Pseudo-Polymerization *via* Symmetric O-H-O Bonding of the Cobaloximatic Acid, Hydro-*trans*-Diiodobis(2,3-butanedione dioximato(1-)-N,N')cobaltate(III). X-Ray Crystal and Molecular Structure

Michel Mégnamisi-Bélombé* and Robert Parfait Massongo Bokanjo Department of Inorganic Chemistry, Faculty of Science, P.O. Box 812, The University of Yaoundé, Yaoundé, Cameroon

Bernhard Nuber

Anorganisch-Chemisches Institut der Universität, Im Neuenheimer Feld 270, D-6900 Heidelberg 1 (FRG)

Z. Naturforsch. **46b**, 165–168 (1991); received March 9, 1990

Structure, Cobaloximatic Acid, Symmetric Hydrogen Bridging, Iodine Interactions

The structure of hydro-trans-diiodobis(2,3-butanedione dioximato)cobaltate(III), $H(CoI_2(dmg)_2)$ ($dmg^- = dimethylglyoximate$) has been determined by single crystal X-ray diffraction at ambient temperature. The crystals are monoclinic, space group C2/c, $C_8H_{15}CoI_2N_4O_4$, $M_r = 543.98$; a = 15.714(6), b = 7.408(3), c = 13.944(5) Å; $\beta = 107.76(3)^\circ$; V = 1545.85 ų; Z = 4; $D_c = 2.34$ Mg m³. The compound is best visualized as a monobasic acid. The molecules are linked together into two-dimensional network, where linkage parallel to the ac plane is effected by weak intermolecular iodine interactions ($I \cdots I = 3.826$ Å), and linkage along the b axis by symmetric intermolecular O - H - O bridges ($O \cdots O_{intermol} = 2.499$ Å) involving the acidic protons. Each molecule contains two equivalent intramolecular O - H - O bridges ($O \cdots O_{intermol} = 2.603$ Å). The coordination geometry around Co is a distorted (4 + 2) octahedron of four chelating equatorial N atoms and two apical iodine atoms. The rectilinear I - Co - I triads are arranged in infinite, faintly zigzagged heteroatomic chains propagating parallel to the ac plane.

Introduction

The present work has been carried out in the context of our research program concerned with the preparation and characterization of a wide range of cobaloximes and cobaloximatic salts [1-3]. The main purpose of the research is to provide new model compounds of interest in systematic investigations of molecular parameters and chemical mechanisms that may control the biological activity of cyanocobalamine or vitamin B_{12} [4]. We therefore have set out to fabricate the quinolinium (HQn⁺) salt with the anion, *trans*-diiodobis-(2,3-butanedione dioximato)cobaltate(III),

(CoI₂(dmg)₂)⁻. However, instead of the expected salt, HQn(CoI₂(dmg)₂), we obtained the corresponding acid, H(CoI₂(dmg)₂), which reportedly had been isolated earlier by a different preparative procedure [5]. The structure of this acid does not seem to have been established so far, and it turns out, moreover, to present very interesting charac-

Experimental

Commercial Co(NO₃)₂·6H₂O (3 g, 10 mmol, >99% pure) and doubly sublimed I₂ (1.3 g, ~10 mmol) were dissolved in absolute methanol (60 ml), and stirred for 30 min at 60 °C. Freshly prepared quinolinium iodide, HQnI (2.6 g, ~10 mmol) [6] was added. A solution of commercial Hdmg (6.6 g, 55 mmol) in absolute methanol (200 ml) was introduced into the red-brown mixture, and stirring at same temperature was pursued over 4 h. A small amount of crystals that had appeared was discarded by filtration. The filtrate was left to stand undisturbed and to concentrate by slow evaporation at room temperature for 10 d. Greenish-brown crystals were collected by filtration, washed with little methanol and air-dried (2.93 g). Recrystallization from saturated methanolic solution yielded crystals suitable for X-ray diffraction.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/91/0200-0165/\$01.00/0

teristics, specifically with respect to the extended intermolecular O-H-O bondings and the noticeable interactions between the I atoms of adjacent molecules. We describe the X-ray structure of this acid in the following.

^{*} Reprint requests to Dr. M. Mégnamisi-Bélombé.

Table I. Experimental and computational details for $H(CoI_2(dmg)_2)$.

Crystal shape	block-like
Crystal size	$0.28 \times 0.40 \times 0.48 \text{ mm}$
Possible independent reflections	2386
Reflections observed I > $2.5\sigma(I)$	2285
Scan mode	ω
2θ range	$3 - 70^{\circ}$
Reflections for ψ -scans	8
Min. transmission $(max. = 1)$	0.82
R _{merg}	1.8%
$\mu(MoK\alpha)$	5.07 mm^{-1}
Latice parameters	a = 15.714(6) pm
	$b = 7.408(3) \mathrm{pm}$
	c = 13.944(5) pm
	$\beta = 107.76(3)^{\circ}$
	$Vol = 1545.85 \text{Å}^3$
Space group	$C_{2h}^{6} C_{2}/c$
Density	2.34 g/cm^3
$M_r, F(000), Z$	2175.85, 1024, 4

A single crystal (see Table I) was mounted on top of a glass capillary, and data were collected at room temperature on an automatic SYNTEX R3 diffractometer equipped with graphite-monochromatized MoK α radiation (= 0.7107 Å). Lattice parameters were derived from the setting angles of 25 reflections in the range $6 < 2\theta < 28^{\circ}$. Table I summarizes further experimental and computational details. The structure was solved by Patterson methods and completed by Fourier syntheses. It was refined by full matrix least squares, based on F with weights $w = 1/\sigma^2$ (F). Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined with fixed isotropic temperature factors, except H1 and H2 involved in O-H-O bridgings, whose positions were taken from a difference Fourier map. Calculations were carried out on a Microwax II computer with the SHELXTL PLUS Program [7] which uses scattering factors from "International Tables" [8] and takes anomalous dispersion into account. Plots were drawn on a Nicolet ZETA plotter with SHELXTL PLUS*.

The final refinement yielded R_w (R) = 3.1 (3.2)%. An empirical absorption correction using ψ -scans of 8 reflections (6<2 θ <50°) was applied,

and equivalent reflections merged to a set of unique data.

Results and Discussion

The structure clearly reveals that the present compound is adequately formulated as a monobasic acid: H(CoI₂(dmg)₂). For complex formation one of the two dioxime ligands has been ionized (by losing a proton from an OH group) to a dimethylglyoximate (dmg⁻), whereas the other ligand has remained a neutral Hdmg (carrying the acidic proton). Thus, the following protolysis equilibrium in aqueous or polar medium may be formulated:

$$CoI_2(dmg)(Hdmg) \rightarrow H^+ + (CoI_2(dmg)_2)^-$$

Final atomic coordinates and their equivalent isotropic thermal parameters are listed in Table II, bond distances and angles in Table III. An ORTEP drawing of two neighbouring molecules with the atomic numbering scheme is given in Fig. 1. It is clear that the arrangement in "infinite" chains extends throughout the structure, parallel to the crystallographic b axis. Co^{III} at the molecular center of symmetry occupies a special position and is surrounded by a regular (4+2) octahedral ligand field of four chelating equatorial N atoms and two

Table II. Final atomic coordinates and equivalent isotropic thermal parameters (×10⁵) for H(CoI₂(dmg)₂).

Atom	1 X	y	Z	$\mathrm{U}_{\mathrm{eq}}^{}st$
I 1	39297(2)	85335(4)	63820(2)	4045(8)
Co 1	75000(0)	25000(0)	50000(0)	2319(17)
N1	30055(19)	51870(37)	49661(20)	2852(85)
N2	19376(20)	71084(40)	60069(20)	2998(90)
O 1	28823(19)	37823(31)	55443(18)	3586(87)
O_2	19846(23)	55443(39)	65318(22)	4649(113)
C1	64758(24)	33906(48)	62071(25)	3236(109)
C2	64986(23)	50185(45)	56190(25)	2980(101)
C3	60199(30)	67256(55)	57104(34)	4826(160)
Н3а	61255(30)	76116(55)	52572(34)	,
НЗЬ	62378(30)	71685(55)	63885(34)	
Н3с	53903(30)	64940(55)	55420(34)	
C4	59486(30)	32271(59)	69243(31)	4815(160)
H4a	60333(30)	20487(59)	72250(31)	,
H4b	53269(30)	34040(59)	65691(31)	
H4c	61430(30)	41264(59)	74408(31)	
H1	75000(0)	-25000(0)	50000(0)	
H2	72586(354)	-1404(785)	62924(394)	

^{*} Equivalent isotropic U_{eq} are defined as 1/3 of the trace of the orthogonalized U_{ij} tensor. Last significant esd digits for each term are given in parentheses.

^{*} Lists of observed and calculated structure factors, along with the anisotropic and isotropic thermal parameters have been deposited with the Fachinformationszentrum Karlsruhe GmbH, D-7514 Eggenstein-Leopoldshafen 2 (FRG). Copies may be ordered by quoting the deposition number CSD 54745, the authors and the journal reference.

Bond distances (Å)		Bond angles (°)	Bond angles (°)				
Co1-I1a Co1-I1b Co1-N1a Co1-N1b Co1-N2a Co1-N2b N1-O1 N1-C2a N2-O2	2.590(0.000) 2.590(0.000) 1.895(0.003) 1.895(0.003) 1.896(0.003) 1.366(0.004) 1.298(0.005) 1.360(0.004)	Ila-Col-Ilb Ila-Col-Nla Ila-Col-Nlb Ila-Col-N2a Ila-Col-N2b Ilb-Col-Nla Ilb-Col-N2b Ilb-Col-N2b	180.0(0.0) 90.6(0.1) 89.4(0.1) 89.4(0.1) 90.6(0.1) 89.4(0.1) 90.6(0.1) 90.6(0.1) 89.4(0.1)	O1-N1-C2a Co1-N1-C2a N1-O1-H1a O2-N2-Co1 O2-N2-C1a Co1-N2-C1a N2-O2-H2a C2-C1-C4 C2-C1-N2a	120.1(0.1) 117.3(0.2) 110.4(0.2) 124.6(0.3) 117.2(0.3) 118.2(0.3) 105.3(4.1) 123.9(0.3) 112.2(0.4)		
N2-Cla N2-Cla C1-C2 C1-C4 C2-C3 H1-Ola H1-Olb H2-O2a	1.277(0.005) 1.465(0.005) 1.486(0.007) 1.497(0.006) 1.250(0.002) 1.250(0.002) 0.801(0.062)	N1a-Co1-N2b N1a-Co1-N2a N1a-Co1-N2b N1b-Co1-N2a N1b-Co1-N2b N2a-Co1-N2b O1-N1-Co1	89.4(0.1) 180.0(0.0) 100.0(0.1) 80.0(0.1) 80.0(0.1) 100.0(0.1) 180.0(0.0) 122.6(0.2)	C2-C1-N2a C4-C1-N2a C1-C2-C3 C1-C2-N1b C3-C2-N1b O1a-H1-O1b	112.2(0.4) 123.9(0.3) 123.3(0.4) 112.2(0.3) 124.5(0.3) 180.0(0.0)		

apical iodides. There are two kinds of O-H-O bridgings. The *intramolecular* bridges within each molecule are strictly equivalent, with an $O1\cdots O2$ separation of 2.603 Å. The *intermolecular* bridging involves the acidic proton (H1) which sits *symmetrically* at a center of inversion relative to the adjacent molecules. More interestingly, the latter bridging turns out to be stronger, as judged from the appreciably short $O1\cdots O1a$ separation of 2.499 Å and the angle $O1-H1-O1a=180^\circ$.

A projection of the structure down the b axis is depicted in Fig. 2. Intermolecular iodine interactions are indicated by broken lines. It is seen that the rectilinear I-Co-I triads are arranged in faintly kinked heteroatomic chains propagating throughout the structure, parallel to the crystallographic ac plane. In view of the ionic radius of an iodide at about 2.15 Å, the distance of 3.826 Å separating neighbouring I atoms in these chains may be regarded as a valid argument for ascribing some degree of covalent bonding to these intermolecular iodine contacts. It is worth noting that this state of affairs compares fairly well with that observed recently on a closely related system where the I ··· I separation is 3.722 Å [1]. The two types of intermolecular interactions observed in the present material are obviously not strong enough to result in dramatic solid state phenomena. Nevertheless, one may anticipate that convenient application of pressure might possibly cause the occurrence of such phenomena. Another structural feature of

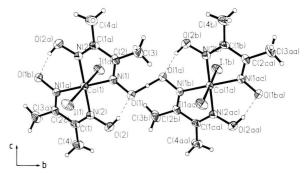


Fig. 1. Perspective ORTEP view of two adjacent $H(CoI_2(dmg)_2)$ molecules with atom labeling, showing the chain arrangement along b. The acidic proton, HI, sits at a center of inversion between the two molecules, and acts as "polymerization bridge": OI-HI=OIa-HI=1.250 Å: $OI-HI-OIa=180^{\circ}$.

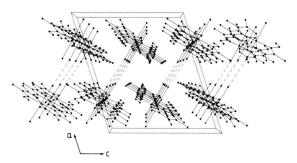


Fig. II. Projection of the structure onto the ac plane, showing intermolecular iodine interactions (broken lines), $1 \cdots I = 3.826 \text{ Å}$, and channel-like matrices running parallel to b.

potential interest is the existence of empty channellike matrices (seen in Fig. 2) which might eventually be used to host guest-species of appropriate size. M. M. B. wishes to thank "Stiftung Volkswagenwerk" (West Germany) for partial support of this work *via* its Partnership Program.

- [1] M. Mégnamisi-Bélombé and H. Endres, Z. Naturforsch. **42 b**, 1 (1987), and references cited therein.
- [2] M. Mégnamisi-Bélombé and B. Nuber, manuscript submitted to Bull. Chem. Soc. Jpn.
- [3] M. Mégnamisi-Bélombé and B. Nuber, manuscript submitted to Z. Naturforsch. b.
- [4] J. Toscano and L. G. Marzilli, Progr. Inorg. Chem. **31**, 105 (1984), and references therein.
- [5] L. Tschugaeff, Ber. Deut. Chem. Ges. 41, 2226 (1908).
- [6] R. P. Massongo Bokanjo, M. Sc. Thesis, p. 11 (1989), Ecole Normale Supérieure (Département de Chimie), The University of Yaoundé (Cameroon).
- [7] M. G. Sheldrick, SHELXTL PLUS. An integrated system for solving, refining and displaying crystal structures from diffraction data, University of Göttingen, FRG (1983). (XLS-Structure Refinement Package, Copyright 1988, Nicolet Instrument Corporation.)
- [8] International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham (1974). (Present distributor: D. Reidel, Dordrecht, The Netherlands.)