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Fig. S1. UV/Vis spectra of compounds 1—8 in acetonitrile.
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Fig. S2. Crystal structure of 1 as viewed along the b axis.
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Fig. S3. Crystal structure of 2 as viewed along the a axis.
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Fig. S4. DSC curves of the new compounds 1-8.
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Heat Flow (W/g) exothermal—
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Fig. SS. The DSC curves of pure AP and of the mixtures AP + 1-5 wt.% 1.
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Fig. S6. The DSC curves of pure RDX and of the mixtures RDX + 1-5 wt.% 1.
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Fig. S7. The DSC curves of pure HMX and of the mixtures HMX + 1-5 wt.% 1.
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Fig. S8. The DSC curves of pure HMX and of the mixtures HMX + 1 wt.% 1-8.
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HOMO (133, -10.01 eV) LUMO (134, -5.27 eV)

Fig. S9. The structure of cation of 2 optimized by theoretical calculations (top) and

energy diagram of the HOMO (bottom right) and LUMO (bottom left) of

the cation of 2.
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HOMO (87, —9.83 eV) LUMO (88, -4.96 eV)

Fig. S10. The structure of cation of 4 optimized by theoretical calculations (top) and
energy diagram of the HOMO (bottom right) and LUMO (bottom left) of
the cation of 4.
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HOMO (59, =5.25 eV) LUMO (60, —0.194 eV)

Fig. S11. The structure of NBF optimized by theoretical calculations (top) and energy
diagram of the HOMO (bottom right) and LUMO (bottom left) of NBF.
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HOMO (59, -5.25 ¢V) LUMO (60, —0.224 eV)

Fig. S12. The structure of TBF optimized by theoretical calculations (top) and energy
diagram of the HOMO (bottom right) and LUMO (bottom left) of TBF.
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HOMO (113, -5.14 ¢V) LUMO (114, -0.26 V)

Fig. S13. The structure of Catocene optimized by theoretical calculations (top) and
energy diagram of the HOMO (bottom right) and LUMO (bottom left) of

Catocene.
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Table S1. Selected bond lengths (A) and angles (deg) of 1, 2 and 4.

1
C(30)-C(31) 1.420(4) C(31)-C(33) 1.379(4)
C(31)-C(32) 1.417(4)  CBICGS) 1.3823)
C(34)-C(35) 1.422(4)  CBCGO L416(4)
C(30)-N(3) 1.140(3) C(32)-N(4) 1.141(3)
C(34)-N(5) 1.137(3) C(36)-N(6) 1.145(4)
C(11)-N(1) 1.526(4) C(19)-N(2) 1.529(3)

C(33)-C(31)-C(32)  119.1(2) C(33)-C(31)-C(30)  124.2(2)
C(32)-C(31)-C(30)  116.7(2) C(31)-C(33)-C(35)  130.2(2)
C(33)-C(35-C(36)  120.3(2) C(33)-C(35)-C(34)  124.9(2)
C(36)-C(35-C(34)  114.7(2) N(@4)-C(32)-C(31) 178.5(3)
NG3)-C30)-C(31)  179.3(3) N(6)-C(36)-C(35) 178.5(3)
N(5)-C(34)-C(35)  177.5(3)

2
C(17)-C(19) 1.386(3) C(19)-C(21) 1.3743)
C(20)-C(21) 1.415(3) C(21)-C(22) 1.423(3)
C(16)-C(17) 1.421(3) C(17)-C(18) 1.427(3)
C(16)-N(2) 1.140(3) C(18)-N(3) 1.143(3)
C(20)-N(4) 1.143(3) C(22)-N(5) 1.137(3)

C(11)-N(1) 1.534(3)
C(19)-C(17)-C(16)  124.7(2) C(19)-C(17)-C(18)  117.5(2)
C(16)-C(17)-C(18)  117.8(2) N(3)-C(18)-C(17) 176.3(2)
C1)-C(19-C(17)  130.7(2) N(4)-C(20)-C(21) 177.9(3)
C(19)-C(21)-C(20)  125.4(2) C(19)-C(21)-C(22)  118.9(2)
C(20)-C(21)-C(22)  115.7(2) N(5)-C(22)-C(21) 178.9(3)

4
N(2)-C(17) 1.136(3) N(3)-C(19) 1.143(3)
N(4)-C(21) 1.1393) N(5)-C(23) 1.147(3)
C(17)-C(18) 1.422(3) C(18)-C(20) 1.370(3)
C(18)-C(19) 1.423(3) C(20)-C(22) 1.387(3)
C(21)-C(22) 1.418(3) C(22)-C(23) 1.419(3)

C(11)-N(1) 1.528(2)
C(17)-C(18)-C(19)  115.0(2) C(20)-C(18)-C(19)  119.9(2)
C(20)-C(18)-C(17)  125.1(2) C(18)-C(20)-C(22)  130.3(2)
C(20)-C(22)-C(21)  124.6(2) C(20)-C(22)-C(23)  120.5(2)
C(21)-C(22)-C(23)  114.9(2) N(2)-C(17)-C(18) 177.5(2)
NG)-C(19)-C(18)  179.4(3) N(4)-C(21)-C(22) 177.8(2)
N(5)-C(23)-C(22)  179.03)

Note: Symmetry transformations used to generate equivalent atoms. For 2:

#1 1—x, 1-y, 1-z. For 4: #1 2—x, -y, 1-z.
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Table S2. Hydrogen bond parameters for 1, 2 and 4.

D-H--A (D-H) (A) (H-+A) (A) (D-+-A) (A) (D-H-A) (deg)
1

C(10)-H(10)-"N(7)#1 0.98 2.62 3.492(6) 148
C(13)-H(13A)-N(10)#2  0.96 2.44 3.175(4) 133
C(15)-H(15B)N(3) 0.97 2.56 3.527(4) 175
C(16)-H(16A)-N(6)#2  0.97 2.62 3.474(4) 147
C(19)-H(19B)-N(9) 0.97 2.62 3.489(5) 150
C(33)-H(33)-"N(10)# 0.93 2.54 3.456(4) 169
C(40)-H(40)-N(6)# 0.93 2.53 3.418(5) 160
2

C(I1-H(11A)-N(5)#1  0.98 2.58 3.464(3) 151
C(13)-H(I13B)-N@)#2  0.96 2.59 3.096(3) 113
C(14)-H(14B)-N(5)#1  0.97 2.45 3.376(3) 159
4

C(7)-H(7)N(4)#1 0.98 2.60 3.435(4) 143
C(20)-H(20)-"N(3)#2 0.93 2.49 3.374(4) 159

Note: Symmetry transformations used to generate equivalent atoms. For 1: #1 1-x, 1-y, 1-z; #2 1-x ,1-y, —z; #3
2-x, 1=y, —z. For 2: #1 x, 1/2—y, —1/2+z; #2 1-x, 1/2+y, 1/2—z; #3 1—x ,—1/2+y, 1/2—z. For 4: #1 x, y, —1+z; #2 2—x,
-y, 2—z.
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Table S3. Redox potentials from cyclic voltammetry of ferrocenyl groups in 1-8, NBF, TBF and
Catocene in 0.1 M n-BuyPF¢-MeCN

Compd Epa (MV) Ep(mV)  E,”*(mV) AE,* (mV)
1 681 599 640 82
2 681 590 636 91
3 690 602 646 88
4 630 586 633 94
5 688 599 644 89
6 679 571 625 108
7 681 591 636 90
8 687 596 642 91
NBF 435 353 394 82
TBF 428 327 378 101
Catocene 401, 541 292, 456 347, 499 109, 85

* AE, = Epu—Epp
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