Constituents of Euphorbiaceae, 13. Comm. [1]

Isolation and Structure Elucidation of Five Cerebrosides from Euphorbia characias L.

G. Falsone*, F. Cateni, M. Baumgartner**

Department of Pharmaceutical Sciences, University of Trieste, P.zle Europa 1, I-34127 Trieste

V. Lucchini

Department of Environmental Sciences, University of Venezia, Calle Larga 2137, I-30123 Venezia

H. Wagner, O. Seligmann

Institut für Pharmazeutische Biologie der Universität München, Karlstraße 29, D-80330 München

Z. Naturforsch. 49 b, 135-140 (1994); received August 30, 1993

Euphorbiaceae, Cerebrosides, Structure

Five cerebrosides B-1 – B-4 were isolated from the fraction B, obtained from the latex of *Euphorbia characias* L. On the basis of spectral evidences and chemical reactions they were characterized as (2 S, 3 S, 4 R, 8 Z)-1-O-(β -D-glucopyranosyl)-2 N-[(2'R)-2'-hydroxytetracosenoyl]-8 (Z)-octadecene-1,3,4-triol-2-amino (**B-1**), (2 S, 3 S, 4 R, 8 Z)-1-O-(β -D-glucopyranosyl)-2 N-[(2'R)-2'-hydroxyhexacosenoyl]-8 (Z)-octadecene-1,3,4-triol-2-amino (**B-2**), (2 S, 3 S, 4 R, 8 Z)-1-O-(β -D-glucopyranosyl)-2 N-[(2'R)-2'-hydroxyhexacosenoyl]-8 (Z)-octadecene-1,3,4-triol-2-amino (**B-3**), (2 S, 3 S, 4 R, 8 Z)-1-O-(β -D-glucopyranosyl)-2 N-[(2'R)-2'-hydroxyhexacosanoyl]-8 (Z)-octadecene-1,3,4-triol-2-amino (**B-3a**), (2 S, 3 S, 4 R, 8 Z)-1-O-(β -D-glucopyranosyl)-2 N-[(2'R)-2'-hydroxyhexacosanoyl]-8 (Z)-octadecene-1,3,4-triol-2-amino (**B-4**).

Reversed phase column flash chromatography was effective for the isolation of the cerebrosides. FAB-MS spectrometry, ¹H NMR, ¹³C NMR analyses and DQF-COSY and ¹H-detected HMQC (single bond and multiple bond) experiments and chemical reactions were useful in providing informations for the structure elucidation.

Introduction

As described in a preceding paper [2], three complex cerebrosides mixtures, named A, B and C, were obtained from the latex of *Euphorbia characias* L. and four new cerebrosides from the fraction C have been isolated and characterized as 1-O- β -D-glucopyranosides of unsaturated 1,3,4,5-tetrahydroxy-sphingosine long chain base type ceramides possessing 2-hydroxy unsaturated and saturated fatty acids. In continuation of our study on the isolation and structure elucidation of cerebrosides from *Euphorbiaceae*, seven further cerebrosides of similar molecular species from *Euphorbia wulfenii* H. ex K. have been isolated and identified [3]. From our

studies on the latex of *Euphorbia biglandulosa* Desf., recently, four new cerebrosides of a molecular species of glucosylceramides having 1,3,4-trihydroxy unsaturated C-18 and C-17 long chain bases and 2-hydroxy fatty acids, have been isolated and identified [1]. By extending our work to the obtained fraction B, by silica gel column chromatography with chloroform/methanol, five new cerebrosides **B-1**–**B-4** were isolated and purified using reversed-phase flash-chromatography. The structures of these cerebrosides have been determined on the basis of FAB-MS, ¹H NMR, ¹³C NMR spectroscopy, DQF-COSY [4] and ¹H-detected HMQC [5] (single bond and multiple bond) experiments and chemical reactions.

Verlag der Zeitschrift für Naturforschung, D-72072 Tübingen 0932 – 0776/94/0100 – 0135/\$ 01.00/0

Results and Discussion

As described in a previous paper [2], a complex mixture of cerebrosides has been obtained from the latex of *Euphorbia characias* L. and subjected to a

^{*} Reprint requests to Prof. Dr. G. Falsone.

^{**} Host of the ERASMUS programm-ICP-92-I-1241/12.

Fig. 1. Structures of the cerebrosides B-1-B-4.

silica gel column chromatography to give three fractions named A, B and C respectively. The less polar fraction B, as the more polar fraction C, previously examined [2], showed a single spot on normal phase TLC, however, it revealed eight spots on reversed phase TLC. By reversed phase flash-chromatography, four pure major compounds **B-1** – **B-4** were isolated from the fraction B and characterized (Fig. 1).

The positive FAB-MS spectra of the compounds **B-1** – **B-4**, using alkali metal ions, showed molecular ion peaks at m/z = 865 (**B-1**), 893 (**B-2**), 921 (**B-3**), 895 (**B-3 a**) and at m/z = 909 (**B-4**) (M + Na)⁺. Other fragments at m/z = 663 (**B-1**), 691 (**B-2**), 719 (**B-3**), 693 (**B-3a**) and at m/z = 707 (**B-4**) (M-179)⁺ were observed and attributed to the loss of glucose. The common fragment ion at m/z = 500, in the MS spectra of **B-1-B-4** and attributed to the glucosphingoside moiety $(M + Na - FA)^+$, indicates the presence of a monounsaturated trihydroxy long-chain base (Fig. 2). In order to achieve structural and spectral assignments, the cerebrosides B-1-B-4 were subjected to DQF-COSY and 1H-detected HMQC (single bond and multiple bond) analyses. The spectral assignments are reported in Table I and II. The NH resonances of **B-1-B-4** were found at δ = 8.59-8.57 ppm. These signals correlate with the multiplet at $\delta = 5.30 - 5.27$ ppm, ascribed to the proton H-2 and this again correlates with other three signals at $\delta = 4.70$, due to the proton H_a-1, $\delta =$

Fig. 2. FAB-MS spectrum of the cerebroside B-4.

4.52-4.53 due to H_b-1 and at $\delta = 4.28-4.24$ ppm, due to H-3 respectively. The signal of the proton H-3 at $\delta = 4.28 - 4.24$ ppm on the other side correlates with the signal at $\delta = 4.23 - 4.20$ ppm, suggesting so the attribution of the signal to the proton H-4, which, further, correlates with the signal at δ = 1.95 ppm ascribed to the methylen group next to the proton H-4. The signal at $\delta = 4.95 - 4.24$ ppm, due to the anomeric proton H-1" of the glucose, correlates with the triplet at $\delta = 4.00$ ppm, allowing the attribution of this signal to the proton H-2" and its correlation with the signal at $\delta = 4.19 - 4.14$ ppm suggests the assignation of this signal to the proton H-3". The attribution of the signals at $\delta = 4.48 - 4.47$, due to the proton H_a -6" and at $\delta = 4.34 - 4.32$ ppm, due to the proton H_b-6", has been possible on the basis of the correlations of the multiplet at δ = 3.85-3.84 ppm, belonging to the proton H-5".

According to the Gover-Sweely method [6], the compounds B-1-B-4 were methanolyzed with methanolic hydrochloric acid to yield fatty acid methyl esters (FAMs), long chain base (LCB) and glucosphingoside together with methyl D-glucopyranoside respectively. For the determination of the structure and location of the double bond in the long chain parts, the FAMs obtained from the cerebrosides B-1-B-4 were analyzed by EI-MS and molecular ions at m/z = 396 (M)+ (FAM-1), 424 (M)+ (FAM-2), 452 (M)+ (FAM-3), 426 (M)+ (FAM-3a) and at m/z = 440 (FAM-4) were observed. In the ¹³C NMR spectra of the monounsaturated FAMs-1-3 characteristics signals at $\delta = 129.9$ and 27.2 ppm have been exhibited confirming the cis (Z) geometry of the double bond (Table IV). The position of the double bond in the monounsaturated fatty acid methyl esters **B-1-B-3** was determined by GC-MS analysis of the dimethyl disulfide (DMDS) derivatives [7, 8], which showed a common fragment at

	B1	B2	B3,3a	B 4
NH	8.59	8.57	8.57	8.57
	(d; 9.0)	(d; 9.0)	(d; 9.0)	(d; 9.0)
HC =	5.50	5.50	5.48	5.49
	(m)	(m)	(m)	(m)
H-2	5.30	5.27	5.27	5.28
	(m)	(m)	(m)	(m)
H_a-1	4.70	4.70	4.70	4.70
	(dd; 10.6, 5.3)	(dd; 10.7, 5.3)	(dd; 10.6, 5.3)	(dd; 13.3, 5.3)
H-2'	4.55	4.58	4.57	4.57
	(dd; 7.6, 3.8)	(dd; 8.0, 4.2)	(dd; 6.9, 4.8)	(dd; 8.0, 5.3)
H_b-1	4.52	4.52	4.53	4.52
	(dd; 10.5, 4.4)	(dd; 10.6, 5.3)	(dd; 10.1, 4.8)	(dd; 11.2, 5.2)
H-3	4.28	4.27	4.24	4.26
	(dd; 4.4, 3.5)	(dd; 5.4, 4.8)	(dd; 5.3, 4.2)	(dd; 3.0, 4.8)
H-4	4.23	4.21	4.20	4.22
	(obs.)	(obs.)	(obs.)	(obs.)
H-3"	4.19	4.14	4.14	4.15
	(obs.)	(obs.)	(obs.)	(obs.)
H-1"	4.95	4.92	4.93	4.93
	(d; 8.0)	(d; 7.9)	(obs. H_2O)	(d; 8.0)
H-4"	4.20	4.18	4.17	4.18
	(obs.)	(obs.)	(obs.)	(obs.)
H_a-6''	4.48	4.47	4.48	4.48
	(dd; 12.2, 2.2)	(dd; 10.6, 2.2)	(dd; 11.2, 2.3)	(dd; 11.7, 2.2)
H_b -6"	4.34	4.32	4.32	4.34
	(dd; 11.7, 5.4)	(dd; 10.6, 3.7)	(dd; 10.6, 3.8)	(dd; 10.6, 4.8)
H-2"	4.00	4.00	4.00	4.00
	(t; 8.0)	(t; 8.0)	(t; 8.0)	(t; 8.0)
H-5"	3.85	3.84	3.84	3.85
	(m)	(m)	(m)	(m)
OH-2'	7.65	7.63	7.64	7.65
	(br. s)	(d; 5.3)	(d; 5.37)	(d; 5.3)
OH-3	6.82	6.82	6.82	6.85
	(br. s)	(d; 5.3)	(d; 5.3)	(d; 5.3)
OH-6"	6.40	6.40	6.40	6.38
	(br. s)	(m)	(m)	(m)
OH-4	6.02	6.04	6.04	6.05
	(br. s)	(d; 5.3)	(d; 5.3)	(d; 6.4)

Table I. ¹H NMR data of B-1-B-4 in C_5D_5N (δ values in ppm from TMS, splitting in Hz in parentheses).

 $m/z = 173 (C_{10}H_{21}S)^+$ due to the cleavage between the sulfided carbons, indicating the position of the double bond. On the basis of the above described data the FAMs-1-3 are methyl 2-hydroxy-(15'Z)tetracosenoate (from B-1), -(17'Z)-hexacosenoate (from **B-2**), -(19'Z)-octacosenoate (from **B-3**) while the saturated FAMs-3 a, 4 are methyl 2-hydroxyhexacosanoate (from B-3a) and methyl 2-hydroxyheptacosanoate (from **B-4**). For the determination of the location of the double bonds in the long chain bases, the glucosphingosides, derived from the methanolysis of the cerebrosides B-1-B-4, have been acetilated, treated with dimethyldisulfide and subjected to EI-MS analysis. In the EI-MS spectra of the glucosphingoside-heptaacetate-DMDS derivatives 1-4, a common molecular ion at m/z = 865 (M)⁺ and at $m/z = 187 (C_{11}H_{23}S)^+$ respectively have been observed, suggesting the position of the double bond at C-8, C-9 on the common long chain base (LCB) (Fig. 3). The FAB-MS data of the gluco-

GSAc₇DMDS-1-4: m=2, m/z = 678 (M-187), n=7, m/z = 187 (C₁₁H₂₃S)⁺

Fig. 3. EI-MS data of the characteristic fragments, obtained from the cleavage between the sulfided carbons of the $GSAc_7$ -DMDSs-1-4.

Table II. ${}^{13}\text{C}$ δ values of B-1-B-4 in C_5D_5N (ppm from TMS).

C-Atom	B1	B2	B 3, 3 a	B4
1	70.5	71.0	70.6	70.5
2 3	51.8	52.3	51.9	51.7
3	76.9	76.5	72.1	76.0
4	72.5	73.0	72.6	72.5
HC=	130.3	130.8	130.4	130.3
1'	175.7	176.2	175.8	175.7
2'	72.5	72.1	72.6	72.5
$CH_3 - C = \frac{CH_2 - C}{1''}$	14.3	14.9	14.5	14.3
$\underline{CH}_2 - C =$	27.6	27.4	27.7	27.6
1"	105.6	106.1	105.7	105.6
2" 3"	75.2	75.7	75.3	75.2
3"	78.5	79.0	78.7	78.6
4"	71.5	71.0	71.6	71.5
4" 5"	78.6	79.1	78.6	78.5
6"	62.6	63.2	62.8	62.7

sphingoside-heptaacetates 1-4 at m/z = 778 $(M+Li)^+$ confirm the structure of the LCB respectively. On the basis of the above analytic data, the common long chain base in **B-1-4** is a 2-amino-1, 3, 4- (8 Z)-trihydroxyoctadecene.

Accordingly to the results obtained and on the basis of comparison of the spectroscopic data of natural and synthesized 1,3,4-trihydroxy long chain bases [9-11], the structures of the cerebrosides **B-1-4** were determined as (2S, 3S, 4R, 8Z)-1-O- $(\beta$ -D-glucopyranosyl)-2 N-[(2'R)-2'-hydroxytetracosenovl]-8 (Z)-octadecene-1,3,4-triol-2-amino **(B-1)**, (2S, 3S, 4R, 8Z)-1-O-(β -D-glucopyranosyl)-2 N-[(2'R)-2'-hydroxyhexacosenoyl]-8 (Z)-octadecene-1,3,4-triol-2-amino (B-2), (2S, 3S, 4R, 8Z)-1-O- $(\beta$ -D-glucopyranosyl)-2N-[(2'R)-2'-hydroxyoctacosenoyl]-8 (Z)-octadecene-1,3,4-triol-2amino (**B-3**), (2S, 3S, 4R, 8Z)-1-O- $(\beta$ -D-glucopyranosyl)-2 N-[(2'R)-2'-hydroxyhexacosanoyl]-8 (Z)-octadecene-1,3,4-triol-2-amino (B-3a), (2S, 3S, 4R, 8Z)-1-O- $(\beta$ -D-glucopyranosyl)-2N-[(2'R)-

Table IV. 13 C δ values of FAMs-1 – 4 in CDCl₃ (ppm from TMS).

	FAM-1	FAM-2	FAM-3, 3 a	FAM-4
C-1	175.5	175.6	175.5	175.5
HC = C	129.9	129.8	129.2	129.0
C-2	70.5	70.5	69.8	70.2
CH ₃ -O	52.3	52.3	51.8	52.3
$CH_2-C=$	27.2	27.2	26.5	13.7
CH_3-	14.0	14.0	13.5	

2'-hydroxyheptacosanoyl]-8 (Z)-octadecene-1,3,4-triol-2-amino (**B-4**).

The compounds **B-1** and **B-4**, thus characterized, were found to be similar with the cerebrosides 4 and 6 isolated from the latex of *Euphorbia biglandulosa* Desf. [1].

The biological activities of the compounds **B-1– B-4** will be examined.

Experimental

¹H NMR spectra: Varian Unity 400 spectrometer and Varian Gemini 200 spectrometer. ¹³C NMR: 100.40 MHz. NMR spectra were obtained by using pyridine-d₅ (C₅D₅N) or CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard. FAB-MS, EI-MS: Kratos MS 80 RFA. FAB-MS (8 Kv, Xe; methanol as solvent and glycerol matrix + NaCl or LiCl). EI-MS: (4 Kv, 70 eV). Silica gel column chromatography: Kieselgel 60 (230-400 Mesh, 60 Å, Merck). Flash-chromatography: LiChroprep RP-18 $(40-63 \mu m)$. All solvents were distilled before use. TLC: Kieselgel $60 \, \mathrm{F}_{254} \, (20 \times 20 \, \mathrm{cm}; 0.2 \, \mathrm{mm}, \mathrm{Merck})$ and RP-18 F₂₅₄ S (10×10 cm, Merck). HPLC was performed on Waters modell 6000 A, using a R 401 detector (column RP-18, 100 Å, 10 × 0.2 cm; Waters).

FAM-1 FAM-2 FAM-3, 3 a FAM-4 HC= 5.32 5.35 5.35 (m) (m) (m)H-2 4.16 4.19 4.19 4.19 (dd; 6.9, 4.2) (dd; 7.0, 4.3)(dd; 7.2, 4.3)(dd; 7.1, 4.2)CH₃-O 3.76 3.77 3.80 3.80 (s) 2.00-1.15 (s) (s) (s) CH,-2.01 - 1.202.01 - 1.202.00 - 1.20(m) (m) (m) (m) CH₃-0.85 0.80 0.86 0.90 (t; 7.5)(t; 7.5)(t; 7.5)(t; 7.5)

Table III. 1 H NMR data of FAMs-1-4 in CDCl₃ (δ values in ppm from TMS, splitting in Hz in parentheses).

Materials

The latex of Euphorbia characias L. (500 ml) was collected in Gibesi Country (Sicily) in May 1992; the stems of the plant cut and placed in a becker afforded the latex which was filtered and stored under nitrogen. The latex (100 ml × 5) was extracted with ether (750 ml) in an apparatus for the continuous extraction for 24 h. Ether was evaporated on a rotary evaporator and the residue taken up in $CHCl_2: MeOH (4:1/v:v) (200 ml)$ to give an emulsion which was poured into a separatory funnel and allowed to stand for 8 h. The lower layer (150 ml) was separated and evaporated in vacuo to remove the organic solvent and chromatographed on a silica gel column $(100 \times 7 \text{ cm})$ eluted CHCl₃:MeOH (4:1/v:v) to afford the less polar compounds and, then, with MeOH to provide the complex mixture of cerebrosides. The MeOH eluate was evaporated on a rotary evaporator and chromatographed on silica gel column (50 × 4 cm) eluted with CHCl₃: MeOH (4:1/v:v) to afford three fractions of cerebrosides named A. B and C respectively.

Separation of cerebrosides B-1-B-4

The fraction B (0.4 g) was separated by flash-chromatography on RP-18 column (4.5×2 cm) eluted with methanol to afford the cerebrosides B-1 (90 mg) R_f = 0.45 [TLC:MeOH, RP-18]; B-2 (100 mg) R_f = 0.50; B-3, 3 a (80 mg) R_f = 0.51; B-4 (60 mg) R_f = 0.52, respectively.

Cerebroside B-1 $[C_{48}H_{92}NO_{10} (843.2)]$

HPLC of the cerebroside B-1 showed one peak [column: Nova Pak C 18, 60 Å, 4 μ m (2 × 150 mm), solvent: MeOH, flow rate: 1 ml/min, t_r = 2.7 min]. FAB-MS: m/z = 865 (M+Na)+, 681 (M-162)+, 663 (M-179)+, 500 (M+Na-FA)+, 478 (M+H-FA)+, 317 (LCB)+, 298 (LCB-18)+, 280 (LCB-2×18)+, 262 (LCB-3×18)+. [For ¹H NMR and ¹³C NMR of the compounds **B-1-B-4** see Tables I and II].

Methanolysis of B-1-B-4

The cerebrosides **B-1-B-4** were heated under reflux with 0.9 N HCl in 82% MeOH (1 ml) for 18 h respectively. The reaction mixture was extracted with *n*-hexane, the *n*-hexane layer concentrated *in vacuo* and the residue chromatographed on silica gel [*n*-hexane:ether (1:1)] to yield the fatty acid methyl esters (FAMs). The aqueous MeOH layer was neutralized with Amberlite IR-45, concentrated *in vacuo* and the residue chromatographed on

Sephadex LH-20 (MeOH) to give glucosphingosides and β -methyl glucosides.

FAM-1 [methyl 2-hydroxy-(15'Z)-tetracosenoate]: EI-MS (70 eV): m/z = 396 (M, 42%)+, 337 (M-59, 100%)+. [For ¹H NMR and ¹³C NMR of the FAMs-**B-1**-**B-4** see Tables III and IV].

Preparation of Glucosphingoside heptaacetates 1-4

The glucosphingosides 1–4 were treated with Ac₂O/pyridine (1 ml) respectively and allowed to stand overnight, treated with aqueous saturated CuSO₄x 5H₂O solution, extracted three times with chloroform and the chloroform layers were washed with H₂O, dried with Na₂SO₄ and concentrated. The crude acetates were purified by silica gel column chromatography [*n*-hexane/AcOEt (3:2/v:v)] to give glucosphingosides heptaacetates 1–4.

Glucosphingoside heptaacetates 1–4: FAB-MS: $m/z = 778 \text{ (M+Li)}^+$ respectively.

Preparation of Glucosphingoside heptaacetate-DMDS derivatives 1-4

The glucosphingoside heptaacetates 1-4 were dissolved in carbon disulfide (1 ml) and dimethyl disulfide (DMDS) (1 ml) and iodine (10 mg) were added respectively, and the mixture was kept at $60\,^{\circ}\text{C}$ for $40\,\text{h}$ in a small volume sealed vial. The reaction was quenched with aqueous $\text{Na}_2\text{S}_2\text{O}_3$ (5%) and the reaction mixture extracted with ethyl acetate and concentrated to give the DMDS derivatives of the glucosphingoside heptaacetates 1-4.

Glucosphingoside heptaacetates-DMDSs-1 – 4: EI-MS (70 eV): m/z = 865 (M, 30.7%)+, 817 (M-48, 83%)+, 83%)+, 83%)+, 83%0+, 8

Preparation of DMDS derivatives of FAMs-1-4

The DMDS derivatives of FAMs-1-4 were prepared as described above for the glucosphingoside heptaacetates 1-4.

FAM-DMDS-1: EI-MS (70 eV): m/z = 490 (M, 23%)+,443 (M-47,12%)+,383 (M-47-60,19%)+,317 (M-173, 19%)+, 269 (M-173-48, 100%)+, 173 ($C_{10}H_{21}S$, 60%)+.

Cerebroside B-2 $[C_{50}H_{96}NO_{10}$ (871.3)]

HPLC of the cerebroside B-2 showed one peak [$t_r = 4.5 \text{ min}$]. FAB-MS: $m/z = 893 \text{ (M+Na)}^+$, 709 (M+H-162) $^+$, 691 (M-179) $^+$, 500 (M+Na-FA) $^+$, 478 (M+H-FA) $^+$.

FAM-2 [methyl 2-hydroxy-(17'Z)-hexacosenoate]: EI-MS (70 eV): m/z = 424 (M, 46%)+, 365 (M-59, 100%)+.

FAM-DMDS-2: EI-MS (70 eV): m/z = 518 (M, 38%)+, 471 (M-47, 15%)+, 411 (M-47-60, 27%)+, 345 (M-173, 30%)+, 297 (M-173-48, 100%)+, 173 ($C_{10}H_{21}S$, 69%)+.

Cerebroside B-3 $[C_{52}H_{100}NO_{10}$ (899.4)]

HPLC of the cerebroside B-3 showed one peak $[t_r = 5.8 \text{ min}]$. FAB-MS: $m/z = 921 \text{ (M + Na)}^+$, 737 $(M-162)^+$, 719 $(M-179)^+$, 500 $(M+Na-FA)^+$, 478 $(M+H-FA)^+$.

FAM-3 [methyl 2-hydroxy-(19'Z)-octacosenoate]: EI-MS (70 eV): m/z = 452 (M, 54%)+, 393 (M-59, 100%)+.

FAM-DMDS-3: EI-MS (70 eV): m/z = 546 (M, 23%)+, 499 (M-47, 7.7%)+, 439 (M-47-60, 19%)+, 373 (M-173, 18%)+, 325 (M-173-48, 100%)+, 173 ($C_{10}H_{21}S$, 58%)+.

Cerebroside B-3 a $[C_{50}H_{98}NO_{10}$ (873.3)]

HPLC of the cerebroside B-3 a showed one peak $[t_r = 5.8 \text{ min}]$. FAB-MS: $m/z = 895 \text{ (M + Na)}^+$, 711

(M-162)+, 693 (M-179)+, 500 (M+Na-FA)+, 478 (M+H-FA)+.

FAM-3 a [methyl 2-hydroxyhexacosanoate]: EI-MS (70 eV): m/z = 426 (M, 100%)+, 367 (M-59, 62%)+.

Cerebroside B-4 $[C_{51}H_{100}NO_{10}$ (887.4)]

HPLC of the cerebroside B-4 showed one peak $[t_r = 6.6 \text{ min}]$. FAB-MS: $m/z = 909 \text{ (M+Na)}^+$, 724 $(M-162)^+$, 500 $(M+Na-FA)^+$.

FAM-4 [methyl 2-hydroxyheptacosanoate]: EI-MS (70 eV): m/z = 440 (M, 100%)+, 381 (M-59, 43%)+.

We thank the Regione Veneto, Department for Industry and Energy, for a financial support to the acquisition of the Varian Unity 400 spectrometer. Financial supports from MURST 40% and 60%, Italy, are gratefully acknowledged.

 ¹² Comm. G. Falsone, F. Cateni, G. Visintin, V. Lucchini, H. Wagner, O. Seligmann, Il Farmaco, in press.

^[2] G. Falsone, F. Cateni, F. Katusian, H. Wagner, G. Pellizer, F. Asaro, Z. Naturforsch. 48b (1993), in press.

^[3] G. Falsone, F. Cateni, I. Jurman, H. Wagner, O. Seligmann, Il Farmaco, in press.

^[4] V. Piantini, O. W. Sorensen, R. R. Ernst, J. Am. Chem. Soc. 104, 6800 (1982).

^[5] M. F. Summers, L. G. Marzilli, A. Bax, J. Am. Chem. Soc. 108, 4285 (1986).

^[6] R. C. Gover, C. C. Sweely, J. Am. Oil Chem. Soc. 42, 294 (1965).

^[7] M. Vincenti, G. Guglielmetti, G. Cassani, C. Tomini, Anal. Chem. **59**, 694 (1987).

^[8] P. Scribe, J. Guezenec, J. Dagaut, C. Pepe, A. Saliat, Anal. Chem. 60, 928 (1988).

^[9] R. Higuchi, J. X. Jhou, K. Inukai, T. Komori, Liebigs Ann. Chem. 1991, 745.

^[10] Y. Kawano, R. Higuchi, R. Isobe, T. Komori, Liebigs Ann. Chem. 1988, 18.

^[11] M. Honda, Y. Ueda, S. Sugiyama, T. Komori, Chem. Pharm. Bull. 39, 1385 (1991).