

Covalent Adducts from 2-Substituted 5-Arylazotropones and Nucleophiles and their Fate

Marino Cavazza^{a,*}, Francesco Pietra^{b,*}

^a Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Pisa, I-56126 Pisa, Italy

^b Istituto di Chimica, Università degli Studi di Trento, I-38050 Povo-Trento, Italy

Z. Naturforsch. **49b**, 697–701 (1994); received November 15, 1993

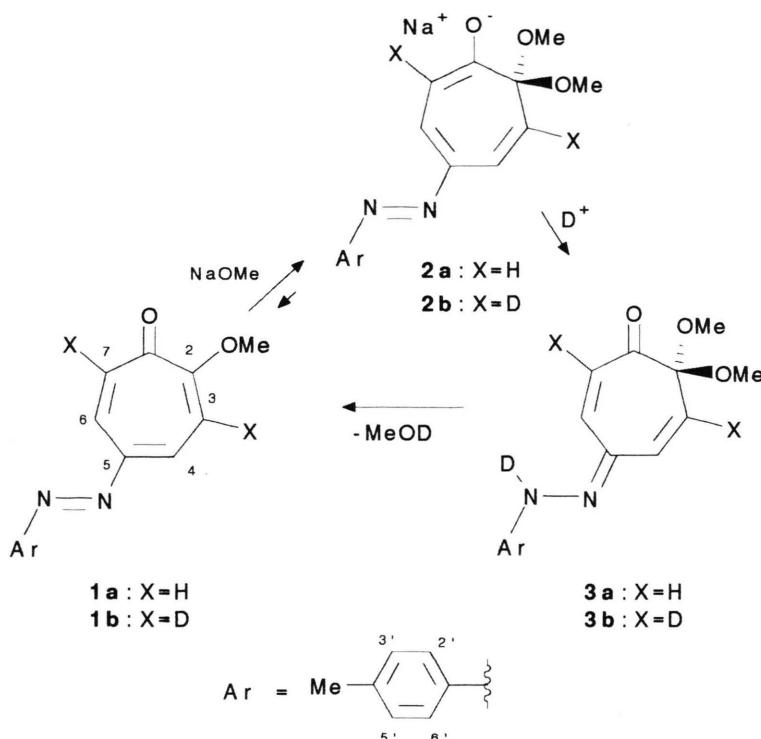
Transannular Nucleophilic Substitutions, σ -Adducts, NMR Data, Alkylthio vs. Azo Activation, Nucleophilic Attack

Working in $(CD_3)_2SO/MeOH$ 98:2, 2-methoxy-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (**1a**) was found to add either MeO^- , giving the stable *gem*-dimethoxy σ -adduct **2a**, or EtS^- , to give initially to the C-2 σ -adduct **4a**; on neutralization, the latter gave *ipso* (C-2) replacement of OMe by SEt , while the former returned to the starting material, *via* the neutral σ -adduct **3a**. In contrast, in the same medium, 2-ethylthio-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (**5a**) was found to add EtS^- at both C-2 and C-7; on neutralization products of both *ipso* substitution (**5a**) and *ipso*- plus tele-substitution (C-7) (**8**) were isolated.

Introduction

Tropone derivatives are prone to nucleophilic addition to give σ -adducts [1], including elaborated ones from polycyclic troponoids like colchicine [2], in competition with electron transfer yielding radical anions [3]. Substituents that, like methoxy, have electron-releasing effect, deactivate the troponoid ring toward attack by nucleophiles [1]; by contrast, electron-attracting substituents, like Cl or SR, activate the ring toward formation of σ -adducts by nucleophilic attack at C-2 [5] or C-7 [6], as directly established by NMR spectroscopy, or at other ring positions, as inferred from UV spectra [3, 4].

Negative-charge acceptance is the main driving force dictating the position of attack by the nucleophile at the troponoid ring, as illustrated by the comparison of alkylthiolate attack at C-7 in 2-ethylthiotropone [7] or C-2 in 2-alkylthio-5-nitrotropone, where C-7 attack would not benefit from charge acceptance by the nitro group [8].


We have extended these studies to the azo group as a potentially activating [9] and modifiable group. New interesting facets about the interaction of these systems with nucleophiles have emerged and are reported here.

Results and Discussion

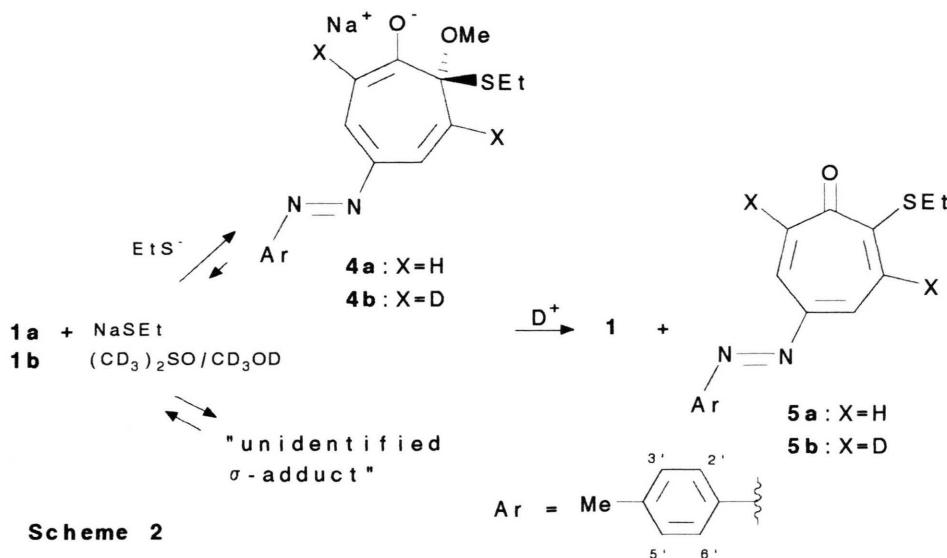
On addition of $NaOMe$, in slight molar excess, to a yellow-orange 0.01–0.05 M solution of 2-methoxy-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (**1a**) [10] in dried $(CD_3)_2SO - CD_3OD$ 98:2 at room temperature, the UV absorption at λ_{max} 387 nm due to **1a** immediately disappeared, the color turning to deep red (λ_{max} 506 nm) that persisted for weeks. On neutralization the color turned immediately to bright orange-yellow (λ_{max} 430 nm), but faded gradually, the original color of **1a** being fully restored in 3–4 h. On parallel 1H NMR examination, the UV absorptions at λ_{max} 506 and 430 nm could be attributed to species **2a** and **3a**, respectively (Schema 1). All protons of **2a** and **3a** were assigned as shown in the Table, based also on parallel examination of the deuterated substrate **1b**, which generated **2b** and **3b**. We could distinguish between H-4 and H-6 for **2a** from COSY spectra. It should be noticed that protons in the adducts at ring positions to which the negative charge can be delocalized have undergone an upfield shift (Table). This is especially marked for **2a** and extends to the benzenoid ring, testifying of the involvement of the arylazo moiety in the activation. An unusual behaviour of this system was discovered following neutralization, by which a relatively stable neutral intermediate **3a** was formed; this can be attributed to efficient negative-charge acceptance by the arylazo moiety.

With ethylthiolate as nucleophile the situation proved to be more complex. With slight molar ex-

* Reprint requests to either Prof. M. Cavazza or Prof. F. Pietra.

Scheme 1

Table I. ^1H NMR data^a for several troponoids and their σ -adducts.


Proton (s) at C atom	1a	2a	3a	4a	“unidentified σ -adduct”	6
MeO-2	3.99 s	4.08 br.s	4.00 s	4.16 br.s	4.16 br.signal ⁿ	
EtS-2			3.15 br.signal ⁱ			
3	7.27 d, 10.4 ^b	5.48 d, 10.7 ^e	5.90 s, 11.0 ^g	5.56 d, 9.4 ^l	6.26 d, 11.8 ^o	5.90 br.signal
4	7.96, dd, 10.4, 2.2 ^c	6.99 d, 10.7 ^f	6.91 d, 11.0 ^h	6.8–7.0 ^m	6.8–7.0 ^p	6.7–7.0 br.signal
6	8.05 dd, 12.7, 2.2 ^d	7.02 d, 11.1 ^f	6.92 d, 12.2 ^h	6.8–7.0 ^m	6.8–7.0 ^q	6.7–7.0 br.signal
7	7.21 d, 12.7 ^b	4.96 d, 11.1 ^e	5.96, 12.2 ^g	5.42 d, 12.0 ^l	5.90 d, 13.8 ^o	5.25 br.signal
2'(6')	7.42 d, 8.2	7.09 d, 7.5	7.13 d, 8.2	7.09 d, 7.4	7.09 d, 7.4	7.05 br.signal
3'(5')	7.82 d, 8.2	7.36 d, 7.5	7.34 d, 8.2	7.35 d, 7.4	7.35 d, 7.4	7.30 br.signal
Me-4'	2.43 s	2.28 s	2.30 s	2.50 s	2.50 s	^r

^a In the order δ , multiplicity or broad signal (br.signal), J ; ^b absent in 1b; ^c 7.96 br.d, 2.2 in 1b; ^d 8.05 br.d, 2.2 in 1b; ^e absent in 2b; ^f br.signal in 2b; ^g absent in 3b; ^h br.signal in 3b; ⁱ CH_2 , while the CH_3 signal was submerged; ^l absent in 4b; ^m br.signal in 4b; ⁿ OMe.; ^o absent in “unidentified σ -adduct”; ^p 6.90 (or 7.02) br.signal in “unidentified σ -adduct”; ^q 7.02 (or 6.90) br.signal in deuterated “unidentified σ -adduct”; ^r submerged.

cess of thiolate, immediate formation of σ -adduct **4a** was accompanied by the slower formation of another similar species that could not be identified and was therefore termed “unidentified σ -adduct” (Scheme 2 and Table). On neutralization, both σ -adducts immediately disappeared while **1**

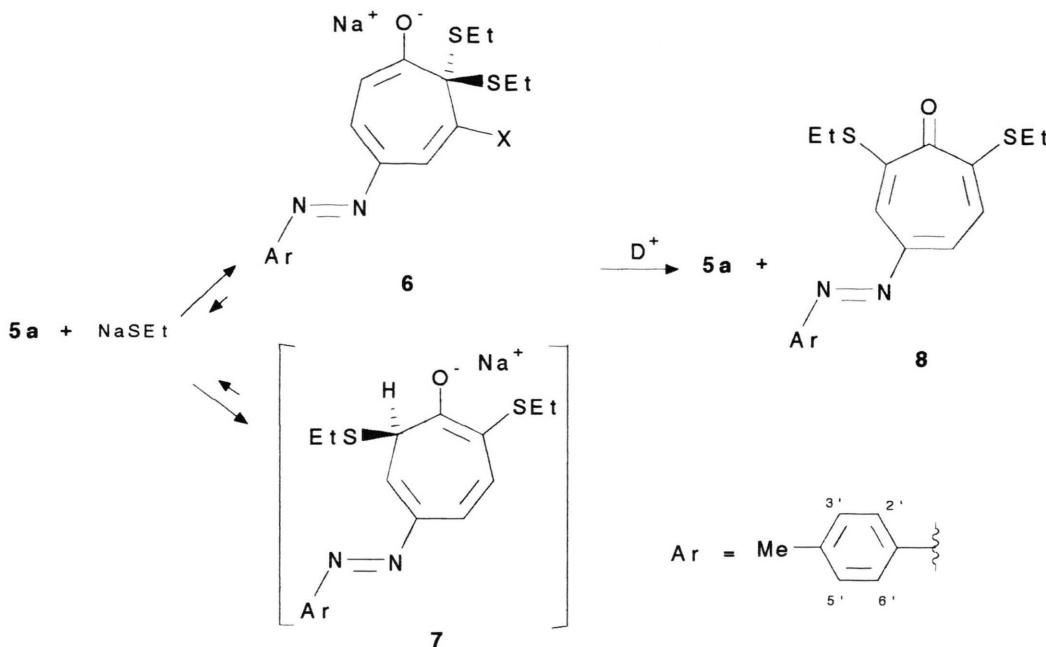
re-appeared, accompanied by trace amounts of the C-2 substitution product **5a**. The structural attribution was aided by parallel experiments with the deuterated substrate **1b** (Table).

A practical entry to **5a** was provided with a better leaving group, Cl, in place of OMe, and with

$(CH_3)_2SO$ as solvent and an equimolar amount of EtSNa (Experimental) [11]. Reaction of **5a** with ethanethiolate led immediately to the *gem*-diethanethio σ -adduct **6**, which is characterized by broad 1H NMR signals, including those for the aryl system. This can be explained by admitting the presence of complex **7** in tiny amounts in rapid, on the NMR time scale, equilibrium with **5a** and **6**. This is also supported by the results of neutralization of the reaction mixture, by which the formation of **5a** was accompanied by comparable amounts of the disubstitution product **8**. Surprising as the oxidative substitution at C-7 to give **8** may be, there are precedents in troponoid chemistry of formal hydride replacements by amine nucleophiles [12].

Formation of mainly **6** on treatment of **5a** with ethanethiolate does not contradict our initial assertion that electron-accepting groups like RS activate the troponoidal ring to nucleophilic attack. The case in Scheme 3 recalls that of 2-methylthio-5-nitrotropone with methanethiolate, where only C-2 addition was observed [8]. Clearly, both the nitro and the azo group favor attack at C-2 by charge dispersal on the activating group, which can not occur on attack at C-7. However, the azo group allows a 2-alkylthio substituent to perform transannular (C-7) activation (Scheme 3). The azo group also possesses the potential advantage, over the nitro group, of easy manipulation that may make this system synthetically useful.

Experimental


General. – All evaporationes were carried out *in vacuo*. TLC was performed on Merck Kieselgel 60 PF₂₅₄, 2 mm thick plates, UV spectra were obtained using a Perkin-Elmer Hitachi 200 spectrophotometer. NMR spectra were taken on a Varian Gemini 200 spectrometer (199.975 MHz for 1H); δ values are reported with respect to internal TMS (= 0 ppm) and J values in Hz; 1H – 1H COSY [13]. Mass spectra (EI) were taken with a Kratos MS 80 spectrometer with home-built computerized acquisition system.

Materials. – $(CD_3)_2SO$ (C. Erba 99.5% 2H) was distilled from CaH_2 under dry Ar and stored over activated 3 Å molecular sieves. CD_3OD (C. Erba 99.5% 2H) was used as such.

2-Hydroxy-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one [14] and [3,5,7- 2H_3]-2-hydroxy-2,4,6-cycloheptatrien-1-one [15] were prepared according to known procedures.

Synthesis of 2-Methoxy-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (**1a**)

2-Hydroxy-2,4,6-cycloheptatrien-1-one (0,20 g, 0,83 mmol) was suspended in Et_2O (15 ml) and treated with excess of a solution of diazomethane in Et_2O . After 2 h the mixture was evaporated and the residue was recrystallized from acetone obtaining **1a** [10] as orange-red needles in quantitative yield, m.p. 196–197 °C (lit. [10]; λ_{max}/nm (log ϵ) (EtOH) 382 (4.4); m/z 254 (40%, M^+), 226 (1, $M-CO$), 135 (11, $M-ArN_2$), 119 (16, M^-).

Scheme 3

troponoid moiety), 91 (100); hrms *m/z* 254.10586 ± 0.00150 ($C_{15}H_{14}N_2O_2$ requires 254.10552).

Synthesis of [3,7-²H₂]-2-Methoxy-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (1b)

Prepared from [3,5,7-²H₃]-2-hydroxy-2,4,6-cycloheptatrien-1-one via [3,7-²H₂]-2-hydroxy-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one by the methodology used above for **1a**.

Synthesis of 2-Chloro-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one

A solution of 2-hydroxy-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (0.051 g, 0.21 mmol) in C₆H₆ (10 ml) was treated with SOCl₂ (0.2 ml) under Ar with stirring and the mixture was heated at reflux for 1.5 h. The solvent was evaporated and the residue was subjected to TLC with 8:2 C₆H₆-EtOH; the *R*_f 0.79 band gave the desired compound as a red solid (0.039 g, 72%), m.p. 164–165 °C; $\lambda_{\text{max}}/\text{nm}$ (log ϵ) (EtOH) 380 (4.1); δ_{H} ((CD₃)₂SO) 8.28 (d, *J*_{3,4} 10.1, 3-H), 7.76 (dd, *J*_{4,3} 10.1, *J*_{4,6} 2.0, 4-H), 8.03 (dd, *J*_{6,7} 12.9, *J*_{6,4} 2.0, 6-H), 7.35 (d, *J*_{7,6} 12.9, 7-H), 7.45 (B of AB, *J* 8.2, 2'-H and 6'-H), 7.85 (A of AB, *J* 8.2, 3'-H and 5'-H), 2.45 (s, Me-4'); *m/z* 258 (16%, M⁺),

230 (2, M-CO), 139 (2, M-ArN₂), 119 (22, M-troponoid moiety), 91 (100); hrms *m/z* 258.05639 ± 0.00180 ($C_{14}H_{11}ClN_2O$ requires 258.05599).

Reaction between 2-chloro-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one and sodium ethanethiolate

a) In Abs. EtOH. A suspension of 2-chloro-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (0.039 g, 0.15 mmol) in abs. EtOH (5 ml) was treated with slight molar excess of NaSEt from a 2 M solution in abs. EtOH and stirred at r.t. for 4 h. The mixture was filtered and the filtrate was evaporated to give a deep-red semisolid residue that was subjected to TLC with 8:2 Et₂O-pet. ether; the *R*_f 0.58 band gave **8** (0.010 g, 19%) while the *R*_f 0.83 band gave 2-ethylthio-7-ethoxy-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (0.020 g, 41%).

2,7-Diethylthio-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (8)

Deep-red semisolid; $\lambda_{\text{max}}/\text{nm}$ (log ϵ) (EtOH) 464 (4.0), 412 (4.1), 354 (4.2); δ_{H} (CDCl₃) 2.95 (q, *J* 7.3, CH₂S-2), 1.47 (t, *J* 7.3, CH₃CH₂S-2), 6.88 (d, *J*_{3,4} 12.8, 3-H), 7.96 (d, *J*_{4,3} 12.8, 4-H), 7.30 (s, 6-H),

3.10 (q, *J* 7.3, CH₂S-7), 1.47 (t, *J* 7.3, CH₃CH₂S-7), 7.30 (B of AB, *J* 8.3, 2'-H and 6'-H), 7.82 (A of AB, *J* 8.3, 3'-H and 5'-H), 2.42 (s, Me-4'); *m/z* 344 (1%, M⁺), 316 (7, M-CO), 315 (31, M-Et), 284 (11, M-EtS), 225 (2, M-ArN₂), 119 (9, M-troponoid moiety), 91 (57), 28 (100); hrms *m/z* 315.06276 ± 0.00210 (C₁₆H₁₅N₂OS₂ requires 315.06258), 284.09804 ± 0.00180 (C₁₆H₁₆N₂OS requires 284.09833).

2-Ethylthio-7-ethoxytropone-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one

Red plates, m.p. 80–86 °C; λ_{\max}/nm (log ε) (EtOH) 402 (3.5), 332 (4.0), 2.42 (4.0); δ_{H} (CDCl₃) 3.08 (q, *J* 7.4, CH₂S-2), 1.40 (t, *J* 7.3, CH₃CH₂S-2), 7.62 (d, *J*_{3,4} 8.3, 3-H), 7.84 (dd, *J*_{4,3} 8.3, *J*_{4,6} 1.4, 4-H), 8.04 (d, *J*_{6,4} 1.4, 6-H), 4.40 (q, *J* 7.0, CH₃O-7), 1.40 (t, *J* 7.0, CH₃CH₂O-7), 7.32 (B of AB, *J* 8.0, 2'-H and 6'-H), 7.88 (A of AB, *J* 8.0, 3'-H and 5'-H), 2.42 (s, Me-4'); *m/z* 328 (1%, M⁺), 300 (20, M-CO), 299 (100, M-Et), 209 (1, M-ArN₂), 119 (12, M-troponoid moiety), 91 (77); hrms *m/z* 299.08555 ± 0.00150 (C₁₆H₁₅N₂O₂S requires 299.08542).

b) In (CH₃)₂SO. A solution of 2-chloro-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (0.017 g, 0.066 mmol) in (CH₃)₂SO under Ar was

treated at r.t. with NaSEt from a 1.7 M solution in abs. MeOH (0.04 ml) at r.t. The mixture was stirred during 20 min, treated with a drop of 37% aq. HCl, and then with water. The mixture was then extracted with CHCl₃ (3 × 10 ml), the organic phase was dried over Na₂SO₄ and evaporated. The residue was subjected to TLC 3:2 Et₂O-pet. ether; the *R*_f 0.55 band gave **5a** (0.010 g, 53%), while the *R*_f 0.31 band gave **8** in trace amounts.

Compound 5a [data for **5b**, when differing from **5a**, are reported within square graphs]. — Orange-yellow plates, m.p. 142–145 °C; λ_{\max}/nm (log ε) (EtOH) 416 (4.0); δ_{H} ((CD₃)₂SO) 3.05 (q, *J* 7.4, CH₂S-2), 1.46 (t, *J* 7.4, CH₃CH₂S-2), 7.59 (d, *J*_{3,4} 14.4, 3-H) [absent], 7.86 (dd, *J*_{4,3} 10.4, *J*_{4,6} 2.2, 4-H) [br.d, *J*_{4,6} 2.2], 8.07 (dd, *J*_{6,7} 12.7 *J*_{6,4} 2.2, 6-H) [br.d, *J*_{6,4} 2.2], 7.11 (d, *J*_{7,6} 12.7, 7-H) [absent], 7.44 (B of AB, *J* 8.3, 2'-H and 6'-H), 7.84 (A of AB, *J* 8.3, 3'-H and 5'-H), 2.44 (s, Me-4'); *m/z* 284 (38%, M⁺), 256 (3, M-CO), 165 (5, M-ArN₂), 119 (18, M-troponoid moiety), 91 (97), 28 (100); hrms *m/z* 284.09927 ± 0.00165 (C₁₆H₁₆N₂OS requires 284.09833).

We thank M. A. Sterni for running the mass spectra, and MURST (Progetti 40% and 60%) and CNR, Roma, for financial support.

- [1] F. Pietra, Acc. Chem. Res. **12**, 132 (1979).
- [2] M. Cavazza, C. A. Veracini, F. Pietra, J. Chem. Soc., Perk. Trans 2, **1992**, 2201.
- [3] C. Festa, L. Nucci, F. Pietra, A. M. Moresco, L. Pardi, S. Santucci, J. Chem. Soc., Perkin Trans. 2, **1976**, 180.
- [4] G. Biggi, F. Del Cima, F. Pietra, J. Am. Chem. Soc. **94**, 4700 (1972).
- [5] M. Cavazza, C. A. Veracini, G. Morganti, F. Pietra, Tetrahedron Lett. **1978**, 2593.
- [6] F. Pietra, J. Chem. Soc., Chem. Commun. **1974**, 544.
- [7] C. A. Veracini, F. Pietra, J. Chem. Soc., Chem. Commun. **1974**, 623.
- [8] M. Cavazza, C. A. Veracini, G. Morganti, F. Pietra, J. Chem. Soc., Chem. Commun. **1978**, 167.
- [9] J. Kavalek, J. Socha, J. Urbanek, M. Vecera, Coll. Czech. Chem. Commun. **36**, 1971, 209.
- [10] H. Enzenberg, D. Schaedler, H. Zaschke, Z. Chem. **22**, 59 (1982).
- [11] It should be noticed that with 2-chloro-5-[(4-methyl-

- phenyl)azo]2,4,6-cycloheptatrien-1-one and equimolar EtSNa in absolute EtOH in place of (CH₃)₂SO, 2-ethyl-7-ethoxy-5-[(4-methylphenyl)azo]-2,4,6-cycloheptatrien-1-one (41%) and **8** (19%) were formed. Structural evidence is in part based on mechanism: since EtS⁻ is more reactive than EtO⁻, it will replace Cl more rapidly, and EtS at C-2 will activate the ring at C-7, thus allowing EtO⁻ to enter at this position. Should EtO have been present at C-2, it could never had activated the ring for EtS⁻ to enter at C-7.
- [12] B. Ricciarelli, R. Cabrino, F. Del Cima, C. A. Veracini, F. Pietra, J. Chem. Soc. Chem. Commun. **1974**, 723.
- [13] A. Bax, R. Freeman, J. Magn. Reson **44**, 542 (1981).
- [14] J. W. Cook, J. D. Loudon, D. K. V. Steel, J. Chem. Soc. **1954**, 530.
- [15] F. Pietra, M. Giocasta, F. Del Cima, Tetrahedron Lett. 1969, 5097; E. J. Forbes, M. J. Gregory, D. C. Warrell, J. Chem. Soc. (C), **1968**, 1969.