Metal Complexes of Biologically Important Ligands, CLXIX [1]. Palladium(II) and Platinum(II) N,O-Chelate Complexes $(R_3P)(Cl)M(\alpha$ -aminoacidate) with the Anions of Serine, Threonine, 3,4-Dehydroproline and 4-Hydroxyproline

Elfriede Schuhmann and Wolfgang Beck

Department Chemie und Biochemie der Ludwig-Maximilians-Universität, Butenandtstr. 5–13, 81377 München, Germany

Reprint requests to Prof. W. Beck. E-mail: wbe@cup.uni-muenchen.de

Z. Naturforsch. 2008, 63b, 124-128; received October 9, 2007

Dedicated to the memory of Professor Heinz Peter Fritz

The N,O-chelates M(3,4-dehydro-D,L-prolinate) $_2$ (M=Ni, Cu) have been obtained from $Ni(OH)_2$ or $Cu(OH)_2$ and the amino acid. The complexes $(R_3P)(Cl)M(\alpha$ -aminoacidate) (M=Pd, Pt) have been synthesized from the chloro bridged compounds $(R_3P)(Cl)M(\mu-Cl)_2M(PR_3)Cl$ (M=Pd, Pt; R=Et, n-Bu, Ph) and the potassium salts of the α -amino acids D,L-serine, D,L-threonine, 3,4-dehydro-D,L-proline and 4-hydroxy-L-proline. According to the ^{31}P NMR and ^{13}C NMR spectra the complexes with serinate and threoninate are formed as mixtures of cis/trans N-M-P isomers, whereas for the palladium complexes with 3,4-dehydroprolinate and 4-hydroxyprolinate a single isomer is observed.

Key words: α -Aminoacidate, Palladium, Platinum, Serine, Threonine, 3,4-Dehydroproline, 4-Hydroxyproline

Introduction

Chloro-bridged metal complexes $L_nM(\mu-Cl)_2ML_n$ have been proven to be ideal starting compounds for the synthesis of complexes with amino acids and their derivatives as ligands [2, 3]. The anions of amino acids react with the complexes under cleavage and substitution of the bridging chloro ligands.

Recently, the reactions of various chloro-bridged complexes with amino acids have been reviewed [3]. In our group in Munich the phosphine-containing palladium(II) and platinum(II) complexes $(R_3P)(Cl)M(\mu-Cl)_2M(PR_3)(Cl)$ have often been used as synthons for the preparation of amino acid complexes [4–18].

Benedetti and coworkers reported the synthesis of *trans* N-Pt-P (Cl)(Ph₃P)Pt(α -amino isobutyrate) from (Cl)(Ph₃P)Pt(μ -Cl)₂Pt(Cl)(PPh₃), and the structure of this complex was determined by X-ray diffraction [19].

DFT calculations were carried out for cis and trans isomers of complexes of the type $(R_3P)(Cl)M(\alpha$ -aminoacidate) [20], and it was shown that the trans N-M-P complexes are more stable than the cis isomers.

In the following we report palladium(II) and platinum(II) complexes with the anions of serine, threo-

nine, 3,4-dehydroproline and 4-hydroxyproline. These α -amino acids can be found rather scarcely as ligands in metal complexes.

Already in 1912, E. Fischer and F. Gerlach [21] isolated the "copper salt" of 3,4-dehydroprolinate CuC_{10} $H_{12}H_2O_4$ by reduction of pyrrole amide and reaction of the product with precipitated copper oxide at 100 °C. With 1,2-dehydroprolinate (pyrroline-2-carboxylate) several complexes have been reported [22–24].

Results and Discussion

The bis(chelate) complexes 1 and 2 have been obtained from aqueous suspensions of the metal hydroxides and 3,4-dehydroproline at r. t.

The phosphine-containing chelate complexes 3-10 are formed by reaction of the chloro-bridged palladium(II) and platinum(II) compounds $(R_3P)(Cl)(\mu\textsubscript{-}Cl)_2M(PR_3)(Cl)$ with the potassium salts of serine, threonine, 3,4-dehydroproline and 4-hydroxyproline in a CH_2Cl_2/CH_3OH medium.

The reactions of 3,4-dehydroproline with Pd(II) or Pt(II) salts resulted in the precipitation of the metal.

0932–0776 / 08 / 0200–0124 $\$ 06.00 $\$ 2008 Verlag der Zeitschrift für Naturforschung, Tübingen \cdot http://znaturforsch.com

The IR spectra (Table 1) of 1-10 exhibit the characteristic absorptions of the coordinated α -amino carboxylate ligand at 3200 (NH) and 1600-1640 cm⁻¹ (CO₂). The ν (M–Cl) bands are observed at 300-340 cm⁻¹.

The ³¹P NMR data of **3**–**8** (Table 2) prove the existence of *cis/trans* isomers. According to DFT calculations [20] we assume that the more stable *trans* N-M-P isomers are formed predominantly (Table 2). For **9** and **10** only one ³¹P NMR signal was observed, and we attribute this signal to the *trans* N-Pd-P isomer.

The ¹³C NMR spectra (Tables 3 and 4) confirm the existence of *cis/trans* isomers for **3–8**; two signals have been observed for almost every carbon atom. In

accordance with the ³¹P NMR data for **9** and **10** only one set of ¹³C NMR signals was found. For the assignment of the signals, the DEPT technique was used.

Experimental Section

The starting chloro-bridged complexes $(Cl)(R_3P)M(\mu-Cl)_2M(Cl)PR_3$ (M = Pd, Pt; R = Et, *n*-Bu, Ph) were prepared as described by Hartley [25]. The amino acids were purchased.

N,O-Bis(3,4-dehydro-D,L-prolinato)nickel(II) (1)

To a solution of 141 mg (0.50 mmol) of $NiSO_4 \cdot 7H_2O$ in 5 mL of water 1.0 mL of 1N NaOH (1.00 mmol) was added. The formed precipate of $Ni(OH)_2$ was centrifuged off

Table 1. Characteristic IR absorptions of **1–10**^a.

	v (OH)	v (NH)	v (C=O)	δ (NH)	v (M–Cl)
$1 \cdot H_2O$	3300	3220	1590		
2 · H ₂ O	3430	3205	1595		
3	3530	3280	1635	1565	345
		3220			320
		3140			
4	3400	3280	1635	b	340
		3210			325
		3130			
5	3500	3260	1630	b	320
		3200			305
		3110			
6	3400	3270	1625	b	310
		3200			
		3110			
7	3450	3260	1630	b	318
		3200			
		3140			
8	3420	3280	1620	b	310
		3200			
		3120			
9		3160	1640	b	320
10	3400	3220	1635	b	320

^a In cm⁻¹; nujol; **6**, **8** in KBr; ^b overlapping with ν (C=O).

and washed with water. The suspension of Ni(OH) $_2$ and of 113 mg (1.00 mmol) of 3,4-dehydro-D,L-proline were stirred in 5 mL of water for 1 h at 40 °C, and the green color of the solid turned to blue. The blue solid was washed with water, ethanol and diethyl ether. – Yield 76 %, m. p. (dec.) > 310 °C. – $C_{10}H_{12}N_2NiO_4 \cdot 2H_2O$ (318.96): calcd. C 37.66, H 5.06, N 8.78; found C 37.39, H 5.12, N 8.63.

N,O-Bis(3,4-dehydro-D,L-prolinato)copper(II) (2)

To a freshly prepared suspension of 49 mg (0.50 mmol) of copper(II) hydroxide 113 mg (1.00 mmol) of 3,4-dehydro-D,L-proline was added. After stirring for 2 h at 40 °C the blue solid was washed with water, ethanol and diethyl ether. – Yield 54 %, m. p. > 225 °C (dec.). – $C_{10}H_{12}CuN_2O_4 \cdot H_2O$ (305.78): calcd. C 39.28, H 4.62, N 9.16; found C 39.31, H 4.81, N 9.02.

Chloro(triethylphosphine)(L-serinato)platinum(II) (3) and chloro(triethylphosphine)(L-threoninato)platinum(II) (4)

To a solution of 400 mg (0.5 mmol) of $(Et_3P)(Cl)Pt(\mu-Cl)_2Pt(PEt_3)(Cl)$ in 10 mL of dichloromethane a solution of 1.04 mmol of the amino acid and of 69 mg (1.23 mmol) of KOH in 5 mL of methanol was added. The mixture was stirred for $2^{1/2}h$ at r. t. Then the formed KCl was centrifuged off and the solvent was removed *in vacuo*. The yellow solid was washed several times with diethyl ether.

3: Yield 52 %, m.p. 53 °C. – $C_9H_{21}CINO_3PPt \cdot H_2O$ (470.80): calcd. C 22.96, H 4.92, N 2.98; found C 23.00, H 4.70, N 2.79.

Table 2. 31 P NMR data of $3-10^a$.

	³¹ P	³¹ P	^{2}J	^{2}J	trans	Solvent
	(N-trans)	(N-cis)	$(Pt-P_{N-trans})$	$(Pt-P_{N-cis})$	/cis	
3	5.75	1.75	3595	b	90/10	CDCl ₃
4	6.13	2.00	3622	b	77/23	$CDCl_3$
5	29.04	26.54			80/20	$CDCl_3$
6	28.72	27.12			80/20	$CDCl_3$
7	27.71	24.13			90/10	DMF
8	27.15	23.55			90/10	DMF
9	27.94					$CDCl_3$
10	26.66					$CDCl_3$

^a δ in ppm; H₃PO₄ as external standard; J(Pt-P) in Hz;

4: Yield 78 %, m. p. 64 °C. – C₁₀H₂₃ClNO₃PPt (466.82): calcd. C 25.73, H 4.97, N 3.00; found C 25.65, H 5.13, N 3.09.

(Tri-n-butylphosphine)(chloro)(L-serinato)palladium(II) (5) and (tri-n-butylphosphine)(chloro)(L-threoninato)-palladium(II) (6)

- 2.10 mmol of the amino acid and 136 mg (2.42 mmol) of finely powdered KOH were dissolved in 3 mL of methanol, and this solution was slowly added with a pipette to a solution of 1.05 mol of $(Et_3P)(Cl)Pd(\mu-Cl)_2Pd(PEt_3)(Cl)$ in 10 mL of dichloromethane. After stirring for 2 h at r. t. the yellow solid was centrifuged off and the solvent was removed *in vacuo*. The yellow residue was stirred several times with diethyl ether or with *n*-pentane. Complex **5** can be recrystallized from methanol solution, **6** from acetone solution.
- **5**: Yield 65 %, m. p. 175 °C (dec.). $C_{15}H_{33}CINO_3PPd$ (448.26): calcd. C 40.19, H 7.42, N 3.12; found C 39.54, H 7.64, N 3.15.
- **6**: Yield 71 %, m. p. 163 °C (dec.). $C_{16}H_{35}CIN_3PPd$ (462.29): calcd. C 41.57, H 7.63, N 3.03; found C 41.36, H 7.64, N 3.14.

Chloro(triphenylphosphine)(L-serinato)palladium(II) (7) and chloro(triphenylphosphine)(L-threoninato) palladium(II) (8)

To a solution of 800 mg (0.91 mmol) of (Ph₃P)(Cl)Pd(μ -Cl)₂Pd(PPh₃)(Cl) in 15 mL of dichloromethane a solution of 1.82 mmol of the amino acid and of 117 mg (2.08 mmol) of KOH in methanol was added. The mixture was stirred for 2 h at r. t., and the solvent was removed *in vacuo*. The yellow solid was washed with water, ethanol and diethyl ether.

- **7:** Yield 62 %, m. p. 179 °C (dec.). C₂₁H₂₁ClNO₃PPd (508.23): calcd. C 49.63, H 4.17, N 2.76; found C 49.10, H 4.40, N 2.71.
- **8:** Yield 68 %, m. p. 196 °C (dec.). C₂₂H₂₃ClNO₃PPd (522.26): calcd. C 50.60, H 4.44, N 2.68; found C 49.48, H 4.61, N 2.79.

b not observed.

Table 3. 13 C NMR data of the free amino acids and of complexes $3-8^{a}$.

	-CO ₂ trans/cis	α-CH trans/cis	other trans/cis	$P-(CH_2)_n-CH_3, n = 1,3$	$P-(CH_2)_n-CH_3, n = 1,3$
serine (D ₂ O)	173.1	57.4	CH ₂ OH: 61.3		
threonine (D ₂ O)	173.8	61.7	CH(CH ₃)OH: 67.1		
			CH(CH ₃)OH: 20.8		
3 (CDCl ₃)	184.4d/ ^b (2.1)	57.7s/ ^b	CH ₂ OH: 63.0s/ ^b	13.6d/14.5s (38.8)	7.5d/7.7d (3.2) (3.2)
4 (CDCl ₃)	183.9d/ ^b (4.2)	61.2d/ ^b (2.1)	$CH(CH_3)OH : 67.1s/^{b}$	13.6d/14.0s (37.8)	7.5d/7.7d (3.1) (3.2)
			CH(CH ₃)OH: 19.4s/20.2s		
5 (CDCl ₃)	180.8d/181.7s (2.1)	61.4s/58.6d (2.1)	CH ₂ OH: 63.1s/63.8s	26.0d/25.8d (2.1) (3.2)	13.7s/13.6s
				24-1d/ ^b (13.6)	
				23.0d/21.9d (31.4) (30.4)	
6 (CDCl ₃)	182.3s/ ^b	65.9s/61.9d (2.5)	CH(CH ₃)OH: 68.6s/67.4s	25.8d/25.7d (2.1) (3.2)	13.5s/13.6s
			CH(CH ₃)OH: 20.7s/18.8s	24.1d/ ^b (14.7)	
				22.9d/21.5d (31.5) (30.4)	
7 (DMSO)	178.9d/b (3.1)	61.0s/58.7s	CH ₂ OH: 61.8s/62.4s		
8 (DMSO)	179.1d/ ^b (3.1)	65.1s/61.8s	CH(CH ₃)OH: 66.5s/66.8s		
			CH(CH ₃)OH: 20.3s/20.0s		

^a δ in ppm; solvent as internal standard; ¹³C-³¹P NMR coupling constants in Hz in parentheses; ^b not observed.

Table 4. ¹³C NMR data of 3,4-dehydroproline, 4-hydroxyproline and of **9** and **10**^a.

	C-1	C-2	C-3	C-4	C-5	$P(CH_2)_3CH_3$	$P(CH_2)_3CH_3$
3,4-dehydroproline	172.2	68.5	125.7	/125.4	52.4		
9	182.2d (3.2)	70.2d (3.2)	126.7d/128.2s (1.6)		56.8d (2.6)	25.7d (3.2)	13.6s
						24.0d (13.6)	
						21.5d (29.9)	
4-hydroxyproline	175.2	61.1	38.7	71.3	54.2		
10	184.9d (2.8)	61.3d (3.1)	39.9s	70.3d (3.1)	57.6d (2.4)	25.8d (2.4)	13.7s
						24.1d (14.0)	
						21.5d (29.9)	

^a In D_2O ; δ in ppm; solvent as internal standard; $^{13}C_2^{-31}P$ NMR coupling constants in Hz in parentheses.

Tri-n-butylphosphine(chloro)(3,4-dehydro-D,L-prolinato)-palladium(II) (9) and tri-n-butylphosphine(chloro)-(trans-4-hydroxy-L-prolinato)palladium(II) (10)

A solution of 2.11 mmol of the amino acid and of 136 mg (2.42 mmol) of finely powdered KOH in 3 mL of methanol was dropped to a solution of 800 mg (1.05 mmol) of $(n\text{-Bu}_3\text{P})(\text{Cl})\text{Pd}(\mu\text{-Cl})_2\text{Pd}(n\text{-Bu}_3\text{P})(\text{Cl})$ in 15 mL of dichloromethane. Immediately, the color changed from red to yellow. After stirring for $1^1/2$ h at r. t. the formed KCl was centrifuged off, and the solvent was removed *in vacuo*. The yellow solids were washed with diethyl ether. Complexes **9** and **10** can be recrystallized from methanol solution.

- **9:** Yield 70 %, m. p. 180 °C (dec.). C₁₇H₃₃ClNO₂PPd (456.28): calcd. C 44.75, H 7.29, N 3.07; found C 44.23, H 7.38, N 3.26.
- **10:** Yield 75 %, m.p. 133 °C. C₁₇H₃₅ClNO₃PPd (474.30): calcd. C 43.05, H 7.44, N 2.95; found C 42.16, H 7.57, N 3.10.

Acknowledgement

We thank Fonds der Chemischen Industrie, Wacker-Chemie AG, München, and Ludwig-Maximilians-Universität, München, for generous support.

- [1] Contribution No. 168: A. Böhm, H. Brunner, W. Beck, Z. Anorg, Allg. Chem. 2008. in press.
- [2] K. Severin, R. Bergs, W. Beck, Angew. Chem. 1998, 110, 1722; Angew. Chem. Int. Ed. 1998, 37, 1634.
- [3] Th. Hauck, K. Sünkel, W. Beck, Z. Anorg. Allg. Chem. 2006, 632, 2305 and refs. therein.
- [4] W. Beck, M. Girnth, *Chem. Ber.* **1976**, *109*, 965. The reactions of the complex (*n*-Bu₃P)(Cl)Pt(glyO) at the coordinated glycinate ligand could not be reproduced in our group.
- [5] L. Olgemöller, W. Beck, Chem. Ber. 1984, 117, 1241.
- [6] I. Zahn, K. Polborn, W. Beck, *Chem. Ber.* **1989**, *122*, 253; I. Zahn, K. Polborn, B. Wagner, W. Beck, *Chem. Ber.* **1991**, *124*, 1065.
- [7] E. Schuhmann, C. Robl, W. Beck, Z. Naturforsch. 1994, 49b, 1569.
- [8] T. Hauck, K. Sünkel, W. Beck, *Inorg. Chim. Acta* 1995, 235, 391.

- [9] A. Fehn, O. Briel, W. Beck, Chem. Ber./Recueil 1997, 130, 1467.
- [10] B. Schreiner, M. Prem, W. Bauer, K. Polborn, W. Beck, Z. Naturforsch. 1997, 52b, 1199.
- [11] W. Bauer, W. Ponikwar, W. Beck, Z. Naturforsch. 2000, 55b, 946.
- [12] St. Krawielitzki, W. Beck, Z. Naturforsch. 2001, 56b, 69.
- [13] A. Fehn, Th. Ederer, S. Mihan, W. Beck, J. Organomet. Chem. 2001, 621, 109.
- [14] D. Koch, W. Beck, Z. Naturforsch. 2001, 56b, 1271;
 D. Koch, K. Sünkel, W. Beck, Z. Anorg. Allg. Chem. 2003, 629, 1322.
- [15] W. Hoffmüller, K. Polborn, J. Knizek, H. Nöth, W. Beck, Z. Anorg. Allg. Chem. 1997, 623, 1903.
- B. Kayser, W. Beck, Z. Naturforsch. 2004, 59b, 1423;
 H. Dialer, P. Mayer, K. Polborn, W. Beck, Eur. J. Inorg. Chem. 2001, 1051.
- [17] W. Hoffmüller, R. Krämer, M. Maurus, K. Polborn, W. Beck, Z. Naturforsch. 2000, 55b, 855.

- [18] W. Ponikwar, W. Beck, Z. Naturforsch. 2003, 58b, 318.
- [19] A. Lombardi, O. Maglio, V. Pavone, B. DiBlasio, M. Saviano, F. Nastri, C. Pedone, E. Benedetti, *Inorg. Chim. Acta* 1993, 204, 87.
- [20] W. Beck, Th. Klapötke, W. Ponikwar, Z. Naturforsch. 2002, 57b, 1120.
- [21] E. Fischer, F. Gerlach, Ber. Dtsch. Chem. Ges. 1912, 45, 2453.
- [22] A. Hammershoi, R. M. Hartshorn, A. M. Sargeson, J. Chem. Soc., Chem. Commun. 1988, 1267; P. J. Lawson, M. G. McCarthy, A. M. Sargeson, J. Am. Chem. Soc. 1982, 104, 6710.
- [23] E. F. Birse, P. A. Williams, R. S. Vagg, *Inorg. Chim. Acta* 1988, 148, 57; E. F. Birse, P. A. Williams, S. Stephens, R. S. Vagg, *Inorg. Chim. Acta* 1988, 148, 63
- [24] B. Wagner, U. Taubald, W. Beck, Chem. Ber. 1989, 122, 1031.
- [25] F. R. Hartley, Organomet. Chem. Rev. A 1970, 6, 119.