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The reaction of adamantane with PC13/A1C13, followed by hydrolysis, gave (l-Ad)2P(: 0)C1 
1, which was converted to (l-Ad)2P(:Ö)F 2 and (l-Ad)2P(:S)Cl 3 by standard procedures.
The structure of 1 was confirmed by a single crystal X-ray structure determination; despite 
the bulky substituents the P-C bond lengths are normal (184.0(3), 185.0(3) pm). Whereas 
chlorine-fluorine exchange in 3 with AsF3 furnished (l-Ad)2P(: S)F 4, desulfuration of 3 with 
Ph3P to give (l-Ad)2PCl 5 failed. The secondary phosphine oxides R 'R2P(:0)H (R1, R2 =
1-Ad: 6; R1 = 1-Ad, R2 = 'Bu: 7; R1, R2 = 'Bu: 8) were synthesized by reaction of 1,
l-AdP(:0)Cl2 and 'BuP(:0)Cl2 with 'BuLi. 6 and 8 reacted readily with chloral to give the 
adducts R2P(:0)CH(0H)CC13 (R = 1-Ad: 9; R = 'Bu: 10). Silylation of 6 with Me2NSiMe3 
in the presence of dry air led to (l-Ad)2P(:0)0SiMe3 11, which was hydrolyzed to give 
(l-Ad)2P(:0)0H  12. (l-Ad)2POSiMe3 13 was obtained by the reaction of 6 with /z-BuLi, 
followed by Me3SiCl. No reaction took place upon heating 6 with Mo(CO)6. (l-Ad)2PCl 5 
was synthesized in low yield by the reaction of 6 with PC13. The action of tetrachloro-o- 
benzoquinone (TOB) upon 6 furnished (l-Ad)2P(: 0)(o-OH)C6Cl4 15, whereas the 'butyl 
analogue of 15, 16, was synthesized by hydrolysis of the TOB-adduct of di-'butylfluorophos- 
phine. Analogous 1-adamantyl- and 'butyl-phosphorus compounds are compared with regard 
to their 31P NMR data.

Einleitung
Nachdem wir uns in den letzten Jahren ausführ­

lich mit 1-Adamantyl-substituierten Phosphorver­
bindungen beschäftigt haben [1-7], lag es nahe, 
auch die in der Literatur bislang nur sporadisch er­
wähnten Di-l-adamantyl-substituierten Phosphor­
verbindungen [5, 6, 8-11] eingehender zu unter­
suchen. Dies ist um so näherliegend, als die entspre­
chenden Di-'butyl-substituierten Verbindungen 
zum Teil seit Jahrzehnten bekannt sind [12].

Ergebnisse und Diskussion
Die wenigen in der Vergangenheit beschriebe­

nen Di-l-adamantylphosphor-Verbindungen wur­
den zumeist durch Umsetzung von Chlorphosphi-

* Teil II: Lit. [46],
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© Verlag der Zeitschrift für Naturforschung,
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nen mit 1-Adamantyl-Grignardreagenzien darge­
stellt [8, 10], Der prinzipielle Nachteil dieser Me­
thode liegt in der Schwierigkeit der Darstellung 
und Handhabung von 1-Adamantylmagnesium- 
und 1-Adamantyllithium-Verbindungen. Diese 
neigen zur homolytischen Spaltung der Metall- 
Kohlenstoff-Bindung unter Bildung von Radika­
len [13-16] (betr. 1-AdCaBr siehe [17]). Ein be­
quemer Zugang zu Di-l-adamantylphosphinsäure- 
chlorid (1) ist durch die von No et al. beschriebene 
Umsetzung von Adamantan mit Phosphortrichlo- 
rid und Aluminiumtrichlorid und nachfolgende 
Hydrolyse des Reaktionsgemisches gegeben [11]:

DPCI3 /AICI3

2)h20 , , , ,
AdH ------ - ------------ > d - A d ) 2 P(:0)CI (1)

1

Dies scheint das bisher einzige Beispiel für eine 
Dialkylierung von PC13 durch einen gesättigten 
Kohlenwasserstoff unter den Bedingungen der
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Verb.
No.

R = 1-Ad 
Ö(P) <3(F) !/(P F )

R = 'Bu 
ö(P) d(F) '/(PF)

R,P(:0)C1 1 86.53 94,7
R ,P (:0 )F 2 67.76 -110,68 1066.88 76,6 -104.2 1090
RtP(: S)C1 3 138.97 150,4
R,P(:S)F 4 144.31 -123,49 1053,00 157,8 -119,6 1093

Tab. I. 31P- und 19F-NMR-Daten 
analoger Di-l-adamantyl- und Di- 
'butyl-substituierter Phosphorver­
bindungen des Typs R^P(:E)X mit 
R = 1-Ad, 'Bu; E = O, S; X = CI, 
F.

Kinnear-Perren-Reaktion [18,19] zu sein. Die Mo­
noalkylierung von PC13 mit gesättigten Kohlen­
wasserstoffen unter ähnlichen Bedingungen ist 
von Olah et al. beschrieben worden [20], Es ist an­
zunehmen, daß ein Reaktionsverlauf gemäß 
Gl. (1) durch die bekanntermaßen hohe Stabilität 
des 1-Adamantylkations begünstigt wird [21, 22]. 
Diese Stabilität ermöglichte sogar die Isolierung 
und strukturelle Untersuchung von 3,5,7-Tri- 
methyl-l-adamantylcarbenium-Salzen [23]. Auch 
ist bekannt, daß 2-Adamantylkationen unter der­
artigen Bedingungen in beträchtlichem Ausmaß 
zu 1-Adamantylkationen isomerisieren [9, 24]. So 
lieferte z.B. die Insertion von PF3 in die P-F-B in- 
dung von 2-AdF fast ausschließlich l-A dPF4 [24] 
(siehe auch [1] und [4]).

Di-l-adamantylphosphinsäurechlorid 1 ist ein 
farbloser, hochschmelzender Feststoff, der gegen­
über Sauerstoff und Feuchtigkeit unempfindlich 
ist. Sein <5(P)-Wert (Tab. I) liegt mit 86,53 ppm 
im erwarteten Bereich, gegenüber dem von 
('Bu)2P(:0)C1 um 8 ppm hochfeldverschoben [25]. 
Im Massenspektrum von 1 lassen sich das Molekül­
ion bei m /z 352 und das 1-Adamantylkation als 
Basispeak bei m /z 135 beobachten.

Da bislang keine Strukturuntersuchungen an 
Dialkylphosphinsäurechloriden durchgeführt wor­
den waren und Yoshifuji et al. die Ergebnisse ihrer

Strukturanalyse von Bis-supermesitylphosphin- 
säurechlorid ohne Angabe von Bindungslängen 
und -winkeln publizierten [26], wurden von 1 er­
haltene Einkristalle einer Röntgenstrukturanalyse 
unterworfen. Das Ergebnis zeigt Abb. 1.

Das Phosphoratom in 1 ist verzerrt tetraedrisch 
koordiniert. Die Winkel liegen im Bereich von 
101,84(9) [C l-P -C l]  bis 118,19(12)° [ C l - P - C l ']  
(Tab. II). Die sterisch anspruchsvollen 1-Adaman- 
tylreste weiten die Bindungswinkel erwartungsge­
mäß am stärksten auf. Der Bindungsabstand P = 0  
ist mit 150,4(2) pm etwas größer als gewöhnlich 
[27, 28] (Tab. II). Trotz des sterischen Anspruchs 
der beiden 1-Adamantylgruppen weisen die C -P - 
Bindungslängen mit 184,0(3) [P -C l ']  und 
185,0(3) pm [P -C l]  normale Werte auf (Standard- 
bindungslänge P -C  185 pm [27]).

Die Reduktion von 1 zu Di-l-adamantylphos- 
phin mit Lithiumalanat oder Trichlorsilan ist be­
reits beschrieben worden [5, 11].

Di-l-adamantylphosphinsäurechlorid 1 ließ sich 
durch Erhitzen mit SbF3 in Toluol unter Chlor- 
Fluor-Austausch in Di-l-adamantylphosphinsäure- 
fluorid 2, einen farblosen, bei 141 °C schmelzen­
den Feststoff überführen (Schema 1). Für den 
c>(P)-Wert von 2 ist eine Hochfeldverschiebung 
um 9 ppm, für den c>(F)-Wert eine von 6 ppm ge­
genüber dem Wert von ('Bu)2P (:0 )F  zu beobach­
ten [25], wobei '/(P F ) bei 2 mit 1066,88 Hz rund 
23 Hz kleiner ist als für die 'Butylverbindung 
(Tab. I). Die signifikantesten Signale im Massen-

Tab. II. Ausgewählte Bindungsabstände und -winkel 
von 1.

P - O
P - C ( l )

150,4(2)
185,0(3)

P -C ( l ' )
P -C l

184,0(3)
204,84(12)

Abb. 1. Das Molekül von Verbindung 1 im Kristall. Ra­
dien sind willkürlich.

O - P - C ( l ' )
C( 1 ' ) - P - C ( l ) 
C ( l ' ) - P - C l  
C ( 2 ) - C ( l ) - P  
C ( 8 ) - C ( l ) - P
C (2 ' ) -C ( l' ) -P

113,10(12)
118,19(12)
102.23(9)
117,2(2)
105,3(2)
108,8(2)

O - P - C ( l )  110,15(11)
O - P - C l  110,18(9)
C ( l ) - P - C l  101,84(9)
C ( 3 ) - C ( l ) - P  107,6(2)
C ( 1 0 ' ) - C ( l ' ) - P  115.5(2)
C ( 8 ' ) - C ( l ' ) - P  106,0(2)
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spektrum von 2 werden durch das Molekülion bei 
m /z 336 und das 1-Adamantylkation bei m /z 135 
(Basispeak) erzeugt.

SbFo
(1 - A d ) 2 P ( 0 ) C l  --------^  (1 — Ad)2Pf;0)F

1 2

p/;Sio
v

As Ft
d - A d ) 2 P(:S)CI -------- ^  (1 -A d )2P(:S)F

3 U

♦Ph3 P
- P h3 P(: S)

v

(1 -  Ad )2PCl 

5

Schema 1. Synthesen ausgehend von Di-l-adamantyl- 
phosphinsäurechlorid 1.

Durch Einwirkung eines großen Überschusses 
von P4S10 auf 1 in siedendem Toluol erhielt man 
nach 3 d in guter Ausbeute Di-l-adamantylthio- 
phosphinsäurechlorid 3 (Schema 1), einen farb­
losen, bei 226 °C schmelzenden Feststoff, dessen 
<3(P)-Wert mit 138,97 ppm (Tab. I) im erwarteten 
Bereich liegt [29], gegenüber dem von 
('Bu)2P(:S)Cl [25] rund 11 ppm hochfeldverscho- 
ben. Das EI-Massenspektrum von 3 zeigt das Mo­
lekülion bei m /z 368 in geringer Intensität sowie 
den Basispeak bei m/z 135 (1-Adamantylkation). 
Die Umsetzung von 3 mit Arsentrifluorid führte 
zu Di-l-adamantylthiophosphinsäurefluorid 4. 
Auch 4 ist ein farbloser Feststoff, der <3(P)- und 
<5(F)-Wert liegen im erwarteten Bereich (Tab. I) 
[29]. Für die 31P- und 19F-NMR-Parameter von 4 
ist im Vergleich zu denen der analogen 'Butylver-

bindung die gleiche Tendenz wie bei 2 zu beobach­
ten: Hochfeldverschiebung der <3(P)- und (3(F)- 
Werte und ein um 40 Hz niedrigerer Wert für 
'/(PF). Das Massenspektrum von 4 zeigt das 
Molekülion bei m /z 352 und den Basispeak bei 
m /z 135 (1-Adamantylkation).

Die 13C-NMR-Spektren der Verbindungen 1 - 4  
zeigen jeweils die vier zu erwartenden Signale für 
den 1-Adamantylkäfig, durchweg durch Kopplun­
gen "/(PC) (n = 1 -4 ) zu Dubletts aufgespalten 
(Tab. III). Die '7(PC)-Kopplungskonstanten sind 
stets kleiner als dies bei A4P(V)-Verbindungen be­
obachtet wurde, bei denen lediglich eine 1-Ada- 
mantylgruppe an das Phosphoratom gebunden ist
[4]. Für die Phosphor-Fluor-Verbindungen 2 und 4 
sind zudem Kopplungskonstanten 2/(FC ) zu beob­
achten.

Der Versuch der Darstellung von (l-A d)2PCl 5 
durch Entschwefelung von (l-A d)2P(:S)Cl 3 mit 
Triphenylphosphin scheiterte (Schema 1). D a­
gegen ist die Darstellung von 1-AdPCl? aus 
l-AdP(:S)Cl2 auf diesem Weg beschrieben wor­
den [30].

Durch Umsetzung von 1 mit 'Butyllithium sollte 
versucht werden, Di-l-adamantyl-('butyl)-phos- 
phinoxid darzustellen. Stattdessen kam es jedoch 
gemäß Gl. (2) zur ausschließlichen Bildung von 
Di-l-adamantylphosphinoxid 6 [5, 11], wie 'H- 
und 31P-NMR-spektroskopisch nachgewiesen 
wurde. Vermutlich wird der Reaktionsverlauf 
durch die überaus sperrigen Substituenten in der 
Phosphor- und der Organometallkomponente be­
stimmt. Ähnliche Beobachtungen machten Koso- 
lapoff et al. bei der Umsetzung von Organophos- 
phonsäuredichloriden mit 'BuMgBr [31]. Weiter­
hin wurde Di-l-adamantylphosphinoxid 6 auch bei 
der Enthalogenierung von 1 mit Natrium in sie­
dendem Toluol gebildet (Gl. (2)). Es ist anzuneh­
men, daß 1 mit 'Butyllithium bzw. Natrium im er-

--------------------------------------------------------------------------------------------------------------------------------------------  Tab TIT 13C N M R  O aten
Verb. 0 ( 0 )  V(PC) <3(C2) 2/(PC) Ö(C3) 3/(PC) Ö(C4) 4/(PC) der Verbindungen 1-6 , 11
No- und 12.

1 45,64 59,83
2 39,46 79,22a
3 49,35 35,90
4 44,10 54,42b
5 40,09 42,30
6 37,68 60.61

l l c 39,42 88,79
12 39,31 86.46

36.87 2,20 27,79
35,87 2,01 27,18
37,81 2,13 28,44
36,31 1,57 27,82
36,09 1,09 27,14
36,62 27,47
36,82 27,74
36,24 1,80 27,65

10,87 36,33 1,56
10,74 36,30 1,43
11,02 36,27 2,00
10,70 37,14 1,47
10,33 36,32
9,61 36,56

10,12 36.82
10,07 36,76

a 2/(FC) 11,59; b 27(FC) 
13,61; c Si(CH3)3: <5(C) = 
1,85.
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sten Schritt zum Lithium- bzw. Natriumsalz der 
Di-l-adamantyl-phosphinigen Säure reagierte, aus 
denen dann durch Hydrolyse 6 freigesetzt wurde.

(1 — Ad)2 P(: 0 )C l

f B uL i  
— ff— ( 1 -A d )2 P ( :0 ) t Bu

BuLi

Nq

( 1 -A d )2 P(:0)H
6

(1 -A d )2 P( 0)H
6

(2)

Auch 1-Adamantyl- und 'Butylphosphonsäure- 
dichlorid konnten durch Umsetzung mit 'Butyl- 
lithium in die entsprechenden sekundären Phos­
phinoxide 7 und 8 überführt werden (Gl. (3)). D a­
bei kam es im ersten Schritt zur Substitution eines 
phosphorständigen Chloratqms durch eine 'Butyl- 
gruppe unter intermediärer Bildung der entspre­
chenden Phosphinsäurechloride, die dann mit wei­
terem 'Butyllithium wie für 1 in Gl. (2) beschrie­
ben reagierten (Gl. (3)).

RP(:0)C I2

1 )* BuLi 
2)H20

R = 1 - Ad. TBu

R(<Bu)P(:0)H (3)

R = 1- A d :7  
R = *B u :  8

Während Di-'butylphosphinoxid 8 literaturbe­
kannt ist [32-35], handelt es sich bei 7 um eine 
neue Verbindung. Ihr (5(P)-Wert liegt mit 
63,55 ppm erwartungsgemäß zwischen den Werten 
von 6 und 8 (Tab. IV). Charakteristisch für ein se­
kundäres Phosphinoxid ist V(PH) mit 425,83 Hz. 
Massenspektrometrisch wurden bei 7 das Molekül­
ion (m /z 240), das 1-Adamantylkation (m /z 135) 
als Basispeak und das 'Butylkation (m /z 57) als 
aussagekräftigste Signale beobachtet.

Zwar besitzen diese Untersuchungen keinen all­
gemeingültigen Charakter, jedoch scheint die Um ­
setzung von 'Butyllithium mit sterisch anspruchs­
voll substituierten Phosphin- und Phosphonsäure- 
chloriden ein praktikabler Weg zur Herstellung

sterisch hochgehinderter sekundärer Phosphin­
oxide zu sein.

Nachdem Verbindungen des Typs 
R2P(: 0 )C H 2N(H)CH3 (R = 1-Ad, 'Bu) durch 
Umsetzung von 6 und 8 mit 1,3,5-Trimethylhexa- 
hydro-l,3,5-triazin dargestellt worden waren [36], 
erschien es interessant, die sekundären Phosphin­
oxide 6 und 8 auch mit einer aktivierten Carbonyl­
verbindung umzusetzen. Während Crofts et al. 
keine Reaktion zwischen Di-rbutylphosphinoxid 8 
und Chloral beobachten konnten [32], stellten wir 
fest, daß sowohl 6 als auch 8 bereits bei Raum­
temperatur an Chloral unter Bildung der ter­
tiären Phosphinoxide 9 und 10 addiert wurden 
(Gl. (4)). Sie unterscheiden sich damit prinzipiell 
nicht vom reaktivsten sekundären Dialkylphos- 
phinoxid (CH3)2P (:0 )H  [37],

ChCC|:0)H , , ,
R2 P(: 0 )H — - ------------- > R2P(:0)CH(0H)CCI3 (4)

R = 1 - A d : 6 
R = *B u:  8

R=1-Ad:9 
R=t Bu: 10

9 und 10 sind farblose, bei 172-174 °C bzw.
154 °C unter Zersetzung schmelzende Feststoffe, 
die in den üblichen organischen Lösungsmitteln 
ausgesprochen schwer löslich sind. Ihre (5(P)- 
Werte liegen mit 62,43 ppm (9) bzw. 66,80 ppm 
(10) in dem für A4P(V)-Verbindungen üblichen 
Bereich [29]; es ist die übliche Entschirmung 
des Phosphoratoms der ?Butyl- im Vergleich zur 
1-Adamantylverbindung zu beobachten (Tab. IV). 
Die !H-NMR-Spektren von 9 und 10 zeigen neben 
den Resonanzen der 1-Adamantyl- bzw. 'Butyl- 
gruppen die Signale der CH(OH)-Protonen als 
Singuletts bei 4,78 ppm (9) bzw. 4,79 ppm (10) und 
die der CH(OH)-Protonen als Singuletts bei
5,30 ppm. In den Massenspektren beider Verbin­
dungen kommt deren beschränkte Stabilität in der 
Gasphase zum Ausdruck. So kann in beiden Fäl­
len kein Molekülion beobachtet werden, die

Tab. IV. 31P-NMR-Daten analoger Di-l-adamantyl- und Di-'butyl-substituierter Phosphorverbindungen.

R tPX 
X = CI

R ,P (:0 )X  
X = H

R ,P (:0 )X  
X = CH(OH)CCl3

R ,P (:0 )X  
X = OSiMe3

r 2p x
X = OSiMe3

R2P (:0 )X  
X -  0 (0 -0 H )C 6Cl4

R = 1-Ad 6(P) 140.93 60,23 62.43 47,83 141,73 69,78
5 6 [5] 9 11 13 15

£3CQII0C 145.0 65.7 66.80 56.5 143,5 81,25
[25] 8 [35] 10 [39] [40] 16
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Basispeaks werden durch [Ci0H 15]+ bei m /z 135 
(9) und [C4H 9]+ bei m /z 57 (10) hervorge­
rufen. Verbindungen mit dem Strukturelement 
R2P(:0)CH (0H )C C 13 haben Verwendung als In­
sektizide gefunden [38],

In Schema 2 werden weitere Reaktionen des Di- 
1-adamantylphosphinoxids 6 dargestellt.

So führte die Umsetzung von 6 mit Dimethyl- 
aminotrimethylsilan in einer Atmosphäre trocke­
ner Luft unter Oxidation des Phosphoratoms se­
lektiv zur Bildung von Di-l-adamantylphosphin- 
säuretrimethylsilylester 11. Bei 11 handelt es 
sich um einen farblosen, hydrolyseempfindlichen 
Feststoff mit einem <3(P)-Wert von 47,83 ppm 
(('Bu)2P (:0 )0 S iM e3: 56,5 ppm [39]). Das 13C- 
NMR-Spektrum von 11 weist neben den vier Re­
sonanzen der 1-Adamantylgruppe das Signal der 
Si(CH3)3-Kohlenstoffatome bei 1,85 ppm auf 
(Tab. III). Das Massenspektrum von 11 zeigt das 
Molekülion bei m /z 406 und als Basispeak das
1-Adamantylkation bei m /z 135. Durch alkalische 
Hydrolyse von 11 wurde Di-l-adamantylphos- 
phinsäure 12 erhalten, eine Verbindung, die weder 
durch saure noch durch alkalische Hydrolyse des 
Säurechlorids 1 zugänglich ist [11]. Der <3(P)-Wert 
von 12 liegt mit 57,02 ppm im für A4P(V)-Verbin- 
dungen zu erwartenden Bereich [29], 13C-NMR- 
spektroskopisch lassen sich die vier inäquivalenten

Kohlenstoffatome der 1-Adamantylgruppen ein­
deutig nachweisen, Kopplungen bis 37(PC) werden 
aufgelöst. Das EI-Massenspektrum von 12 ist arm 
an Signalen, signifikant sind der Molpeak bei 
m/z 334 und der Basispeak bei m /z 135 ([Ci0H 15]+).

Durch Umsetzung des Lithiumsalzes der Di-1- 
adamantylphosphinigen Säure, das aus 6 und 
«-BuLi zugänglich ist, mit Trimethylchlorsilan un­
ter sorgfältigem Ausschluß von Sauerstoff und 
Feuchtigkeit wurde Di-l-adamantylphosphinig- 
säuretrimethylsilylester 13 als farbloser Feststoff in 
befriedigender Ausbeute erhalten. Für den (3(P)- 
Wert von 13 ist, im Vergleich zu dem der analogen 
'Butylverbindung, eine nur geringe Hochfeldver­
schiebung zu konstatieren (Tab. IV). Das !H- 
NMR-Spektrum von 13 zeigt neben den Resonan­
zen der 1-Adamantylgruppenprotonen die der Tri- 
methylsilyloxygruppe bei 0,17 ppm. Im Massen­
spektrum von 13 sind das Molekülion bei m /z 390, 
das 1-Adamantylkation bei m /z 135 als Basispeak 
und das Trimethylsilylkation bei m /z 73 als signifi­
kanteste Signale zu beobachten. Erfolglos blieb 
der Versuch, 6 in der tautomeren Form als Di-1- 
adamantylphosphinigsäure (l-A d)2POH an ein 
M o(CO)5-Fragment zu koordinieren (Schema 2). 
Für sterisch weniger aufwendig substituierte se­
kundäre Phosphinoxide ist die Synthese derartiger 
Komplexe beschrieben worden [41, 42].

E tO H .H ®
( 1 - Ad)2 P(:0)Cl --------H--------->  (1 -  Ad)2 P ( :0 )0 H

1 12
A

h 2o . o h ®

l1 - A d ) 2 P(:0)H

6

Me2NSiMe3
[0]

TOB

° H0' r A r cl(1-Ad)2P^
0 T CI 

CI
15

( 1 - Ad)2PCl 

5

■> (1 — Ad)2 P (-0 )0S iM e 3 

11

( O O 5 M0 P 

U

(1 - A d ) 2P 0 S iM e 3 

13

Schema 2. Synthesen Di-l-ada- 
mantyl-substituierter Phosphor­
verbindungen ausgehend von Di-
1-adamantylphosphinoxid 6.
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Mit Erfolg ließ sich dagegen 6 als Ausgangsver­
bindung zur Synthese von Di-l-adamantylchlor- 
phosphin 5 nutzen. So führte die Umsetzung von
6 mit Phosphortrichlorid bei Raumtemperatur in 
allerdings nur geringer Ausbeute zur Bildung die­
ser Verbindung (Schema 2). Di-l-adamantylchlor- 
phosphin 5 ist ein farbloser, bei 148-150 °C 
schmelzender Feststoff. Sein r)(P)-Wert entspricht 
mit 140,93 ppm nahezu dem von A. M. Pinchuk 
et al. für diese Verbindung ermittelten ([43]: 
139,47 ppm). Er ist gegenüber dem von (fBu)2PCl 
nur geringfügig zu hohem Feld verschoben 
(Tab. IV). Das 13C-NMR-Spektrum weist die zu 
erwartenden vier Signale auf (Tab. III); es sind 
Kopplungen bis V(PC) zu beobachten. Das Mas­
senspektrum zeigt das Molekülion bei m /z 336 und 
als Basispeak das 1-Adamantylkation bei m/z 135.

Die Umsetzung von 6 mit Tetrachlor-ortho-ben- 
zochinon (TOB) in siedendem 1,2-Dichlorethan 
führte zur Bildung des ortho-Hydroxy-tetrachlor- 
phenylesters der Di-l-adamantylphosphinsäure 
(Schema 2). Die Bildung eines Intermediats mit 
pentakoordiniertem Phosphoratom konnte 31P- 
NMR-spektroskopisch zu keiner Zeit beobachtet 
werden. Das 'Butylanalogon dieser Verbindung 
wurde durch Hydrolyse des TOB-Adduktes an 
Di-fbutylfluorphosphin [44] erhalten (Gl. (5)).

ci

Beide Verbindungen (R = 1-Ad: 15, R = rBu: 
16) sind farblose Feststoffe, die in Lösungsmitteln 
wie CH2C12 oder CHC13 gut löslich sind. Die (3(P)- 
Werte der Verbindungen 15 und 16 differieren um
11,5 ppm, wobei das Signal der 1-Adamantylver- 
bindung 15 bei höherem Feld liegt (Tab. IV). Ne­
ben den Signalen der Protonen der Alkylgruppen 
lassen sich im 'H-NMR-Spektrum die Resonanzen 
der OH-Protonen beobachten. Deren starke Tief- 
feldverschiebung (15: 11,19: 16: 11,76) wird zwei­
fellos durch den starken Elektronenzug der an den 
Phenylring gebundenen vier Chloratome und 
möglicherweise auch durch inter- oder intramole­
kulare Assoziation über Wasserstoffbrückenbin- 
dungen bedingt [45]. In den Massenspektren bei­
der Verbindungen lassen sich neben den Molekül­
ionen (15: m /z 562; 16: m /z 406) zahlreiche chlor­

haltige Fragmente beobachten. Die Basispeaks 
werden im Fall von 15 durch [C10H 15]+, in dem 
von 16 durch [C4H9]+ hervorgerufen.

Experimenteller Teil

Die Arbeitsbedingungen entsprachen den in 
[46] angegebenen. Die verwendeten Chemikalien 
waren im Handel erhältlich bzw. am Institut vor­
handen. Folgende Verbindungen wurden nach Li­
teraturangaben dargestellt: l-A dP (:0 )C l2 [47], 
'B uP(:0)C L [19], C1,CC(:0)H [48], Me7NSiMe3 
[49], ('Bu)2PF-TOB [44].

Mit i.V. ist nachstehend ein Druck von 0,1 mm 
Hg bezeichnet.

Sämtliche NMR-Spektren wurden in CDC13 als 
Lösungsmittel aufgenommen. Die 13C-, 19F- und 
31P-NMR-Spektren waren durchwegs protonen­
entkoppelt.

Di-l-adamantylphosphinsäurechlorid (1)
Ein Gemisch von 200 g (1,47 mol) Adamantan, 

210 g (1,57 mol) Aluminiumtrichlorid und 650 ml 
Phosphortrichlorid wurde 5 h unter Rückfluß er­
hitzt. Anschließend wurde überschüssiges PC13 ab­
destilliert, bis ein zäher Brei zurückblieb. Dieser 
wurde in 1,5 1 Chloroform suspendiert, die Sus­
pension auf 0 °C abgekühlt und vorsichtig mit 1 1 
Eiswasser zersetzt. Dann wurden die Phasen ge­
trennt und die organische Phase mit Na2S 0 4 ge­
trocknet. Nach dem Abfiltrieren des Feststoffs 
wurde das Lösungsmittel i.V. (10mm Hg) ab­
destilliert und der verbliebene farblose Feststoff
i.V. getrocknet. Ausbeute: 223,6g (86,2%); Fp.: 
196 °C (197-199 °C [11]). Für eine Röntgenstruk­
turanalyse geeignete Kristalle wurden durch A b­
kühlen einer bei 70 °C gesättigten Lösung von 1 
in Toluol auf -18  °C nach 3 d erhalten.

C20H30a O P  (352,88)
'H-NMR (CDC13): 1,74-2,15 [m, 30 H, C10H 15].

-  MS (70 eV): m/z (%) = 352 (3) [M]+, 318(1) 
[M -C l+H ]+, 183 (< 1) [M -C 1-C 10H 14]+, 135 (100) 
[C,„H15] \

Kristallstrukturanalyse von (l-A d )2P(: 0 )C I  (1)
Kristalldaten: C2oH3()C10P, M = 352.9, triklin, 

Raumgruppe PT, a = 673,0(2), b = 1214,5(4), c = 
1226,3(4) pm, u = 65,35(2), ß  = 75,68(3), y = 
85,43(3)°, U = 0,8824 nm3, Z = 2, D , = 
1,328 M gm -3, a(M o-K „) = 71,073 pm, n = 
0.31 m m '1, F(000) = 380, T = -100 °C.

Datensammlung und -reduktion: Ein farbloses 
Prisma ca. 0,6x 0,3 x 0,3 mm wurde auf einem
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Glasfaden mit Inertöl (Typ RS 3000, Geschenk der 
Fa. Riedel de Haen) montiert und in den Kaltgas- 
strom des Diffraktometers (Siemens R 3 mit LT-2- 
Tieftemperaturzusatz) gebracht. Bis 2 #max 50° 
wurden 3396 Intensitäten gemessen, von denen 
3107 unabhängig (Rmx 0,016) waren. Gitterkon­
stanten wurden aus Diffraktometerwinkeln von 50 
Reflexen im 2 Ö-Bereich 20-23° verfeinert.

Strukturlösung und -Verfeinerung: Das Pro­
grammsystem „SHELXL-92“ wurde verwendet. 
Die Struktur wurde mit direkten Methoden gelöst 
und anisotrop an F2 verfeinert. Wasserstoffatome 
wurden mit einem Riding-Modell berücksichtigt. 
Das endgültige wR(F2) war 0.148. mit konventio­
nellem R(F) 0,049. 208 Parameter; S = 1.2; max. 
A/o  < 0,001; max. Aq = l,0x  IO-6 epm -3. Die 
Atomkoordinaten und äquivalenten isotropen 
Auslenkungsparameter sind in Tab. V angegeben.

Tab. V. Atomkoordinaten (xlO4) und äquivalente iso­
trope Auslenkungsparameter (pm2xl0 ') für 1.

Atom X y z u eq

P 602.5(11) 2814.3(6) 3039.2(7) 28.6(2)
Cl 216.4(13) 4648.5(7) 2268.0(7) 43.4(3)
O -1420(2) 2153(2) 3421(2) 26.8(4)
C(l) 2305(4) 2567(2) 1729(2) 24.1(6)
C(2) 4370(5) 3260(3) 1151(3) 33.0(6)
C(3) 2699(4) 1187(2) 2178(2) 27.7(6)
C(4) 3866(4) 912(2) 1072(3) 30.8(6)
C(5) 5537(5) 2968(3) 55(3) 36.3(7)
C(6) 4270(5) 3344(3) -924(3) 37.5(7)
C(7) 2228(5) 2644(3) -355(3) 32.6(6)
C(8) 1035(4) 2929(3) 735(3) 31.7(6)
C(9) 5911(4) 1604(3) 507(3) 36.8(7)
C(10) 2585(5) 1278(3) 109(3) 32.4(6)
C(l') 1660(4) 2613(2) 4356(2) 23.0(5)
C(2') 1844(5) 1241(2) 5124(2) 31.5(6)
C(3') 4573(4) 1694(3) 5959(3) 34.0(7)
C(4') 2495(5) 1050(2) 6307(2) 34,4(7)
C(5') 718(4) 2925(3) 6340(3) 33,1(7)
C(6') 2770(4) 3568(3) 5988(3) 32,5(6)
C(7') 4375(4) 3059(3) 5214(2) 29,4(6)
C(8') 45(4) 3118(3) 5165(3) 31,7(6)
C(9') 897(5) 1558(3) 7088(3) 37.3(7)
C(10') 3747(4) 3256(2) 4021(2) 27.7(6)

Weitere Einzelheiten zur Röntgenstrukturana­
lyse (H-Atomkoordinaten, Bindungslängen und 
-winkel, anisotrope Auslenkungsparameter, Struk­
turfaktoren) wurden deponiert beim Fachinforma- 
tionszentrum Karlsruhe, Gesellschaft für wissen­
schaftlich-technische Information mbH, D-76344 
Eggenstein-Leopoldshafen. Dieses Material kann 
dort unter Angabe eines vollständigen Literatur­
zitats sowie der Deponiernummer CSD 400644 an­
gefordert werden.

Di-l-adamantylphosphinsäurefluorid (2)
Eine Mischung von 3,53 g (10 mmol) 1, gelöst in 

40 ml Toluol und 3,8 g (21,3 mmol) SbF3 wurde 3 h 
unter Rückfluß erhitzt. Dann ließ man absitzen, 
trennte die überstehende klare Lösung mit einer 
Spritze ab und entfernte von dieser das Lösungs­
mittel i.V. Der verbliebene farblose Feststoff (2) 
wurde zweimal aus Hexan umkristallisiert. Aus­
beute: 2,72 g (80,8%); Fp.: 141 °C.

C20H wFOP (336,43)
Ber. C 71,40 H 8,99 P9,21%,
Gef. C 71,83 H 9,73 P9,42%.

'H-NMR (CDC13): 1,75-2,06 [m. 30 H, C 10H 15].
-  MS (70 eV): m /z (% ) = 336(6) [M]+, 201 (9) 
[M -C 1()H 15]+, 185 (4) [M -C 10H 15-O ]+, 135 (100) 
[Ci()H15]+.

Di-1 -adamantylthiophosphinsäurechlorid (3)
Ein Gemisch von 10,6 g (30 mmol) 1 und 15 g 

(33,7 mmol) P4Si0 in 130 ml Xylol wurde 3 d unter 
Rückfluß erhitzt. Anschließend wurde auf R.T. ab­
gekühlt, der ausgefallene Feststoff abfiltriert, die 
Lösung viermal mit jeweils 100 ml Wasser gewa­
schen und über Na2S 0 4 getrocknet. Nach dem 
Abfiltrieren des Na2S 0 4 wurde aus dem Filtrat das 
Lösungsmittel i.V. entfernt, wobei 3 als farbloser 
Feststoff zurückblieb. Dieser wurde durch Umkri­
stallisieren aus 2-Butanon/CHCl3 (1:1) gereinigt. 
Ausbeute: 7,4 g (66,8%); Fp.: 226 °C.

C2oH30CIPS (368,95)
Ber. C 65,11 H 8,20 S 8,69%,
Gef. C 65,25 H 8,31 S 8,52%.

'H-NMR (CDC1,): 1,71-2,20 [m, 30 H, C 1()H 15].
-  MS (70 eV): m /z (% ) = 368 (5) [M]+, 333 (<1) 
[M -C l]+, 202 (1) [C10H 15SC1]+, 135 (100) 
[Ck)H15]+.

Di-1 -adamantylthiophosphinsäurefluorid (4)
Ein Gemisch von 1,84 g (5 mmol) 3 und 7 g 

(53,1 mmol) AsF3 in 10 ml Toluol wurde 5 h unter 
Rückfluß erhitzt. Dann wurden weitere 10 ml To­
luol zugesetzt, das Reaktionsgemisch filtriert und 
vom Filtrat das Lösungsmittel i.V. entfernt, wobei 
ein farbloser Feststoff zurückblieb, der durch Um­
kristallisation aus CH2C12 gereinigt wurde. Aus­
beute: 1,26 g (71,6%); Fp.: 207 °C.

C20H wFPS (352,50)
Ber. C 68,15 H 8,58 S9,10%.
Gef. C 66,99 H 8,54 S9.28%.
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'H-NMR (CDC13): 1,71-2,18 [m, 30 H, C1QH 15].
-  MS (70 eV): m/z (% ) = 352 (7) [M]+, 135 (100) 
[Ci0H 15]+.

Versuch der Darstellung von Di-1 -adamantylchlor- 
phosphin (5) durch Entschwefelung von 3 mit Tri­
phenylphosphin

Ein Gemisch von 3,68 g (10 mmol) 3 und 2,70 g 
(10,3 mmol) Triphenylphosphin in 80 ml Xylol 
wurde 3 d unter Rückfluß erhitzt. 31P-NMR-spek- 
troskopisch ließen sich danach lediglich die 
Edukte beobachten, worauf das Lösungsmittel i.V. 
entfernt wurde und das Gemisch aus 3 und Ph3P
4 h auf 200 °C erhitzt wurde. Auch danach ließ 
sich 31P-NMR-spektroskopisch keine Bildung von
5 oder Ph3P(:S) nachweisen, so daß der Versuch 
abgebrochen wurde.

Di-1 -adamantylphosphinoxid (6)

a) Zu 20 ml einer 1,5 M Lösung von 'Butyl- 
lithium in Pentan (entsprechend 30 mmol 'BuLi) 
wurde bei -10  °C eine Lösung von 3,0 g 
(8,5 mmol) 1 in 60 ml Toluol innerhalb von 1 h zu­
getropft. Anschließend ließ man auf R.T. erwär­
men und rührte 5 d. Danach wurden 100 ml H20  
zugesetzt, 1 h gerührt, die organische Phase abge­
trennt, von dieser das Lösungsmittel i.V. entfernt 
und der verbliebene farblose Feststoff i.V. ge­
trocknet. Dieser wurde ’H- und 31P-NMR-spek- 
troskopisch als Di-l-adamantylphosphinoxid 6 
identifiziert. Ausbeute an 6: 1,94 g (71,6%); Fp.: 
246 °C ([5]: 251 °C).

C20H3IO P (318,44)

’H-NMR (CDC13): 1,51-1,93 [m, 30 H, C10H n ],
5,56 [d, 1 H, P (:0 )H , ’/(P H ) 426,80 Hz],

b) Ein Gemisch von 3,53 g (10 mmol) 1 und
0,23 g (10 mmol) Natrium in 130 ml Toluol wurde
7 h unter Rückfluß erhitzt. Nachdem 3'P-NMR- 
spektroskopisch noch 1 beobachtet wurde, wurden 
weitere 0,3 g (13 mmol) Natrium zugesetzt und 
weitere 10 h unter Rückfluß erhitzt. Anschließend 
wurden dem Reaktionsgemisch 300 ml 0,1 M Salz­
säure unter Eiskühlung zugesetzt, das Gemisch 1 h 
bei R.T. gerührt, die Phasen getrennt und von der 
organischen Phase das Lösungsmittel i. V. entfernt. 
Der verbliebene farblose Feststoff (6) wurde i.V. 
getrocknet. Ausbeute: 2,17 g (68,1%); Fp.: 243 °C. 
Die ’H- und 3'P-NMR-spektroskopischen Daten 
entsprechen den oben für 6 angegebenen.

l-Adamantyl-('butyl)-phosphinoxid (7)

Zu einer Lösung von 12,75 g (50,4 mmol) 1-Ada- 
mantylphosphonsäuredichlorid in 100 ml Toluol 
wurden bei -1 0  °C innerhalb von 1 h 78 ml einer
1.5 M Lösung von 'Butyllithium in Pentan (ent­
sprechend 0,12 mol 'BuLi) getropft. Man ließ auf 
R.T. erwärmen, rührte 1 d, setzte danach 200 ml 
H20  hinzu und rührte das Gemisch 1 h. Dann 
wurden die Phasen getrennt, von der organischen 
Phase das Lösungsmittel i. V. entfernt und der zu­
rückgebliebene farblose Feststoff (7) zweimal aus 
«-Hexan umkristallisiert. Ausbeute: 8,13 g (67,1%); 
Fp.: 102 °C.

CI4H25O P (240,32)
Ber. C 69,97 H 10,48%,
Gef. C 70,33 H 10,31%.

'H-NM R (CDC13): 1,23 [d, 9 H, C(CH3)3, 
3/(P H ) 14,83], 1,74-1,97 [m, 15 H, C 10H 15], 5,82 
[d, 1H, P (:0 )H , '/(P H ) 425,83], -  3,P-NMR 
(CDC13): 63,55 [s]. -  MS (70 eV): m /z (% ) = 
240(6) [M]+, 184(3) [M -C 4H8]+, 135 (100) 
[C10H 15] \  57 (8) [C4H »r.

D iJbutylphosphinoxid (8)

Die Umsetzung wurde analog der obigen durch­
geführt. Ansatz: 19,25 g (0,11 mol) 'Butylphos- 
phonsäuredichlorid in 100 ml Toluol, 150 ml einer
1.5 M Lösung von 'Butyllithium in Pentan (ent­
sprechend 0,23 mol 'BuLi). Di-^utylphosphinoxid
8 wurde durch Umkristallisieren aus «-Hexan ge­
reinigt und anhand seines Schmelzpunktes sowie 
’H- und 3'P-NMR-spektroskopisch identifiziert. 
Ausbeute an 8: 9,6 g (53,8%); Fp.: 65 °C ([33]: 
65-67 °C).

C8H 19O P (162,21)

'H-NM R (CDC13): 1,09 [d, 18 H, C ^ C H ^ , 
3/(P H ) 14,97], 5,88 [d, 1H, P (:0 )H , ’/(P H ) 
427,16].

Di-1 -adamantyl-(l -hydroxy-2,2,2-trichlorethyl)- 
phosphinoxid (9)

Zu einer Lösung von 1,45 g (4,6 mmol) 6 in 
30 ml CH2C12 wurden bei R.T. 0,7 g (4,7 mmol) 
Chloral in 10 ml CH2C12 innerhalb von 10 min zu­
getropft und das Gemisch 5 d bei R.T. gerührt. 
Anschließend wurde der ausgefallene farblose 
Feststoff abfiltriert, dreimal mit je 5 ml E t20  ge­
waschen und i.V. getrocknet. Ausbeute an 9: 1,64 g 
(76,5%); Fp.: 172-174 °C (Zers.).
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C 22 H 32 C l 3 0 2 P  (465,83)
Ber. C 56,73 H 6,92%,
Gef. C 54,63 H 6,94%.

'H-NM R (CDC13): 1,78-2,14 [m, 30 H, C 10H 15], 
4,78 [s, 1H, CH(OH)(CCl3)], 5,30 [s, 1H, 
CH(OH )CCl3], -  MS (70 eV): m/z (%) = 352 (< 1) 
[M -H O C (H )C C l2]+, 318 (13) [M-C13CC(: 0 ) H ] \  
146 (4) [C13CC(: 0 )H ]+, 135 (100) [C10H 15]+, 82 (3) 
[CC12] \

Di-'butyl-(l-hydroxy-2,2,2-trichlorethyl)- 
phosphinoxid  (10)

Die Umsetzung wurde analog der obigen durch­
geführt. Ansatz: 1,0 g (8,8 mmol) 8 in 10 ml 
CH2C12, 1,3 g (8,8 mmol) Chloral in 10 ml CH2C12. 
Reaktionsdauer: 3 d. Ausbeute an 10: 2,26 g 
(83,0%); Fp.: 154 °C (Zers.).

C1oH20C130 2P  (309,60)
Ber. C 38,80 H6,51% ,
Gef. C 38,49 H6,41% .

'H-NM R (CDC13): 1,27 [d, 18 H, C(CH3)3, 
V(PH) 14,97], 4,79 [s, 1 H, CH(OH)CCl3], 5,30 [s,
1 H, CH(OH)CCl3]. -  MS (70 eV): m/z (% ) = 252 
(<1) [M -C 4H8]+, 218 (<1) [M -C 4H 7C1]+, 197 
(<1) [M -H O C(H )CCL + H]+, 162(17) 
[M-C13C C (:0 )H ]+, 146(1) [C13C C (:0)H ]+,
106 (42) [M -C13C C (:0 )H -C 4H8]+, 82 (17) 
[CC12]+, 57 (100) [C4H9]+.

Darstellung von Di-1 -adamantylphosphinsäure- 
trimethylsilylester (11)

Unter einer Atmosphäre trockener Luft wurden 
zu einer Lösung von 1,59 g (5,0 mm) 6 in 10 ml 
Xylol bei R.T. 10 ml Me2NSiMe3 gegeben und das 
Gemisch 3 h unter Rückfluß erhitzt. Anschließend 
wurden die flüchtigen Bestandteile des Reaktions­
gemisches i.V. entfernt und der verbliebene farb­
lose Feststoff i.V. getrocknet und danach aus 
Hexan umkristallisiert. Ausbeute an 11: 1,84 g 
(90,6%); Fp.: >240 °C.

C2iH i90 2PSi (406,62)
Ber. C 67,94 H 9,67%,
Gef. C 67,01 H 8,88%.

'H-NM R (CDC13): 0,27 [s, 9 H, Si(CH3)1], 1,69-
2,01 [m, 30 H, C 10H 15], -  MS (70 eV): m /z (%) = 
406 (5) [M]+, 334 (4) [M -Si(C H 3)3 + H]+, 318 (12) 
[M- OSi(CH3)3 + H]+, 135 (100) iC10H 15]+, 43 (14) 
[SiCH3]+.

Darstellung von Di-1 -adamantylphosphinsäure (12)

Ein Gemisch von 1,5 g (3,7 mmol) 11 in 20 ml 
Toluol und 20 ml 1 M Natronlauge wurde 14 h bei 
40 °C intensiv gerührt. Anschließend wurden die 
Phasen getrennt, von der organischen Phase das 
Lösungsmittel i.V. entfernt und der verbliebene 
farblose Feststoff aus Essigsäure/Aceton (1:1) 
umkristallisiert. Ausbeute an 12: 0,86 g (69,5%); 
Fp.: >300 °C.

C20H3IO2P (334,44)
Ber. C 71,83 H 9,34%,
Gef. C 71,29 H 9,90%.

'H-NM R (CDC13): 1,67-1,98 [m, 30 H, C 10H 15],
7,31 [s, 1H, P (:0 )0 H ]. -  31P-NMR (CDC13):
57,02 [s], -  MS (70 eV): m /z (% ) = 334 (26) [M]+,
135 (100) [C10H 15]+.

Versuch der Darstellung von Di-1-adamantylphos­
phinsäure (12) durch saure Hydrolyse von 1

Ein Gemisch von 1,83 g (5,2 mmol) 1 in 30 ml
1,2-Dichlorethan, 20 ml Ethanol und 20 ml konz. 
Salzsäure wurde 16 h unter Rückfluß erhitzt. Der 
Versuch wurde abgebrochen, nachdem 3'P-NMR- 
spektroskopisch ausschließlich das Eduktsignal 1 
beobachtet wurde.

Darstellung von Di-1 -adamantylphosphinsäure- 
trimethylsilylester (13)

Zu einer Lösung von 3,18 g (10 mmol) 6 in 
100 ml Toluol werden bei R.T. 20 ml einer 1,6 M 
Lösung von n-BuLi in Hexan (entsprechend 
32 mmol n-BuLi) gegeben und das Gemisch 4 h 
bei dieser Temperatur gerührt. Anschließend 
wurde auf -1 0 °C  gekühlt und innerhalb von 
10 min 4 g (36,8 mmol) Trimethylchlorsilan in 
10 ml Toluol zugetropft. Man ließ auf R.T. erwär­
men, rührte 2 h, filtrierte ausgefallenes Lithium­
chlorid ab und entfernte vom Filtrat das Lösungs­
mittel i.V. Der verbliebene farblose Feststoff 
wurde aus Hexan umkristallisiert. Ausbeute an 13:
2,41 g (61,7%); Fp.: 184 °C.

C2,H ,9OPSi (390,62)
Ber. C 70,72 H 10,06%,
Gef. C 69,82 H 9,42%.

'H-NM R (CDC13): 0,17 [s, 9 H, S ^ C H ^ ], 1,70-
2,00 [m, 15 H, C10H 15]. -  MS (70 eV): m /z (% ) = 
390(17) [M]+, 375 (3) [M -C H 3]+, 347(2) 
[M -SiC H 3]+, 256(4) [M -C 10H 15 + H]+, 135 (100) 
[C,oH15]+, 73 (11) [Si(CH3)3]+.
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Versuch der Darstellung von (Di-1 -adamantyl- 
phosphinigsäure)-pentacarbonylmolybdän(O) (14)

Ein Gemisch von 1,59 g (5 mmol) 6 und 1,43 g 
(5,4 mmol) M o(CO)6 in 30 ml Xylol wurde 4 h un­
ter Rückfluß erhitzt. Da weder die Abspaltung 
von Kohlenmonoxid noch im 31P-NMR-Spektrum 
ein anderes Signal als das von 6 beobachtet wer­
den konnte, wurde der Versuch abgebrochen.

Di-1 -adamantylchlorphosphin (5)
Bei 0 °C wurden zu 40 ml Phosphortrichlorid

1,09 g (3,4 mmol) Di-l-adamantylphosphinoxid 6 
gegeben, das Gemisch auf R.T. erwärmt und 24 h 
bei dieser Temperatur gerührt. Anschließend ließ 
man absitzen und entfernte die überstehende Lö­
sung mit einer Spritze. Von dieser Lösung wurde 
das Lösungsmittel i.V. entfernt und der verblie­
bene gelbweiße Feststoff aus PCl3/Hexan (1:1) 
umkristallisiert, wobei man 0,32 g (27,9%) 5 als 
farblosen Feststoff erhielt; Fp.: 148-150 °C.
C,„H V)CIP (336,88)

Ber. 336,1774 
Gef. 336,1773 (MS).

'H-NMR (CDC13): 1,66-2,11 [m, 30 H, C10H 15].
-  MS (70 eV): m /z (% ) = 336 (3) [M]+, 301 (<1) 
[M -C l]+, 135 (100) [C1()H 15]+.

Bildung von Di-1 -adamantylphosphinsäure- 
o-hydroxy-tetrachlorphenytester (15)

Ein Gemisch von 1,06 g (3,3 mmol) 6 und 0,82 g 
(3,3 mmol) TOB in 70 ml 1,2-Dichlorethan wurde
7 h unter Rückfluß erhitzt, auf R.T. abgekühlt und 
filtriert. Anschließend wurde das Filtrat i.V. auf 
etwa 20 ml eingeengt und der nach 1 d bei -20  °C 
ausgefallene Feststoff abfiltriert, i.V. getrocknet 
und aus CH2C12 umkristallisiert. Ausbeute an 15:
0,76 g (40,8%); Fp.: 198 °C (Zers.). Trotz weiterer

Umkristallisationsversuche aus THF, Toluol und 
CH3CN konnte 15, obwohl 'H - und 31P-NMR- 
spektroskopisch einheitlich, nicht analysenrein er­
halten werden.
C26H31C140 3P (564,32)

'H-NM R (CDC13): 1,74-2,13 [m, 30 H, C 10H 15],
11,19 [s, 1H, OH]. -  MS (70 eV): m/z (% ) = 
562 (18) [M]+, 527 (9) [M -C l]+, 428 (<1) 
[M -C 10H 1S + H]+, 319 (6) [M -C 6C140 ,  + H]+,
246 (9) [ 0 ,0 .0 , ] * ,  135 (100) [C,„H15] \

Darstellung von Di-'butylphosphinsäure-
o-hydroxy-tetrachlorphenylester (16)

Zu einer Lösung von 1,6 g (3,9 mmol) Di-rbutyl- 
(tetrachlorcatechyl)fluorphosphoran in 60 ml 
CH2C12 wurde bei R.T. 1 ml Wasser gegeben und 
das Gemisch 3 d bei R.T. gerührt. Anschließend 
ließ man das Lösungsmittel bei Atmosphären­
druck langsam verdampfen, wobei sich nach 4 d 
farblose Kristalle von 16 abschieden. Nach 5 d 
wurde der ausgefallene Feststoff abfiltriert und
i.V. getrocknet. Ausbeute an 16: 1,13 g (71,0%); 
Fp.: 107-110 °C.
C14HI9C140 ,P  (408,09)

Ber. C 41,21 H 4,69 CI 34,75%,
Gef. C 41,27 H 4,65 CI 34,96%.

'H-NM R (CDC13): 1,36 [d, 18 H, C(CH 3), 
-V(PH) 15,67], 11,76 [s, 1H, OH]. -  MS (70 eV): 
m /z (%) = 406(32) [M]+, 350 (19) [M -C 4H 8]+,
292 (11) [M -C 4H9]+, 247 (<1) [C6C140 ,  + H]+, 
161 (11) [M -C 6C140 2-H ]+, 105 
[M -C 6C140 2- C 4H 8]+, 57 (100) [C4H9]+.
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