Notizen Notizen

[K(18-Krone-6)][WF₅(NCl)]; Synthese und Kristallstruktur

[K(18-Crown-6)][WF₅(NCl)]; Synthesis and Crystal Structure

Harald Stenger, Kurt Dehnicke* Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, D-W-3550 Marburg/Lahn

Wolfgang Hiller**

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-W-7400 Tübingen

Z. Naturforsch. **47b**, 1054–1056 (1992); eingegangen am 8. Januar 1992

Pottassium-18-crown-6-pentafluoro-N-chloronitreno-tungstate(VI), Synthesis, Crystal Structure

[K(18-crown-6)][WF₅(NCl)] has been prepared as yellow crystals by the reaction of KF with WCl₄(NCl) in the presence of 18-crown-6 in acetonitrile solution. The compound was characterized by its IR spectrum and by an X-ray structure determination. Space group $P2_1/n$, Z = 4, 3697 observed unique reflections, R = 0.034. Lattice dimensions at -65 °C: a = 1313.8(3), b = 851.2(1), $c = 1842.7(4) \text{ pm}, \beta = 95.304(1)^{\circ}$. The compound forms ion pairs, in which the pottassium ion is coordinated by the six oxygen atoms of the crown ether molecule and by two fluorine ligands of the $[WF_5(NCI)]^-$ unit with K-F distances of 272.4(5) and 288.6(5) pm. The $W \equiv N-Cl$ group of the anion is nearly linear (bond angle 170.7(5)°) with bond lengths of WN = 172.4(7) and NCl = 162.7(7) pm.

In vorangegangenen Arbeiten haben wir über die N-Chlornitrenokomplexe [Na(15-Krone-5)][MF₅(NCl)] (M = Mo [1], M =

[Na(15-Krone-5)][MF₅(NCl)] (M = Mo [1], M = W [2]) berichtet, die wir aus MoF₄(NCl) [3] mit NaF und 15-Krone-5 bzw. aus WCl₄(NCl) [4] mit überschüssigem NaF in Anwesenheit von 15-Krone-5 hergestellt haben. Wir fanden nun, daß sich auch Kaliumfluorid in Gegenwart des für das Kaliumion geeigneten Kronenethers 18-Krone-6 als Fluoridierungsagens gegenüber WCl₄(NCl) eignet. Die Umsetzung vollzieht sich in Acetonitrillösung, in der das Solvat [CH₃CN-WCl₄(NCl)]

Verlag der Zeitschrift für Naturforschung, D-W-7400 Tübingen 0932-0776/92/0700-1054/\$ 01.00/0

[4] vorliegt, mit überschüssigem Kaliumfluorid bei R.T. vollständig und innerhalb kurzer Zeit:

$$[CH3CN-WCl4(NCl)] + 5 KF + 18-Krone-6 \rightarrow$$

$$[K(18-Krone-6)][WF5(NCl)] + CH3CN + 4 KCl (1)$$

Nach Filtration läßt sich das Produkt aus der Lösung in Form gelber Kristallnadeln isolieren, die im lösungsmittelfreien Zustand nur wenig feuchtigkeitsempfindlich sind. Eine Substitution des am N-Atom gebundenen Chloratoms findet dabei nicht statt.

Im IR-Spektrum beobachten wir charakteristische Schwingungen bei $1192 \text{ cm}^{-1} (\nu \text{WN})$, $532 \text{ cm}^{-1} (\nu \text{NCl})$, 656, 600, 588, $561 \text{ cm}^{-1} (\nu \text{WF "aquatorial})$ und bei $519 \text{ cm}^{-1} (\nu \text{WF axial})$, was recht gut den Verhältnissen in den Spektren der Natriumverbindungen [Na(15-Krone-5)][MF₅(NCl)] (M = Mo, W [1, 2]) entspricht. Vollständige IR-Spektren sind in Lit. [5] angegeben.

Die Ergebnisse der Kristallstrukturanalyse sind in den Tab. I bis III wiedergegeben*. Die Verbindung bildet das in Abb. 1 wiedergegebene Ionen-

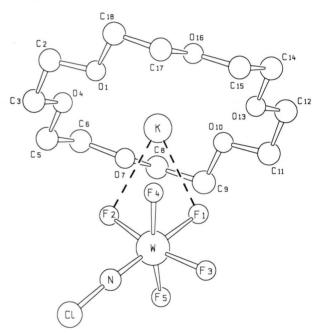


Abb. 1. Wiedergabe eines Ionenpaares [K(18-Krone-6)][WF₅(NCl)].

* Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Informationen mbH, D-W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 54280, der Autoren und des Zeitschriftenzitats angefordert werden.

Sonderdruckanforderungen an Prof. Dr. K. Dehnicke.

^{**} Neue Anschrift: Prof. Dr. W. Hiller, TU München, Anorg.-Chem. Institut, Lichtenbergstraße 4, D-W-8046 Garching.

Verwendeter Rechner

Raumgruppe monoklin, $P2_1/n$ Meßtemperatur −65 °C Gitterkonstanten a = 1313,8(3) pm= 851,2(1) pmb = 1842,7(4) pm $\beta = 95,304(1)^{\circ}$ Zellvolumen $V = 2051.8 \cdot 10^6 \,\mathrm{pm}^3$ Formeleinheiten Z = 4 $\varrho_x = 2,045 \text{ g/cm}^3$ Dichte Meßgerät CAD4, ENRAF-NONIUS Strahlung $MoK\alpha$ $\theta = 3 - 27^{\circ}$ Meßbereich 3697 Zahl der unabh. Reflexe $mit I \ge 3 \sigma(I)$ Zahl der Parameter 245 Strukturaufklärung Patterson Verfeinerung alle Atome anisotrop H-Atomlagen berechnete Positionen in Strukturfaktorrechnung R-Werte R = 0.034 $R_{\rm W} = 0.041$ Verwendete Programme MOLEN (ENRAF-NONIUS) [9]

MicroVAX 3500, CONVEX C220

Tab. I. Kristalldaten und Angaben zur Kristallstrukturbestimmung von [F₅WNCl][K 18-Krone-6].

Tab. II. Ausgewählte Bindungslängen [pm] und -winkel [Grad].

W-F(1)	193,8(5)	K-F(1)	272,4(5)
W-F(2)	188,4(6)	K-F(2)	288,6(5)
W-F(3)	185,6(5)	K - O(1)	285,1(6)
W-F(4)	187,2(6)	K - O(4)	295,4(5)
W-F(5)	187,7(5)	K - O(7)	280,8(6)
W-N	172,4(7)	K - O(10)	294,2(5)
Cl-N	162,7(7)	K - O(13)	283,3(5)
		K - O(16)	293,6(5)
F(1)-W-N	175,3(3)		
F(2)-W-F(3)	167,4(2)		
W-N-Cl	170,7(5)		
O-C-C	107,1-109,2(6)		
C-O-C	110,9-112,3(6)		

paar. Es kommt zustande durch zwei K-F-Kontakte, die das durch die sechs O-Atome des Kronenethers anisotrop koordinierte Kaliumion mit dem [WF₅(NCl)]⁻-Ion eingeht. Die beiden K-F-Abstände sind mit 272,4(5) und 288,6(5) pm verschieden lang, wobei der kürzere der beiden etwa dem K-F-Abstand im kristallinen Kaliumfluorid (266,4 pm [6]) entspricht. Etwas verschieden hiervon ist die Ionenpaarbildung in der Struktur des Alkinkomplexes

 $[K(18-Krone-6)][WF_5(Ph-C\equiv C-H)] \cdot CH_3CN$ [7], in der das Kaliumion drei K-F-Kontakte zu sei-

Tab. III. Lageparameter und äquivalente isotrope Temperaturparameter $\mathbf{U}_{\mathrm{eq}}[\mathring{\mathbf{A}}^2]$.

Atom	X	y	Z	U_{eq}
W	0,23674(6)	0,3546(2)	0,40607(4)	0,0285(1)
K	0,2664(3)	0,1861(9)	0,5963(2)	0,0299(7)
Cl	0,3141(5)	0,257(1)	0,2441(3)	0,087(2)
F1	0,246(1)	0,141(2)	0,4393(7)	0,071(3)
F2	0,101(1)	0,326(2)	0,3697(7)	0,054(3)
F3	0,363(1)	0,391(2)	0,4612(7)	0,047(3)
F4	0,2226(9)	0,569(2)	0,3941(6)	0.062(4)
F 5	0,172(1)	0,389(2)	0,4956(7)	0.055(3)
N	0,289(1)	0,310(3)	0,3253(9)	0.042(4)
O1	0,473(1)	0.080(2)	0,6091(7)	0.037(3)
04	0,3207(9)	-0.147(2)	0,5865(6)	0.035(3)
O7	0,114(1)	-0.053(2)	0,5771(7)	0.034(3)
O10	0,0658(9)	0,230(2)	0,6526(6)	0.031(2)
O13	0,2223(9)	0,450(2)	0,6813(6)	0.031(3)
O16	0,4278(9)	0,357(2)	0,6867(6)	0,036(3)
C2	0.497(2)	-0.084(4)	0.602(1)	0,043(4)
C3	0,413(2)	-0.163(4)	0.553(1)	0.047(4)
C5	0,239(2)	-0.238(4)	0,545(1)	0,043(5)
C6	0,142(2)	-0,223(4)	0.580(1)	0.043(4)
C8	0.014(2)	-0.027(4)	0,601(1)	0.041(4)
C9	-0.004(1)	0,148(4)	0,6000(9)	0,042(5)
C11	0.045(2)	0.399(4)	0,659(1)	0,037(4)
C12	0,126(1)	0,471(4)	0,711(1)	0.035(4)
C14	0,304(1)	0,527(4)	0,726(1)	0.034(4)
C15	0,399(2)	0,518(4)	0,690(1)	0,038(4)
C17	0,524(2)	0,335(4)	0,656(1)	0,047(5)
C18	0,550(2)	0.170(4)	0,655(1)	0,048(6)

 U_{eq} ist definiert als $1/3(U_{11} + U_{22} + U_{33})$.

nem Anion mit Abständen von 262,0(2), 282,7(3) und 293,3(3) pm ausbildet.

In dem Anion von [K(18-Krone-6)][WF₅(NCl)] ist das Wolframatom verzerrt oktaedrisch von fünf Fluoratomen und von dem N-Atom der N-Chlorimidogruppe umgeben. Der Bindungswinkel WNCl ist mit 170,7(5)° etwas kleiner als in den Beispielen [Na(15-Krone-5)][MF₅(NCl)] (M = Mo 175,8(2)° [1]; M = W 176,1(5)° [2]), in allen Fällen entspricht aber die Metall-N-Bindungslänge (172,4(7) pm) einer etwas verlängerten Dreifachbindung, legt man die Erfahrungswerte einer W≡N-Dreifachbindung von etwa 165 pm und einer W=N-Doppelbindung von etwa 185 pm [8] zugrunde. Die Beschreibung der Bindungsverhältnisse läßt sich daher recht gut mit der Formulierung

$$\overset{\scriptscriptstyle{\ominus}}{W} \equiv \overset{\scriptscriptstyle{\ominus}}{N} - \underline{\overline{Cl}} | \iff \overset{\scriptscriptstyle{2\ominus}}{W} = \overset{\scriptscriptstyle{\ominus}}{N} = \underline{\overline{Cl}} \, \oplus$$

wiedergeben. Von der WN-Bindung geht ein merklicher *trans*-Einfluß aus, der sich in der relativ großen Bindungslänge W-F(1) von 193,8(5) pm ausdrückt, die damit um 6,8 pm länger ist als das Mittel der WF-Abstände der äquatorial angeordneten F-Atome. Einen geringeren Einfluß auf die W-F-Abstände üben offensichtlich die K-F-Kontakte aus, was man an der nur geringfügig längeren Bindung W-F(2) von 188,4(6) pm im Vergleich zu den Abständen W-F(3,4,5) erkennt, die im Mittel 186,8 pm betragen.

Experimenteller Teil

Die Versuche erfordern Ausschluß von Feuchtigkeit. Acetonitril wurde über P₄O₁₀ destilliert. WCl₄(NCl) erhielten wir wie beschrieben [4] aus Wolframhexacarbonyl und überschüssigem NCl₃ in CCl₄-Lösung. 18-Krone-6 war ein handelsübliches Präparat (Merck). Kaliumfluorid wurde durch Glühen i. Vak. von Feuchtigkeit befreit. Das IR-Spektrum wurde mit Hilfe eines Bruker-Geräts IFS-88 registriert, CsBr- bzw. Polyethylenscheiben, Nujol-Verreibungen.

[K(18-Krone-6)][WF₅(NCl)]

3,74 g WCl₄(NCl) (9,97 mmol) werden in 50 ml Acetonitril gelöst und unter Rühren mit 5,21 g KF (89,7 mmol) und 1,32 g 18-Krone-6 (4,99 mmol) versetzt. Man rührt den Ansatz 12 h bei R.T., filtriert und kühlt das Filtrat auf 4 °C. Die hellgelben Kristallnadeln werden durch Filtration isoliert, mit wenig kaltem Acetonitril gewaschen und i.Vak. getrocknet. Ausbeute 48%, bez. auf WCl₄(NCl).

 $C_{12}H_{24}CIF_5KNO_6W$ (631,7) Ber. C22,82 H3,83 C15,61 F15,04 N2,22 W29,10, Gef. C23,75 H3,73 C17,00 F13,70 N2,12 W29,94.

Dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft danken wir für großzügige Unterstützung.

- D. Fenske, K. Völp und K. Dehnicke, Z. Naturforsch. 43b, 1125 (1988).
- [2] A. Görge, K. Dehnicke und D. Fenske, Z. Naturforsch. 44b, 117 (1989).
- [3] D. Fenske, K. Völp und K. Dehnicke, Z. Naturforsch. 42 b, 1398 (1987).
- [4] A. Görge, K. Dehnicke und D. Fenske, Z. Naturforsch. 43b, 677 (1988).
- [5] H. Stenger, Dissertation, Universität Marburg (1991).
- [6] A. F. Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford (1984).
- [7] P. Neumann, K. Dehnicke, D. Fenske und G. Baum, Z. Naturforsch. 46b, 999 (1991).
- [8] K. Dehnicke und J. Strähle, Angew. Chem. 93, 451 (1981); Angew. Chem., Int. Ed. Engl. 20, 413 (1981).
- [9] MolEN, An Interactive Structure Solution Procedure, ENRAF-NONIUS, Delft, Niederlande (1990).