurst, M. Seibald, B. Joachim, H. Huppertz, Eur. J. Inorg. Chem. 2016, 2016, 3292.

Supplemental Material: The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2017-0146).