Olaf Reckeweg*, Armin Schulz and Francis J. DiSalvo

Synthesis, single-crystal structure determination and Raman spectra of the tricyanomelaminates $NaA_{5}[C_{6}N_{0}]_{2} \cdot 4 H_{2}O$ (A = Rb, Cs)

DOI 10.1515/znb-2016-0024 Received January 15, 2016; accepted January 26, 2016

Abstract: Transparent colorless crystals of Na $A_5[C_6N_9]_2$ · 4 H₂O (A= Rb, Cs) were obtained by blending aqueous solutions of Na₃[C₆N₉] and RbF or CsF, respectively, and subsequent evaporation of the water under ambient conditions. Both compounds crystallize in the space group $P2_1/m$ (no. 11) with the cell parameters a=815.56(16), b=1637.7(4) and c=1036.4(3) pm, and $\beta=110.738(12)^\circ$ for NaRb₅[C₆N₉]₂ · 4 H₂O and a=843.32(6), b=1708.47(11) and c=1052.42(7) pm, and $\beta=112.034(2)^\circ$ for NaCs₅[C₆N₉]₂ · 4 H₂O, respectively. Raman spectra of the title compounds complement our results.

Keywords: alkali metal; cesium; Raman spectra; rubidium; sodium; tricyanomelaminate.

1 Introduction

The compound $Na_3[C_6N_9] \cdot 3 H_2O$, a water-soluble salt containing the tricyanomelaminate anion (called from now on [TCM]) has been known since 1938 [1]. Unfortunately, next to a short sketch of the synthesis (spontaneous trimerization of sodium dicyanamide (dca), $Na[N(CN)_2]$, in aqueous solution) only the lattice parameters, the symmetry and some thoughts concerning the possible crystallographic positions are given. Some 60 years later [2], Schnick et al. reported an alternative synthesis (heat induced trimerization of anhydrous Na[dca] and subsequent recrystallization in aqueous solution) and performed a complete

this class of compounds by synthesizing the anhydrous alkali metal salts $A_3[TCM]$ (A = Na [3], K and Rb [4]) and some of the hydrated species with the stoichiometries $A_3[TCM] \cdot H_2O$ (A = K and Rb) [5] and Rb[$H_2C_6N_9$] $\cdot 1/2$ H_2O [6] which were also structurally characterized including a study of their thermal behavior. Li $_3[TCM]$ has been synthesized [7, 8], but no structural information is reported, while the cesium salt is only mentioned as unpublished results (ref. [6] in ref. [9]).

While attempting to synthesize $Cs_3[TCM]$ by a metathesis reactions in aqueous solution, we serendipitously

structure analysis on single crystals. Additionally, IR

spectra and DSC/TG data were collected. Based on these results, Schnick et al. expanded the knowledge about

While attempting to synthesize $Cs_3[TCM]$ by a metathesis reactions in aqueous solution, we serendipitously found crystals of $NaCs_5[TCM]_2 \cdot 4 H_2O$. In follow-up experiments we were able to reproduce our results and to also synthesize $NaRb_5[TCM]_2 \cdot 4 H_2O$. We report here the results of the single-crystal structure determination and the Raman spectra of both compounds and compare them with literature data.

2 Experimental section

2.1 Synthesis

All manipulations were performed under normal atmospheric conditions. Na₃[TCM] was obtained by sealing gram portions of Na[dca] (Alfa Aesar, 96 %) under vacuum in silica tubes and heating the container up to 500 °C with subsequent annealing at this temperature for 6 h. The thus obtained Na₃[TCM] was dissolved with the respective alkali metal fluoride (Aldrich, 99 %) in a stoichiometric ratio of 2:5 (overall mass: 0.5 g) in 10 mL deionized, boiling water. The water was allowed to evaporate at r.t. leaving small cubes of NaF and brick-like cuboids of the title compounds behind.

An analog approach to synthesize $NaK_5[TCM]_2 \cdot 4 H_2O$ or similar mixed alkali metal compounds has been unsuccessful so far.

E-mail: olaf.reykjavik@gmx.de

Armin Schulz: Max-Planck-Institut für Festkörperforschung,

Heisenbergstraße 1, D-70569 Stuttgart, Germany

Francis J. DiSalvo: Baker Laboratory, Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA

^{*}Corresponding author: Olaf Reckeweg, Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA, Fax: +1-607-255-4137,

2.2 Crystallographic studies

Crystals of NaRb_[[TCM]₃ · 4 H₂O and NaCs_[[TCM]₃ · 4 H₃O were selected by their habit and immersed in polybutene oil (Aldrich, $M_n \sim 320$, isobutylene > 90 %) for singlecrystal selection under a polarization microscope. Single crystals were mounted in a drop of polybutene sustained in a plastic loop, and placed onto the goniometer. A cold stream of nitrogen (T = 223(2) K) froze the polybutene oil, thus keeping the crystal stationary and protected from oxygen and moisture in the air. Intensity data were collected with a Bruker X8 Apex II diffractometer equipped with a 4 K CCD detector and graphite-monochromatized MoK_{α} radiation ($\lambda = 71.073$ pm). The intensity data were manipulated with the program package [10] that came with the diffractometer. An empirical absorption correction was applied using SADABS [11]. The program SHELXS-97 [12, 13] found the positions of the respective alkali metal(s) with the help of Direct Methods. The positions

of the carbon and nitrogen atoms and of carbon, nitrogen and oxygen atoms, respectively, were apparent from the positions of the highest electron density on the difference Fourier maps resulting from the first refinement cycles by full-matrix least-squares calculations on F^2 with SHELXL-97 [14, 15]. The positions of the hydrogen atoms could not be found and refined reliably. Doing further refinement cycles with all atoms being refined unrestrained the refinement converged and resulted in stable models for the respective crystal structure. Crystallographic details are described in Table 1. Atomic coordinates and equivalent isotropic displacement coefficients are shown in Table 2 for NaRb [TCM], · 4 H₂O and in Table 3 for NaCs_e[TCM]₃ · 4 H₃O. Table 4 displays selected interatomic distances and angles of the title compounds.

Further details of the crystal structure investigation(s) may be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; E-mail:

Table 1: Summary of single-crystal X-ray diffraction structure determination data of NaRb, [TCM], · 4 H,O and NaCs, [TCM], · 4 H,O.

Compound	$NaRb_{5}[C_{6}N_{9}]_{2} \cdot 4H_{2}O$	$NaCs_{5}[C_{6}N_{9}]_{2} \cdot 4H_{2}O$		
M_r	918.7	1155.9		
Crystal color	Transparent colorless	Transparent colorless		
Crystal shape	Irregular thin plate	Irregular plate		
Crystal size, mm ³	0.07×0.06×0.03	0.12×0.10×0.07		
Crystal system	Monoclinic	Monoclinic		
Space group (no.); Z	$P2_{1}/m$ (11); 2	$P2_{1}/m$ (11); 2		
Lattice parameters:	•	-		
<i>a</i> , pm	815.56(16)	843.32(6)		
b, pm	1637.4(4)	1708.47(11)		
<i>c</i> , pm	1036.4(3)	1052.42(7)		
β , deg	110.738(12)	112.034(2)		
<i>V</i> , Å ³	1294.6(5)	1405.56(16)		
$D_{\rm calcd}$, g cm ⁻³	2.36	2.73		
F(000), e-	868	1048		
μ , mm $^{-1}$	9.5	6.5		
Diffractometer	Bruker X8 Apex II equipped with a 4 K CCD			
Radiation; λ , pm; monochromator	Mo <i>K</i> _a ; 71.0	MoK_a ; 71.073; graphite		
Scan mode; T, K	ϕ and ω scans; 223(2)			
Ranges	,			
$2 heta_{ ext{max}}$, deg	61.11	66.31		
h, k, l	$-11 \rightarrow 10$, $-23 \rightarrow 23$, $-14 \rightarrow 13$	$-12 \rightarrow 11, -25 \rightarrow 26, -15 \rightarrow 16$		
Data correction	Lp, SADABS [11]			
Transmission: min./max.	0.597/0.746	0.566/0.747		
Reflections: measured/unique	15881/4033	21977/5498		
Unique reflections: $F_0 > 4s(F_0)$	2631	4491		
$R_{\rm int}/R_{\sigma}$	0.0566/0.0607	0.0327/0.0313		
Refined parameters	203	203		
R1a/wR2b/GoFc (all refl.)	0.0729/0.0914/0.972	0.0398/0.0712/1.022		
Factors x/y (weighting scheme) ^b	0.041/0	0.0359/0		
Max. shift, esd, last refinement cycle	< 0.0001	<0.0002		
$\Delta \rho_{\text{fin}}$ (max, min), e ⁻ Å ⁻³	1.41 (97 pm to H11),	2.53 (143 pm to H11),		
	-0.93 (192 pm to N11)	-0.88 (145 pm to Cs4)		
CSD number	430375	430376		

 $^{{}^{}a}R1 = \sum ||F_{a}| - |F_{b}|| / \sum |F_{c}||$; ${}^{b}wR2 = [\sum w(F_{a}^{2} - F_{c}^{2})^{2}/\sum (wF_{a}^{2})^{2}]^{1/2}$; $w = 1/[\sigma^{2}(F_{a}^{2}) + (xP)^{2} + yP]$, where $P = [(F_{a}^{2}) + 2F_{c}^{2}]/3$ and x and y are constants adjusted by the program; ${}^c\text{GoF(S)} = [\Sigma w(F_n^2 - F_c^2)^2/(n-p)]^{1/2}$, with n being the number of reflections and p being the number of refined parameters.

Table 2: Atomic coordinates and equivalent isotropic displacement parameters of NaRb [TCM] . 4 H,O.

Table 3: Atomic coordinates and equivalent isotropic displacement parameters^a of NaCs_s[TCM]₂ · 4 H₂O.

Atom	Wyckoff site	х	у	z	U _{eq} (pm²)ª	Atom	Wyckoff site	х	у	z	U _{eq} (pm²)ª
Rb1	2 <i>e</i>	0.47146(7)	1/4	0.02090(6)	286(1)	Cs1	2 <i>e</i>	0.47125(3)	1/4	0.02091(3)	248(1)
Rb2	2 <i>e</i>	0.14802(6)	1/4	0.51012(6)	273(1)	Cs2	2 <i>e</i>	0.15772(3)	1/4	0.52806(2)	242(1)
Rb3	2 <i>d</i>	1/2	1/2	0	287(1)	Cs3	2 <i>d</i>	1/2	1/2	0	278(1)
Rb4	4 <i>f</i>	0.23267(4)	0.50508(2)	0.43935(4)	270(1)	Cs4	4 <i>f</i>	0.23247(2)	0.50395(1)	0.44584(2)	258(1)
Na	2 <i>e</i>	0.5963(3)	1/4	0.4449(2)	240(5)	Na	2 <i>e</i>	0.6023(2)	1/4	0.4503(2)	246(3)
N1	4 <i>f</i>	0.2295(4)	0.6347(2)	-0.0350(3)	207(7)	N1	4 <i>f</i>	0.2252(3)	0.6367(1)	-0.0386(2)	202(5)
N2	4 <i>f</i>	0.0782(4)	0.3763(2)	0.0804(3)	249(7)	N2	4 <i>f</i>	0.0747(3)	0.3731(1)	0.0910(2)	228(5)
N3	4 <i>f</i>	0.1246(4)	0.6261(2)	0.1528(3)	201(6)	N3	4 <i>f</i>	0.1215(3)	0.6286(1)	0.1433(2)	186(4)
C1	4 <i>f</i>	0.2537(4)	0.6341(2)	0.1006(4)	190(7)	C1	4 <i>f</i>	0.2485(3)	0.6364(2)	0.0952(3)	177(5)
N11	4 <i>f</i>	0.5768(4)	0.3565(2)	-0.1834(3)	234(7)	N11	4 <i>f</i>	0.5853(3)	0.3567(1)	-0.1812(2)	216(5)
C12	4 <i>f</i>	0.4629(4)	0.6408(2)	0.3168(4)	199(8)	C12	4 <i>f</i>	0.4507(3)	0.6423(2)	0.3141(3)	183(5)
N13	4 <i>f</i>	0.4863(4)	0.3602(2)	0.5618(3)	259(7)	N13	4 <i>f</i>	0.5011(3)	0.3574(1)	0.5672(2)	239(5)
C2	4 <i>f</i>	0.0614(4)	0.6291(2)	-0.1212(4)	206(8)	C2	4 <i>f</i>	0.0616(4)	0.6326(2)	-0.1270(3)	202(5)
N21	4 <i>f</i>	-0.0244(4)	0.3708(2)	0.2603(3)	257(7)	N21	4 <i>f</i>	-0.0281(3)	0.3660(1)	0.2653(2)	242(5)
C22	4 <i>f</i>	-0.1617(5)	0.3638(2)	0.2973(3)	228(8)	C22	4 <i>f</i>	-0.1643(4)	0.3578(2)	0.2971(3)	239(6)
N23	4 <i>f</i>	0.2743(4)	0.6436(2)	0.6584(4)	317(8)	N23	4 <i>f</i>	0.2728(4)	0.6502(2)	0.6616(3)	334(6)
C3	4 <i>f</i>	0.0392(4)	0.3794(2)	-0.0576(4)	223(8)	C3	4 <i>f</i>	0.0380(3)	0.3767(2)	-0.0458(3)	195(5)
N31	4 <i>f</i>	0.1801(4)	0.3875(2)	-0.0987(3)	267(7)	N31	4 <i>f</i>	0.1761(3)	0.3855(2)	-0.0828(2)	257(5)
C32	4 <i>f</i>	-0.1458(4)	0.5996(2)	0.2314(4)	219(8)	C32	4 <i>f</i>	-0.1453(3)	0.6012(2)	0.2125(3)	224(5)
N33	4 <i>f</i>	0.1313(4)	0.4134(2)	0.6550(4)	295(8)	N33	4 <i>f</i>	0.1385(3)	0.4133(2)	0.6773(3)	296(6)
01	2 <i>e</i>	-0.1307(5)	1/4	0.6403(4)	296(10)	01	2 <i>e</i>	-0.1333(4)	1/4	0.6521(3)	283(7)
H11 ^b	2 <i>e</i>	-0.195(10)	1/4	0.559(9)	740°	H11 ^b	2 <i>e</i>	-0.200(9)	1/4	0.589(7)	708°
$H12^{b}$	2 <i>e</i>	-0.121(11)	1/4	0.707(8)	740°	H12 ^b	2 <i>e</i>	-0.114(10)	1/4	0.710(7)	708°
02	2 <i>e</i>	0.3204(5)	1/4	0.2558(5)	345(10)	02	2 <i>e</i>	0.3155(4)	1/4	0.2700(3)	304(7)
$H21^{b}$	4 <i>f</i>	0.267(7)	0.289(3)	0.211(5)	863°	H21 ^b	4 <i>f</i>	0.269(6)	0.280(2)	0.233(4)	761°
03	4 <i>f</i>	0.3998(4)	0.4524(2)	0.2407(3)	356(8)	03	4 <i>f</i>	0.4051(3)	0.4446(2)	0.2480(3)	360(6)
H31 ^b	4 <i>f</i>	0.466(8)	0.419(4)	0.272(6)	891°	H31 ^b	4 <i>f</i>	0.491(7)	0.408(3)	0.293(5)	900°
H32 ^b	4 <i>f</i>	0.284(7)	0.428(4)	0.182(6)	891°	H32 ^b	4 <i>f</i>	0.315(7)	0.424(3)	0.211(6)	900°

 $^{^{}a}U_{eq}$ is defined as a third of the orthogonalized U_{ii} tensors; b Site occupancy was restrained to ²/₃; ^cThe isotropic displacement factor of the hydrogen atom was constrained to the equivalent displacement factor of oxygen as the last unconstrained atom as suggested in ref. [13].

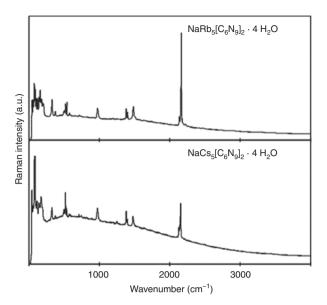
 ${}^{a}U_{eq}$ is defined as a third of the orthogonalized U_{ij} tensors; b Site occupancy was restrained to 2/3; The isotropic displacement factor of the hydrogen atom was constrained to the equivalent displacement factor of oxygen as the last unconstrained atom as suggested in ref. [13].

crysdata@fiz-karlsruhe.de, on quoting the deposition number CSD-430375 for NaRb_s[TCM], · 4 H₂O and CSD-430376 for NaCs₅[TCM]₂ · 4 H₂O.

2.3 Raman spectroscopy

The single-crystals of NaRb₅[TCM]₂·4H₂O and NaCs₅[TCM]₂· 4 H₂O were sealed in thin-walled glass capillaries. Raman spectroscopic investigations were performed on a microscope laser Raman spectrometer (Jobin Yvon, 4 mW, equipped with a HeNe laser with an excitation line at $\lambda = 632.817$ nm, $50 \times$ magnification, 8×240 s accumulation time). The results are displayed in Fig. 1,

the exact frequencies and their assigned modes are shown in Table 5.


3 Results and discussion

3.1 Raman spectra

The frequencies obtained from the Raman spectra of NaRb₅[TCM]₂ · 4 H₂O and NaCs₅[TCM]₂ · 4 H₂O compare well to the vibrational frequencies reported in the literature for $Na_{3}[TCM] \cdot 3H_{3}O[2]$ or $Rb_{3}[TCM] \cdot H_{3}O[5]$ (Table 5) and confirm therefore the presence of the tricyanomelaminate anion.

Table 4: Selected bond lengths (pm) and angles (deg) of NaRb₅[TCM], · 4 H,O and NaCs₅[TCM], · 4 H,O.

$NaRb_{5}[TCM]_{2} \cdot 4 H_{2}O$			NaCs ₅ [TCM] ₂ · 4 H ₂ O			
Rb1-	N1 2×	304.7(3)	Cs1-	N1 2×	318.1(2)	
	N11 $2\times$	309.1(3)		N11 $2\times$	327.7(12)	
	02	309.3(5)		02	326.3(4)	
	N31 2×	318.9(3)		N31 2×	327.7(2)	
	01	302.7(4)	Cs2-	01	318.3(3)	
	N33 2×	309.5(4)		N33 2×	323.5(3)	
	N21 2×	316.5(3)		N21 2×	328.3(2)	
	N13 2×	318.0(3)		N13 2×	332.0(3)	
	02	339.8(5)		02	344.4(4)	
Rb3-	03 2×	299.1(3)	Cs3-	03 2×	314.9(3)	
	N1 $2 \times$	304.9(3)		N1 2 \times	320.7(2)	
	N31 2×	305.9(3)		N31 2×	320.4(3)	
	N112 \times	322.0(3)		N11 $2 \times$	334.4(2)	
Rb4-	03	297.1(3)	Cs4-	03	312.3(3)	
	N33	304.1(3)		N33	322.6(3)	
	N33	308.1(3)		N33	322.9(3)	
	N13	310.8(3)		N13	329.6(2)	
	N23	314.1(4)		N23	330.7(3)	
	N21	314.9(3)		N21	329.5(2)	
	N13	318.4(4)		N13	330.3(3)	
	N3	341.7(3)		N3	364.8(2)	
Na-	02	240.4(5)	Na-	02	245.1(4)	
	01	242.2(5)		01	243.5(4)	
	N23 2×	246.9(4)		N23 2×	251.7(3)	
	N13 2×	251.1(4)		N13 2×	252.9(3)	
N1-	C1	134.9(5)	N1-	C1	134.7(3)	
	C2	134.9(4)		C2	134.6(3)	
N2-	C2	135.1(4)	N2-	C2	134.2(4)	
	C3	135.2(5)		C3	135.5(3)	
N3-	C1	134.9(4)	N3-	C1	135.3(3)	
	C3	135.3(5)		C3	135.5(3)	
C12-	N11	130.4(5)	C12-	N11	131.6(3)	
	N13	117.7(5)		N13	116.0(3)	
C22-	N21	131.1(5)	C22-	N21	132.0(4)	
	N23	116.9(5)		N23	115.9(4)	
C32-	N31	132.0(5)	C32-	N31	131.0(4)	
	N33	116.0(5)		N33	116.7(4)	
C1-N1	C2	115.4(3)	C1-N1-C2		115.6(2)	
C2-N2	2-C3	115.1(3)	C2-N2-C3		115.1(2)	
C1-N3	3-C3	115.1(3)	C1-N3-C3		115.1(2)	
	12-N13	174.1(4)	N11-C12-N13		173.3(3)	
	22-N23	174.2(4)	N21-C22-N23		173.2(3)	
	32-N33	173.9(4)	N31-C32-N33		171.8(3)	

Fig. 1: Raman spectra of NaRb $_{5}$ [TCM] $_{2} \cdot 4$ H $_{2}$ O and NaCs $_{5}$ [TCM] $_{2} \cdot 4$ H $_{2}$ O. On the vertical axis, Raman intensities are displayed in arbitrary units.

3.2 The crystal structures of NaRb $_5$ [TCM] $_2 \cdot 4 H_2O$ and NaCs $_5$ [TCM] $_2 \cdot 4 H_2O$

 ${
m NaRb}_{
m 5}[{
m TCM}]_2 \cdot 4~{
m H}_2{
m O}$ and ${
m NaCs}_{
m 5}[{
m TCM}]_2 \cdot 4~{
m H}_2{
m O}$ are found to be isotypic. Generally speaking, the crystal structure is somewhat typical for [TCM] containing compounds. It is built up from layers of sodium and rubidium or cesium cations, respectively, and of the [TCM] anion. The tricy-anomelaminate anion consists of a six-membered triazine ring with three N–C–N substituents each bound to a carbon atom of the triazine ring (Fig. 2). One of the nearly linear substituents is turned by 180°, thereby reducing the molecular symmetry of the anion from C_{3h} to C_s – if one neglects the slight deviations from planarity. All C–N bond lengths and angles (Table 5) are in

Table 5: Raman and IR data^a of different $[C_6N_9]^{3-}$ compounds compared to Na₃[TCM] · 3 H₂O and Na₃[TCM] (ref. [2]). Raman results are given as bold face numbers; all numbers are given in cm⁻¹.

	$NaRb_{5}[TCM]_{2} \cdot 4 H_{2}O$	$NaCs_{5}[TCM]_{2} \cdot 4 H_{2}O$	$Na_3[TCM] \cdot 3 H_2O$ (ref. [2])	$Rb_{3}[TCM] \cdot H_{2}O$ (ref. [5])
	329 m	326	_	_
δ_{as} (ring-sub.)	376 w	374 w	383.3	376 w
$\delta_{s}^{s}(lattice)$	500 w	499 w		498 w
$\delta_{s}^{s}(N-C\equiv N)$	521 m	519 s	513.5	519 w
$v_{s}(N-C\equiv N)$	538 m	535 m	570.8/589.4	538 w
$\delta_{s}^{s}(\text{ring})$	976 m	973 m	998.8	980 w
$v_{as}(\text{ring-N})$	1382 m	1383 m	1397.0	1386 w
$v_{as}(\text{ring-N})$	1402 m	1399 m	1397.0	1395 vs
$v_{s}^{\circ}(\text{ring-N})$	1486 m	1477 m	1517.5	1486 w, br
$\delta(H-O-H) + \nu_{as}(O-H)$	1635 vw	1629 vw	1616.7	1626 m
$v_{s}(C \equiv N)$	2135 m	2129 m	_	2127 w
$v_{s}(C \equiv N)$	2164 vs	2155 vs	2193.1	2158 vs

as, Strong; vs, very strong; m, medium; w, weak; vw, very weak weak; br, broad.

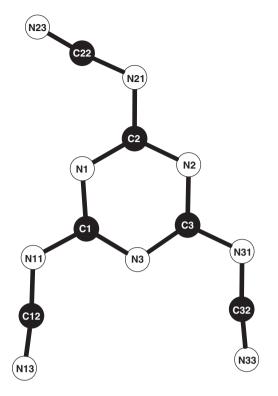


Fig. 2: The [TCM] anion as found in Na A_s [TCM], \cdot 4 H₂O (A = Rb or Cs).

the expected range when compared to the lengths and angles of similar compounds. The sodium atom is coordinated in an octahedral fashion by four nitrogen and two trans-positioned water molecules. The four crystallographically independent Rb or Cs atoms, respectively, are eight-fold coordinated in an irregular fashion by nitrogen and/or oxygen atoms. The crystal water molecules are found both in the plane of the alkali metal cations, but also displaced from the cation layers (both up and down) completing the coordination sphere of the cations (Fig. 3).

4 Conclusion

The compounds NaRbs[TCM], · 4 H2O and NaCss[TCM], · 4 H₂O were synthesized, their crystal structures have been determined and the Raman spectra of both title compounds recorded. The Raman data as well as the crystal structure are similar to that of previously reported alkali metal tricyanomelaminate compounds such as $A_{3}[TCM]$ $(A = \text{Na} [3], \text{ K and Rb } [4]), A_{3}[\text{TCM}] \cdot \text{H}_{3}\text{O} (A = \text{K and Rb}) [5]$

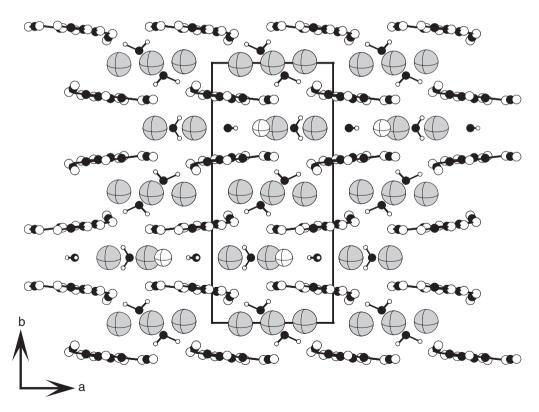


Fig. 3: Non-perspective view on the unit cell of NaA₂[TCM], · 4 H₂O parallel to the crystallographic c axis (C, black circles; N, white circles; O, black circles; H, white circles; Na, white ellipsoids; Rb or Cs, gray ellipsoids).

or Rb[$H_2C_2N_0$] · $\frac{1}{2}$ H_2O [6]. Due to the employed synthesis, no pure product could be acquired so far, which prevented the acquirement of DSC/TG data as yet.

References

- [1] J. L. Hoard, J. Am. Chem. Soc. 1938, 80, 1147.
- [2] B. Jürgens, W. Milius, P. Morys, W. Schnick, Z. Anorg. Allg. Chem. 1998, 624, 91.
- [3] B. Jürgens, E. Irran, J. Schneider, W. Schnick, Inorg. Chem. 2000,
- [4] E. Irran, B. Jürgens, W. Schnick, Chem. Eur. J. 2001, 7, 5372.
- [5] E. Irran, B. Jürgens, W. Schnick, Solid State Sci. 2002, 4, 1305.
- [6] B. Jürgens, H. Höppe, W. Schnick, Z. Anorg. Allg. Chem. 2004, 630, 35.

- [7] A. P. Purdy, E. Houser, C. F. George, *Polyhedron* 1997, 16, 3671.
- [8] O. Reckeweg, F. J. DiSalvo, A. Schulz, B. Blaschkowski, S. Jagiella, Th. Schleid, Z. Anorg. Allg. Chem. 2014, 640, 851.
- [9] B. Jürgens, H. A. Höppe, E. Irran, J. Schneider, W. Schnick, Inorg. Chem. 2002, 41, 4849.
- [10] APEX2 (version 1.22), SAINT PLUS, XPREP (version 6.14), Software for the CCD system, Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin (USA) 2004.
- [11] G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen (Germany) 2003.
- [12] G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997.
- [13] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.
- [14] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997.
- [15] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.