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N a i7G a29ln 12 (a = 2178.5(5) pm , F d3m , Z  = 8, R  = 0.081) and K 17In41 (a = 2424.1(5) pm, 
Fd 3 m, Z  = 8, R = 0.060) have been prepared from the elem ents and characterized by single 
crystal X-ray m ethods. N a17G a29ln i2 is a ternary variant of K 17In4]. The crystal structure of 
N a 17G a29ln 12 contains G a 12 icosahedra (In12 icosahedra in K 17In41) and truncated  In 12 tetra- 
hedra which are four-capped and centred by additional Ga atom s (In atom s in K 17In41). The 
packing of icosahedra and truncated  te trahedra leads to in terpenetrating  Samson polyhedra. 
The G a 12 icosahedra (In 12 icosahedra in K 17In41) take the Cu positions of the M gCu2 type, 
the In 12 clusters take the positions of the Mg atom s of this structure type. The alkali atoms 
in N a i7G a29In 12 and K 17In41 occupy the deltahedral faces of the icosahedra and form  pentag­
onal dodecahedra.

Einleitung

Die Kristallstrukturen der binären Verbindun­
gen der Alkalimetalle mit Elementen der III. 
Hauptgruppe lassen sich in vier Gruppen eintei­
len. Die Kristallstrukturen von Verbindungen des 
Lithiums mit Aluminium, Indium und Thallium 
leiten sich mehrheitlich vom a-Wolfram-Typ ab 
[1-4]. Verbindungen der Zusammensetzung 1:1, 
LiX (X -  Al, Ga, In) [5, 6], Naln [7], NaTl [8] 
sowie Na2In [9] und Na2Tl [10] lassen sich als 
Zintl-Phasen auffassen. NaGa4 [11], KIn4 [12] und 
Rbln4 [12] kristallisieren im BaAl4-Typ. In den 
alkaliarmen Gallium-Verbindungen [13] schließ­
lich treten in den Anionenteilstrukturen Ga-Clu- 
ster auf, die direkt oder über zusätzliche drei- bzw. 
vierbindige Erdmetallatome zu dreidimensionalen 
Raumnetzen verknüpft sind. Diese Verbindungen 
lassen sich überwiegend nach den Wade-Regeln 
[14] in Kombination mit der (8-N)-Regel als elek- 
trovalent interpretieren und können somit im wei­
testen Sinne den Zintl-Phasen zugerechnet wer­
den.
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In jüngster Zeit sind Verbindungen der schwe­
ren Homologen der Erdmetalle in den Vorder­
grund des Interesses gerückt, um den Einfluß des 
zunehmenden metallischen Charakters auf die 
Bindungsverhältnisse zu untersuchen.

Erste Ergebnisse bei Alkalimetall-Indiden und 
-Thalliden führten zu den Verbindungen M8X n 
(M = K, Rb; X = In, TI) [17, 18] mit isolierten 
[Xn ]7- -Clustern, in welchen für die beobachtete 
metallische Leitfähigkeit pro Formeleinheit ein 
zusätzliches überschüssiges Elektron verantwort­
lich gemacht wird. Ein „Zuviel“ an Elektronen 
wird auch in Na7In n .8 [19] und Na495In922 [20] 
(Na15In27,4) [9] gefunden. Die Kristallstruktur der 
ebenfalls nicht elektrovalenten Verbindung 
K49T1108 [21] weist als Baueinheit ein Tl84-Samson- 
Polyeder auf. In den Kristallstrukturen von N a17_ 
Ga29In 12 und K 17In41, über deren Darstellung und 
Struktur im folgenden berichtet wird, treten neben 
abgestumpften Tetraedern und Ikosaedern gleich­
falls Samson-Polyeder aus In- bzw. Ga- und In- 
Atomen auf, die zu einem Raumnetz verknüpft 
sind.

Darstellung

Zur Darstellung von N a17Ga29In 12 wurden G e­
menge der Elemente Natrium, Gallium und In­
dium im molaren Verhältnis 1:1:1 unter Argon
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in Korundtiegel eingewogen, mit 50 K/h auf 970 K 
aufgeheizt und innerhalb von 40 h auf Raumtem­
peratur abgekühlt. Zur Darstellung von K 17In41 
wurden Gemenge der Elemente im molaren Ver­
hältnis 3:7 in evakuierten, abgeschmolzenen 
Quarzglasampullen bei 970 K homogenisiert, in 
flüssigem Stickstoff abgeschreckt und anschlie­
ßend acht Wochen bei 400 K getempert.

In allen Fällen entstanden silber-metallisch 
glänzende und spröde Reguli, aus denen sich mu­
schelig brechende Einkristalle isolieren ließen. 
Röntgenpulveraufnahmen zeigten neben den Re­
flexen von Na17Ga29ln 12 zusätzliche Reflexe von 
NaGa4 und elementarem Indium bzw. neben den 
Reflexen von K 17In41 schwache Linien von KIn4 
und Indium. Alle Proben sind sehr hydrolyse­
empfindlich und zersetzen sich auch unter ge­
trocknetem Paraffinöl innerhalb kurzer Zeit zu 
nicht näher charakterisierten Produkten.

Strukturbeschreibung

Die Kristallstrukturen von N a17Ga29ln 12 (a = 
2178,5(5) pm), Fd3m , Z = 8 , R = 0,081) und 
K 17In41 (a = 2424,1(5) pm, Fd 3 m, Z = 8 , R = 0,06) 
sind isotyp; nähere Angaben zur Kristallstruktur- 
bestimmung beider Verbindungen finden sich in 
[22, 23]. In diesen Publikationen wurden korre­
spondierende Atomlagen unterschiedlich bezif­
fert; zusätzlich sind die Koordinatensprünge um 
(1/2 1/2 1/2) gegeneinander verschoben. Zum 
besseren Vergleich sind deshalb in Tab. I die 
standardisierten [24] Atom param eter beider Ver­
bindungen aufgeführt. Die G a-G a-A bstände in 
Na17Ga29In12, die als bindende Wechselwirkungen 
definiert werden (vgl. Tab. II), liegen zwischen 
262,1(4) und 274,3(3) pm und sind mit den A b­
ständen in Li2Ga7 [25] von 254,7 bis 273,5 pm oder 
Na7G a13- I  [11] von 257,1 bis 286,8 pm vergleich­
bar. Die entsprechenden Abstände In - In  in 
N a17Ga29In 12 und K 17In41 (vgl. Tab. II) überstrei­
chen einen Bereich von 295,6(2) bis 335,3(3) pm 
und sind mit den Abständen in K21 33In3967 [26] 
von 286,8 bis 327,0 pm bzw. K8In n [17] mit 296,6 
bis 328,7 pm in guter Übereinstimmung. Die 
Struktur wird im folgenden am Beispiel von 
N a17G a29In 12 beschrieben.

Je sechs Ga 1- und Ga2-Atome bilden G a]2-Iko- 
saeder (Abb. 1) mit G a-G a-A bständen von 
266,6(4) bis 274,3(3) pm, wobei die Ga2-Atome

Tab. I. Atomparameter und Auslenkungsparameter 
[pm2] von Na17Ga29lni2 und K17In4I in der Standardauf­
stellung [24]*.

N a 17G a29In 12 K i7In4i

0,03810(3) 
0,38625(5)
Ueq -  183(4) 
0,08189(3) 
0,49215(5)
Ueq = 174(4) 
0,4515(7)
Ueq -  349(6)

Ueq = 267(10) 
0,08082(4) 
0,25945(6)
Ueq = 329(6) 
0,3128(1) 
0,1199(2)
UeQ = 337(17) 
0,2766(2)
Ueq -  221(12)

Ueq = 161(22)

* Weitere Angaben zu den Strukturanalysen können 
beim Fachinformationszentrum Karlsruhe, Gesellschaft 
für wissenschaftlich-technische Information mbH, 
D-76344 Eggenstein-Leopoldshafen, unter Angabe der 
Hinterlegungsnummern CSD 370037 (Nai7Ga29In12) 
bzw. CSD 370038 (Ki7In41), der Autoren und des Zeit­
schriftenzitats angefordert werden.

zwei im Ikosaeder gegenüberliegende Dreieckflä­
chen bilden und zu den Ga 2-Atomen benachbar­
ter Ikosaeder Abstände von 262,1(4) pm aufwei­
sen. Die bezüglich der beiden Ga2-Dreiecke in 
der Äquatorebene liegenden sechs G al-A tom e 
sind über „exo bonds“ mit sechs Inl-A tom en

Abb. 1. Ikosaeder in Na17Ga29Ini2 (K17In41), gebildet 
aus Gal-(Inl-) und Ga2-(In2-)Atomen.

Ga 1/In 1 x = 0,03608(1)
auf 96 g x x  z: z = 0,39096(1)

Ueq -  173(9)
Ga2/In2 x = 0,08247(1)

auf 96 g x x z: z = 0,49435(1)
Ueq = 150(8)

Ga 3/In 3 jc = 0,03989(1)
auf 32 e x x x: Ueq = 279(11)

Ga 4/In 4
auf 8 a 1/8 1/8 1/8: Ueq = 273(22)

In 1/In 5 x = 0,07598(1)
auf 96 g x x z: z = 0,27227(1)

Ueq = 171(6)
Nal/Kl x = 0,31547(3)

auf 96g x x z: z = 0,12946(5)
Ueq = 248(37)

Na2/K2 x = 0,28381(5)
auf 32 e x x x: Ueq = 304(43)

Na3/K3
auf 8 b 3/8 3/8 3/8: Ueq = 556(146)
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Tab. II. Wichtige A bstände [pm] und Winkel [°] in 
N ai7G a29In 12 und K 17In41.

Na 17Ga2yIn ]2 Ki7In41

Ga l(In 1 ) -G a 2 ( ln 2 )  
G a l  (In 1 ) -G a 2 ( ln 2 )

266,7(4)
272.8(4) 2*

297,4(2)
309,7(2) 2*

Ga l(In 1 ) -G a  1 (In 1) 274,3(3) 2* 318,4(1) 2*
G a l ( I n l ) - I n l ( I n 5 )  
G a l  (In l ) -N a 2 ( K 2 )  
Ga l(In 1 ) -N a  1(K 1)

286,3(3)
317,6(5)
330,6(5) 2*

340,5(2)
346,2(3)
368,1(5) 2*

Ga l(In 1 ) -N a  1(K 1) 331.4(5) 2* 375,9(5) 2 *

G a 2 ( I n 2 ) - G a l ( I n l ) - G a 2 ( I n 2 ) 105,8(1) 2* 101,8( 1) 2 *
G a 2 ( I n 2 ) - G a l ( I n l ) - G a l ( I n 2 ) 60,5(1) 2* 60,3(1) 2*

G a2(In 2 )-G a 2 (In 2 )  
G a 2 (In 2 )-G a  l(In 1) 
G a2(In 2 )-G a 2 (In 2 )

262,1(4)
266,7(4)
271,5(3) 2*

295,6(2)
297,4(2)
307,6(2) 2 *

G a 2 (In 2 )-G a  1 (In 1) 272,8(3) 2* 309,7(2) 2*
G a 2 (In 2 )-N a 3 (K 3 )
G a 2 (In 2 )-N a 2 (K 2 )

313,3(4)
321,3(4) 2*

354,3(1)
377,6(3) 2*

G a 2 ( I n 2 ) - N a l ( K  1) 336,8(4) 2* 393,4(5) 2*
G a 2 ( I n 2 ) -G a 2 ( I n 2 ) -G a  l(In 1) 
G a 2 (In 2 ) -G a 2 ( In 2 ) -G a 2 ( In 2 )

122,4(1)
120,0( 1) 2*

120,3(1)
120,0( 1) 2*

G a 2 ( I n 2 ) -G a 2 ( I n 2 ) -G a  l(In 1) 121,3(1) 2* 119,1(1) 2*
G a3(In 3 )-G a 3 (In 3 )
G a3(In 3 )-G a 4 (In 4 )
G a 3 ( In 3 ) - I n l ( I n 5 )

301(1)
321,1(6)
331,5(8) 6*

379,1(6)
335,3(3)
339,7(3) 6*

G a 3 (In 3 )-N a  1(K 1) 377(1) 3* 404,9(7) 3*

G a 3 ( In 3 ) -G a 3 ( In 3 ) -G a 4 ( In 4 )  
G a 4 (In 4 ) -G a 3 ( I n 3 ) - I n  l(In5)

179,9(1)
65,8(1) 6*

180,0(1)
64,3(1) 6*

G a4(In 4 )-G a 3 (In 3 ) 321,1(6) 4* 335,3(3) 4*
G a 4 (In 4 )- I n  l(In5) 354,6(6) 12* 359,4(3) 12*

G a 3 ( I n 3 ) -G a 4 ( I n 4 ) -G a 3 ( In 3 ) 109,5(1) 6* 109,5(1) 6*

In I ( ln 5 ) - G a  l(In 1) 
In I ( ln 5 ) - I n  l(In5)

286,3(3)
302,0(3) 2*

302,9(3)
309,5(3) 2*

In I ( ln 5 ) - I n  l(In5) 302,7(3) 2* 339,7(3) 2*
In I ( ln 5 ) -G a 4 ( ln 4 ) 331,5(4) 2* 340,5(2) 2*
In I ( ln 5 ) - N a  1(K 1) 333,1(5) 2* 359,4(3) 2*
In I ( ln 5 ) - N a  1(K 1) 336,5(5) 2* 370,6(3) 2*
In l ( I n 5 ) -N a 2 (K 2 ) 339,8(5) 2* 374,0(5) 2*

In 1 (In 5 ) - In 1( In 5 ) - In 1 (In 5) 120,0 ( 1) 2* 120,0( 1) 2*

Na 1(K l ) - G a l ( I n  1) 330,6(5) 2* 368,1(5) 2*
N a l ( K l ) - G a l ( I n  1) 331,4(5) 2* 375,9(5) 2*
Na 1(K 1 ) -In  l(In5) 333,1(5) 2* 374,0(5) 2*
Na 1(K 1 ) -In  l(In5) 336,5(5) 2* 390,7(5) 2*
Na 1(K 1 ) -G a 2 ( ln 2 ) 336,8(4) 2* 393,4(6) 2*
N a l ( K l ) - N a l ( K l ) 346(2) 2* 362,5(5) 2*
Na 1(K l ) -N a 2 ( K 2 )  
Na 1(K 1 ) -N a  1(K 1) 
Na 1(K 1 ) -G a 3 ( ln 3 )  
Na 1(K 1 ) -G a 3 ( ln 3 )

N a 2 ( K 2 ) - G a l ( I n l )

350(2)
366(2)
377(2)
378(2)

317,6(5) 3*

399,7(6)
425(1)
404,9(6)
412,7(6)

346,2(3) 3*
N a 2 (K 2 )-G a 2 (I n 2 ) 321,3(4) 6* 370,6(3) 3*
N a 2 ( K 2 ) - I n l ( I n 5 ) 339,8(5) 3* 377,6(3) 6*
N a 2 (K 2 ) -N a 3 (K 3 ) 343(1) 399,7(5) 3*
N a 2 (K 2 ) -N a  1(K 1) 350(2) 3* 413,1(7)

N a 3 (K 3 )-G a 2 (I n 2 ) 313,3(4) 12* 354,3(1) 12*
N a 3 (K 3 ) -N a 2 (K 2 ) 343(1) 4* 413,1(7) 4*

(d(Ga-in) = 286,3(3) pm) verbunden. Die G a-In - 
Bindungen sind mit der Summe der Elementra­
dien [27] von 285,8 pm vergleichbar. Je sechs Ga 2-

oder sechs In 1-Atome umgeben damit das zen­
trale G a12-Ikosaeder ikosaedrisch und sind gleich­
zeitig die Spitzen von zwölf pentagonalen Pyrami­
den. Von diesen werden je sechs ausschließlich aus 
Ga-Atomen (zwei Ga2, vier G a l)  und je sechs 
von vier In 1- und zwei Ga 3-Atomen gebildet. Be­
züglich des zentralen G a12-Ikosaeders ordnen sich 
je drei der aus Ga-Atomen gebildeten pentagona­
len Pyramiden über den zwei gegenüberliegenden 
Dreieckflächen aus Ga 2-Atomen an. Zusammen 
mit den sechs pentagonalen Pyramiden aus Ga- 
oder In-Atomen in der Äquatorebene resultiert 
ein (Ga,In)84-Samson-Polyeder (18 Ga 1+30 Ga 2 + 
12Ga3 + 2 4 In l; Abb. 2), das dem B84-Polyeder 
im /3-rhomboedrischen Bor [28] entspricht. Dieses 
Polyeder läßt sich in einer gleichwertigen Be­
schreibung durch Verknüpfung von 20 über drei 
gemeinsame Sechseckflächen verknüpfte, abge­
stumpfte (Ga,In)12-Tetraeder erzeugen. Die aus­
schließlich aus Ga-Atomen aufgebauten penta­
gonalen Pyramiden bilden die Kappen angrenzen­
der Ikosaeder, die gleichzeitig auch Zentren be­
nachbarter (Ga,In)84-Polyeder sind. Aus dieser 
Anordnung resultiert zum einen eine Durchdrin­
gung der Samson-Polyeder, zum anderen eine 
Verknüpfung der Samson-Polyeder über sechs 
gemeinsame Sechseckflächen (Abb. 3).

Abb. 2. Sam son-Polyeder aus 60 Ga- und 24 In-(84 In-)- 
A tom en in Na17Ga29In12 (K17In41). D as G a ,2-(In 12-)- 
Ikosaeder im Z entrum  ist als Polyeder dargestellt.
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Abb. 3. V erknüpfung zweier Sam son-Polyeder über eine 
gem einsam e Sechseckfläche in N a17G a29I n 12 (K ]7In41) 
sowie die beiden daraus resultierenden G a 12-(In12-)- 
Ikosaeder.

Diese A rt der Verknüpfung bedingt weiterhin 
ausschließlich aus In 1-Atomen gebildete abge­
stumpfte In12-Tetraeder mit In-In-A bständen von 
302,0(3) und 302,7(3) pm, die über G a l- In l-B in -  
dungen (d(Ga_In) = 286,3(3) pm) von zwölf G a12- 
Ikosaedern umgeben sind. Die G a12-Ikosaeder 
sind ihrerseits von sechs Ikosaedern und sechs ab­
gestumpften In12-Tetraedern umgeben. Über den 
vier Sechseckflächen des abgestumpften In 12-Poly- 
eders sind vier Ga 3- und im Zentrum ein Ga 4- 
Atom (Abb. 4) positioniert. Die Abstände 
In 1 - G a3 und In 1 - Ga 4 betragen 331,5(8) bzw. 
354,6(6) pm und sind damit bezüglich der Summe 
der Elementradien von 285,8pm (s.o.) erheblich 
aufgeweitet. Ebenfalls deutlich länger als im Ele­
ment (größter Abstand 279,2 pm [27]) sind die 
Abstände der Ga-Atome untereinander. So bilden 
die Ga 4-Atome in den Zentren der In12-Tetraeder 
mit den vier die Sechseckflächen überkappenden 
Ga3-Atomen große GaG a4-Tetraeder (dGa4_Ga3 = 
321,1(6) pm), die durch kürzere G a3-G a3-W ech- 
selwirkungen (dGa3_Ga3 = 301(1) pm) mit benach­
barten G aGa4-Tetraedern eckenverknüpft sind 
(vgl. Abb. 4).

Eine Berücksichtigung der Ga-Atome über den 
Sechseckflächen und im Zentrum führt zu Ga-zen-

O Ga
O ln

Abb. 4. A bgestum pftes T etraeder in N a17G a29In 12 
(K 17In41) aus In l-(In 5 -)A to m en  mit G a4-(In4-)A to - 
men im Z entrum  und G a3-(In3-)A tom en  über den vier 
Sechseckflächen.

trierten [In12Ga4]-Frank-Kasper-Polyedern, die 
ausschließlich Dreiecke als Begrenzungsflächen 
haben und aus den Laves-Phasen bekannt sind. 
Ebenfalls einen Bezug zu den Laves-Phasen liefert 
die Anordnung der Zentren der Ikosaeder und 
der Frank-Kasper-Polyeder. Die Zentren der Iko­
saeder besetzen die Positionen der Cu-Atome im 
MgCu2-Typ (Abb. 5) und bilden Kagome-Netze,

Abb. 5. A nordnung der Schw erpunkte der G a 12-(In 12-)- 
Ikosaeder (kleine leere Kreise) und der Schw erpunkte 
der abgestum pften In 12-T etraeder (große leere Kreise) 
in N ai7G a29In 12 (K 17In41), analog den Positionen der 
Mg- bzw. Cu-A tom e im M gCu2-Strukturtyp.
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während die Zentren der [In12Ga4]-Frank-Kasper- 
Polyeder die Positionen der Mg-Atome einneh­
men.

In der isotypen Verbindung K 17In41 werden die 
Ikosaeder aus In l-  und In 2-Atomen gebildet. Die 
In-In-A bstände liegen im Bereich von 295,6(2) 
bis 309,7(2) pm (vgl. Tab. II) und sind mit entspre­
chenden Abständen in K2i,33ln 39 67 [26] von 298,2 
bis 312,7 pm vergleichbar. Die abgestumpften 
Ini2-Tetraeder in K 17In41 werden aus In5-Atomen 
gebildet, in deren Zentren In 4-Atome und über 
deren Sechseckflächen In 3-Atome positioniert 
sind. Beim Übergang von N a17Ga29In12 zu K )7In41 
werden die abgestumpften In12-Tetraeder verzerrt 
und aufgeweitet. In der Gallium-Verbindung sind 
die Abstände In - In  mit 302,0(3) und 302,7(3) pm 
sehr gleichmäßig, dagegen betragen die entspre­
chenden Abstände in K 17In41 309,5(3) bzw. 
339,7(3) pm. Darüber hinaus wird für die tetra- 
edrisch von In3-Atomen koordinierten In 4- 
Atome ein inverses Abstandsverhalten beobach­
tet. So lassen sich die Abstände vom Zentrum 
(In 4-Atome) des abgestumpften In12-Tetraeders 
zu den überkappenden In3-Atomen von 
335,3(3) pm mit jenen im Element [27] von 337 pm 
vergleichen. Dagegen deuten die Abstände von 
379,1(6) pm zwischen zwei In 3-Atomen nur noch 
auf eine schwache Wechselwirkung hin.

Die Alkalimetallatome sind über allen Drei­
eckflächen der G a12- bzw. (In12)-Ikosaeder posi­
tioniert und besetzen die Zentren der abgestumpf­
ten Tetraeder (KZ = 12), die gleichzeitig die 
Samson-Polyeder bilden. Die Abstände zwischen

Abb. 6. Pentagonales D odekaeder aus A lkalim etall- 
atom en in N a!7G a29In 12 (K 17In41). Das zentrale Ikosa­
eder ist nicht dargestellt.

Alkalimetall- und Erdmetallatomen liegen in 
N a17G a29In12 in einem Bereich von 330,6(5) bis 
339,8(5) pm. Bedingt durch die Positionierung der 
Alkalimetallatome über den Dreieckflächen der 
G ai2-Ikosaeder resultieren Pentagondodekaeder 
(Abb. 6), die über sechs ihrer zwölf Fünfeckflä­
chen zu einer dreidimensionalen Clathrat II-ana- 
logen Anordnung verknüpft sind [29]. Die näch­
sten N a-N a-A bstände umfassen einen Bereich 
von 343(1) bis 366(2) pm. Sie sind etwas kleiner 
als im Element und deuten auf einen Übergang 
zum kleineren Kation hin.

Diskussion

G aI2- bzw. In 12-Ikosaeder, wie sie in 
N a17Ga29In12 und K 17In41 beobachtet werden, tre­
ten ebenfalls in den alkaliarmen Galliden und In- 
diden Na7G a13- I  [30], Na7G a13- I I  [31], Na22Ga39 
[32], K3G a13 [33] sowie Na495In922 [34] (N a15In27 6
[9]) und Na7In n ,8 [35] auf. Von diesen lassen sich 
die Gallide mit den Wade-Regeln in Kombination 
mit der (8-N)-Regel elektrovalent interpretieren 
und so im weitesten Sinne den Zintl-Phasen zu­
ordnen. Dagegen lassen sich die Indide nicht mehr 
exakt nach gängigen Valenzkonzepten beschrei­
ben.

Als weitere Strukturelemente treten von Alkali- 
metall- bzw. Erdmetallatomen besetzte, abge­
stumpfte Tetraeder auf. Diejenigen Tetraeder, 
deren Zentren ausschließlich von Alkalimetall- 
atomen besetzt werden, bilden die Samson-Poly­
eder, die von Erdmetallatomen besetzten 
(In 12Ga4)-Polyeder entsprechen Frank-Kasper- 
Polyedern, wie sie um die großen Atome der 
Laves-Phasen, z. B. MgCu2, gefunden werden.

Eine weitestgehende strukturelle Übereinstim­
mung von N a17Ga29In12 und K 17In41 liegt mit dem 
erst kürzlich charakterisierten Na35Cd24Ga56 [36] 
vor. In Na35Cd24Ga56 werden die Ikosaeder eben­
falls ausschließlich aus Ga-Atomen, die Frank- 
Kasper-Polyeder dagegen aus 16 Cd/Ga-Atomen 
in statistischer Besetzung aufgebaut; die Zentren 
aller abgestumpften Tetraeder werden jedoch aus­
schließlich von Alkalimetall-Atomen besetzt. 
Nach an Na35Cd24Ga56 durchgeführten Extended- 
Hückel-MO-Berechnungen benötigen [Ga/Cd]16- 
Polyeder 36 Elektronen (und 16 Elektronen für 
„Exo Bonds“), so daß sie von den Autoren als 
nido-Cluster mit (2n+4)-Gerüstelektronen inter-
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pretiert werden. Für die Ikosaeder ergeben sich 
26 Gerüstelektronen und 12 Elektronen für die 
„Exo Bonds“, so daß sich für 16 Ikosaeder und
8 [Ga/Cd] 16-Polyeder pro Elementarzelle ein Ge- 
samtelektronenbedarf von 1024 errechnet. Mit 
Cadmium als Zweielektronendonator stehen die­
sem allerdings nur 1004 Valenzelektronen gegen­
über, es resultiert ein Defizit von 20 Elektronen 
(vgl. Tab. III). Dieses Elektronendefizit wird nach 
Meinung der Autoren durch einen Abzug von 
Elektronen aus den Interpolyeder-Bindungen aus­
geglichen. Die Bindungen werden als „hypoelek­
tronisch“ im Vergleich zur klassischen Zwei-Zen- 
tren - Zwei-Elektronen-Bindung bezeichnet.

In N a17Ga29ln 12 (bzw. K 17In41) stehen bei acht 
Formeleinheiten 1120 Valenzelektronen zur Ver­
fügung. Eine analoge Anwendung der elektroni­
schen Beschreibung auf die Anionenteilstruktur 
von N a17Ga29ln 12 (bzw. K 17In4i) ohne Berücksich­
tigung der acht Ga4-Atome (N a17Ga29ln 12) bzw. 
acht In4-Atome (K 17In41) in den Zentren der 
Frank-Kasper-Polyeder führt ebenfalls zu 1024 
Gesamtelektronen. Demgegenüber stehen bei 136 
Alkalimetallatomen und 320 Erdmetallatomen 
pro Elementarzelle 1096 Valenzelektronen zur 
Verfügung. Bei Interpretation der Ga 4- bzw. In 4- 
Atome als Einelektronendonator in den Zentren 
der abgestumpften Tetraeder als Ga+ bzw. In+ 
(analog Na+ in Na35Cd24Ga56) resultiert damit ein 
Elektronenüberschuß von 80 Elektronen (vgl. 
Tab. III, a).

Eine formale Betrachtung der Ga 4- bzw. In 4- 
Atome im Sinne der Zintl-Regel als isoliert und 
damit fünffach negativ geladen würde den Ge- 
samtelektronenbedarf auf 1064 (= 1024 + 8 x 5) 
erhöhen (vgl. Tab. III, b) und somit den Elektro­
nenüberschuß auf 56 Elektronen reduzieren. Da­
gegen sprechen aber neben der hohen Formal­
ladung von -5  auch die Abstände G a3- G a 3 bzw. 
G a 3 -G a 4 , denen bei Werten von 301(1) bzw. 
321,1(6) pm (vgl. längster Abstand im Element 
[27] 279,2 pm) allenfalls Teilbindungscharakter zu­
gebilligt werden kann.

Eine Alternative in der Elektronenbilanz ergibt 
sich auf der Basis der kürzesten Erdm etall-Erd- 
metall-Abstände. So weisen die Inl-A tom e in 
N a17G a29In 12 eine verzerrt tetraedrische Koordi­
nation aus drei gleichnamigen und einem G a l- 
Atom auf. Nach dem Zintl-Klemm-Konzept ergibt 
sich für die vierbindigen Inl-A tom e, die pro Ele­
mentarzelle acht abgestumpfte In 12-Tetraeder auf­
bauen, jeweils eine negative Ladung (insgesamt 
96 Elektronen). Werden die 32G a3-Atom e über 
den Sechseckflächen und die acht Ga 4-Atome im 
Zentrum  bezüglich ihrer kürzesten Abstände als 
zwei bzw. vierbindig betrachtet, so errechnet sich 
nach der (8-N)-Regel für diese Atome ein Elek­
tronenbedarf von 32 x 3  + 8 x 1  = 104 Elektronen. 
Insgesamt ergibt sich pro Elementarzelle mit den 
32 Elektronen für 16 Ikosaeder ein Gesamtbedarf 
von 232 (104 + 96 + 32) Elektronen, dem lediglich 
136 Valenzelektronen vom Natrium gegenüberste­

N ai7G a29ln12 
Zintl/Klemm 
und Wade

nach N a ^ C d 24Ga<;6 N a j7G a29In j2 
nach Wade analog 
und E H M O  N a35C d24G a56 

a b

G a 12-Ikosaeder 16x2 16x38 16x38 16x38
(C d /G a)16-Polyeder 8x52
(G a /In )16-Polyeder 8x52 8x52
G a 3 (zweibdg.) 32x3
G a 4 (vierbdg.) 8x1
In 1 (vierbdg.) 96x1
G a4 5~ (isoliert) 8x  5

E lek tronenbedarf 232 1024 1024 1064

2  V alenzelektronen 136 1004 1120

2  V alenzelektronen mit 
(G a 4 )+ (isoliert) 1104

D ifferenz -9 6 -2 0 +80 +56

Tab.III. Ladungs- bzw. E lek tro­
nenbilanz für N a17G a29In12 
(K 17In41) nach den Valenzkon­
zepten von Zintl/Klemm sowie 
Wade in Verbindung mit Exten- 
ded-H ückel-M O -Berechnungen 
(E H M O ) und Vergleich mit 
N a35Cd24Ga56 [36].
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hen. Bei vollständigem Ladungsübertrag würde 
ein Defizit von 96 Elektronen (Tab. III) oder 96/ 
136 = 0,71 Elektronen pro nicht an den Ikosaedern 
beteiligten Erdmetallatomen resultieren. Eine In­
terpretation in diesem Sinne würde den längeren 
Erdmetallabständen Teilbindungscharakter zu­
schreiben und das Elektronendefizit zumindest 
qualitativ erklären.

Elektronendefizite, die bei der Interpretation 
der Strukturen nach dem Zintl-Klemm-Konzept 
auftreten und damit vergleichbares elektronisches 
Verhalten aufweisen, werden auch in den interme­
diären Erdalkalimetallgalliden Can G a7 [37] und 
Sr8Ga7, Ba8Ga7 sowie in Sr8Al7 [38] beobachtet. 
In Can Ga7 liegen pro Formeleinheit ein [Ga4]8_- 
Tetraeder und drei isolierte Ga-Atome vor, die 
nach dem Zintl-Klemm-Konzept fünffach negativ 
geladen sein sollten. Den 23 negativen Ladungen 
stehen jedoch nur 22 Elektronen vom Calcium 
gegenüber. In Sr8Ga7 befinden sich neben 
[Ga4]8~-Tetraedern plane, nach dem Zintl- 
Klemm-Konzept neunfach negativ geladene [Ga3]- 
Baueinheiten vor. Den resultierenden 17 negati­
ven Ladungen der Anionen stehen jedoch nur 
16 Valenzelektronen der Kationen gegenüber. In 
der Kristallstruktur von Hochdruck-LiGe [39] bil­
den zwei- und vierbindige Ge-Atome (Verhältnis 
2:1) Schichten aus gewellten kondensierten Acht­
ringen. Nach dem Zintl-Konzept ergibt sich für die 
Ge-Teilstruktur eine vierfach negative Ladung. 
Dieser stehen jedoch nur drei Lithiumatome ge­
genüber, so daß LiGe nicht mehr als Zintl-Phase

aufgefaßt werden kann. Durch zwei zusätzliche 
Ge-Nachbarn in größerem Abstand ergibt sich für 
die zweibindigen Ge-Atome eine verzerrt quadra­
tisch planare Koordination. Bandstrukturrechnun- 
gen an LiGe [40] zeigen, daß diesen weiten Kon­
takten ein schwacher Bindungsanteil zukommt.

Mit N a17Ga29ln 12 und K 17In41 liegen Verbin­
dungen vor, die weder allein mit dem Zintl- 
Klemm-Konzept noch in Kombination mit den 
Wade-Regeln als elektrovalent interpretiert wer­
den können. Beide Verbindungen sind praktisch 
isotyp zu Na35Cd24Ga56, wobei In-Atome durch 
das im Periodensystem unmittelbar benachbarte 
Übergangsmetall Cadmium ersetzt werden kön­
nen. Dieser Befund kann als Hinweis auf einen 
Übergang von den elektrovalent zu interpretieren­
den Gallium-Verbindungen zu den Verbindungen 
mit mehr metallischem Bindungscharakter gewer­
tet werden. Gleichzeitig geht die definierte und 
einfache Zuordnung der Valenzelektronen in der 
Anionenteilstruktur verloren.

In die gleiche Richtung deutet ebenfalls die 
Koordination der Alkalimetallatome, die die Zen­
tren der abgestumpften Tetraeder (KZ 12) beset­
zen und damit eine Umgebung aufweisen, wie sie 
in den typisch metallischen Verbindungen der 
Laves-Phasen auftreten.

Herrn Prof. Dr. R. Kniep danken wir für an­
regende Diskussionen. Der Vereinigung von 
Freunden der Technischen Hochschule Darmstadt 
danken wir für ihre Unterstützung.
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