Das Metallcarbonyl OsCo₂(CO)₁₁: Verbesserte Darstellung und einige Reaktionen

The Metal Carbonyl OsCo₂(CO)₁₁: Improved Synthesis and Some Reactions

Miklos Tasi, Wolfgang Bernhardt und Heinrich Vahrenkamp* Institut für Anorganische und Analytische Chemie der Universität Freiburg, Albertstraße 21, D-7800 Freiburg

Herrn Prof. Dr. Dirk Reinen zum 60. Geburtstag gewidmet

Z. Naturforsch. 45b, 647-651 (1990); eingegangen am 30. November 1989

Metal Carbonyl Clusters, Synthesis, Capping Reactions

Of several methods tested to improve the yield of the metal carbonyl $OsCo_2(CO)_{11}$ (1), the reaction of $H_2Os(CO)_4$ with $Co_2(CO)_6(\mu-C_2H_2)$ was found to give the best results (>50%). The availability of 1 allowed to study its capping reactions with C_2H_4S , PhPH₂ and alkynes $RC \equiv CH$ leading to the products $OsCo_2(CO)_6(\mu_3-X)$ for X = S (2), PPh (3), and $RC \equiv CH$ (4). The capped clusters are thermally more stable than the corresponding $RuCo_2(CO)_9$ derivatives, and the alkyne capped species are more difficult to transform to the vinylidene capped clusters $OsCo_2(CO)_6(\mu_3-C=CHR)$ (5) than the analogous $RuCo_2$ species.

Einleitung

Die Chemie der Metallcarbonyle, gerade 100 Jahre alt geworden [1], ist heute nicht mehr das, was ihr Name besagt, nämlich die Chemie der reinen Metall-CO-Verbindungen. Es dominieren die Gewinnung von Derivaten, Struktur- und Reaktivitätsuntersuchungen und Anwendungsaspekte. Typisch dafür ist, daß seit W. Hiebers Arbeiten in Deutschland nur zwei reine Metallcarbonyle, RuCo₂(CO)₁₁ und Ru₂Co₂(CO)₁₃, dargestellt worden sind [2]. Dabei sind sehr einfache binäre Verbindungen wie Ti(CO)₇, Cr₂(CO)₁₁ oder Cu₂(CO)₆ noch unbekannt, und eine große Zahl ternärer Verbindungen ist formulierbar, aber bisher nur sehr unbequem oder gar nicht erhalten worden.

Zu letzteren gehört der Cluster OsCo₂(CO)₁₁ (1), das schwere Homologe des instabilen FeCo₂(CO)₁₁ und des sehr labilen RuCo₂(CO)₁₁ [2]. Die vielseitige Reaktivität, die der Cluster RuCo₂(CO)₁₁ gezeigt hatte [3, 4], ließ es uns als lohnend erscheinen, vergleichbare und neue Reaktionen bei 1 zu untersuchen. Dazu mußte der erstmalig von Moss und Graham [5, 6] beschriebene Cluster 1 in größeren Mengen zugänglich gemacht werden. Über Versuche hierzu und über die ersten vergleichenden Studien zu seinen Überdachungsreaktionen berichtet die vorliegende Arbeit.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/90/0500-0647/\$ 01.00/0

Synthese von $OsCo_2(CO)_{11}(1)$

Moss und Graham hatten 1 aus H₂Os(CO)₄ und $Co_2(CO)_8$ in 18% [5] und aus $Os(CO)_5$ und Co₂(CO)₈ in 33% Ausbeute [6] erhalten. Im ersteren Fall ist die Ausbeute zu unbefriedigend, im letzteren Fall lassen sich nur sehr kleine Ansätze durchführen. Unsere ersten Versuche lehnten sich die Darstellung von RuCo₂(CO)₁₁ aus $KCo(CO)_4$ und $[Ru(CO)_3Cl_2]_2$ [2] an. Es wurden Os(CO)₄Cl₂ bzw. [Os(CO)₃Cl₂]₂ [7] mit KCo(CO)₄ umgesetzt. Nach längerem Optimieren wurden als beste Lösungsmittel hierfür Methanol bzw. eine Benzol-Wasser-Suspension gefunden. Die Ausbeuten an 1 lagen jedoch höchstens bei 20%. Hauptprodukte der Reaktionen waren Co₂(CO)₈ und Co₄(CO)₁₂, entsprechend einer Oxidation des KCo(CO)₄ durch die Os-Cl-Komponente. Schon Reaktionen von KCo(CO)₄ mit bei den [Ru(CO)₃Cl₂]₂ war die analoge Redoxreaktion die Haupt-Nebenreaktion. Daß sie im Falle des Osmium-Reagenz zur dominierenden Reaktion wird, dürfte an den höheren Redoxpotentialen der Osmiumkomplexe liegen [8].

Eine Möglichkeit der Vermeidung der Redox-Probleme sahen wir im Einsatz der Osmium-Komponente als reduzierende Spezies, z. B. als Na₂Os(CO)₄ [9] oder H₂Os(CO)₄ [10]. Na₂Os(CO)₄ ist wie Na₂Ru(CO)₄ als Metallaustausch-Reagenz geeignet [11]. Als Ausgangsverbindung des Metallaustauschs bot sich Co₄(CO)₁₂ an, welches in Form von zwei Co(CO)₄⁻-Einheiten die besten uns bekannten Abgangsgruppen bereitstellen sollte [12].

Sonderdruckanforderungen an Prof. Dr. H. Vahrenkamp.

Die Umsetzung von $Co_4(CO)_{12}$ mit $Na_2Os(CO)_4$ führte tatsächlich zu **1**, aber wieder nur mit enttäuschenden 8% Ausbeute.

Zum gewünschten Ziel führte schließlich eine unerwartete Reaktion. In der Absicht, durch Cluster-Expansion mit dem Reagenz H₂Os(CO)₄ zu einem Acetylen-verbrückten OsCo₂-Cluster zu kommen, wurde dieses unter CO mit Co₂(CO)₆(μ-η²-C₂H₂) [13] umgesetzt. Hierbei ging das koordinierte Acetylen verloren, vermutlich als Ethylen, das aber nicht nachgewiesen wurde. Der Cluster 1 fiel in 54% Ausbeute an. Durch eine von uns vorgenommene Vereinfachung der Darstellung von H₂Os(CO)₄ (s. exp. Teil) ist die so erzielte Synthese von 1 in kurzer Zeit und in befriedigenden Mengen durchführbar.

Unsere IR-Daten des roten Komplexes 1 (in *n*-Hexan ν (CO) bei 2130 ss, 2082 sst, 2061 sst, 2016 m und 1818 m cm⁻¹) entsprechen weitgehend denen der Originalmitteilung [6]. Sie sind weiterhin fast deckungsgleich mit denen von RuCo₂(CO)₁₁ [2]. Für 1 kann damit in Analogie zu der kristallographisch bestimmten Struktur von RuCo₂(CO)₁₁ eine Atomanordnung mit zwei Co(CO)₃-Gruppen, einer Os(CO)₄-Gruppe und einer CO-Brücke über der Co-Co-Bindung angenommen werden.

Überdachungsreaktionen

Das wesentliche Merkmal der Chemie von $RuCo_2(CO)_{11}$ ist die leichte Abgabe von zwei CO-Liganden bei gleichzeitiger Einführung eines μ_3 -verbrückenden Liganden [3, 4]. Die thermische Labilität des $RuCo_2$ -Clusters ließ allerdings nicht alle erhofften Reaktionen dieses Typs zu. Von 1 wurde nun erhofft, daß es thermisch belastbarer wäre und neuartige Überdachungsreaktionen zuließe. Die größere thermische Stabilität von 1 ist gegeben: es ist bei Raumtemperatur unbegrenzt lagerfähig, und es geht beim Erwärmen nicht in Analogie zu $RuCo_2(CO)_{11}$ in einen Cluster $Os_2Co_2(CO)_{13}$ über.

Auch die Reaktivität von 1 gegenüber Überdachungsreagenzien ist deutlich verringert. Aber sie läßt immer noch bei Raumtemperatur die μ_3 -Verbrückungen zu, die bei RuCo₂(CO)₁₁ schon unterhalb von 0 °C ablaufen. Bis jetzt wurden für 1 die einfachsten Überdachungsreaktionen ausgeführt, für die es jeweils ein analoges Produkt aus der RuCo₂-Chemie gibt.

Um die Vierelektronen- μ_3 -Liganden S und PR zur Verfügung zu stellen, wurden Ethylensulfid

und Phenylphosphan eingesetzt. Die gewünschten Produkte 2 (braun) und 3 (rot) fielen in 60–70% Ausbeute an. Sie sind durch ihre Spektren-Verwandtschaft (Tab. I) mit den analogen RuCo₂-Komplexen [4], für 2 auch durch ein EI-Massenspektrum, eindeutig charakterisiert.

$$(CO)_{3}Co = \begin{cases} S & Co(CO)_{3} \\ CO(CO)_{3} & (CO)_{3}Co = \begin{cases} CO(CO)_{3} \\ CO(CO)_{3} & CO(CO)_{3} \end{cases} \end{cases}$$
2
3

Auch die Verbrückung von 1 mit Alkinen war möglich. In schneller Reaktion fielen bei Raumtemperatur mit Acetylen, Propin und Phenylacetylen die orangefarbenen Cluster 4a, b und c an. Alle drei sind allerdings Öle, so daß eine analytische Charakterisierung unmöglich war. EI-Massenspektren sicherten jedoch in allen drei Fällen die Zusammenstzungen ab.

$$(CO)_{3}Co = C \\ CO)_{3}CO = C \\ CO)_{4}CO = C \\ CO)_{5}CO =$$

Deutlichere Unterschiede zwischen dem RuCo₂-und dem OsCo₂-System zeigten sich bei den thermischen Umwandlungen des Alkinliganden in den Vinylidenliganden. Die Osmiumkomplexe **4a-c** verlangten wesentlich drastischere Bedingungen (typischerweise einen Tag in siedendem Cyclohexan), wodurch auch mehr Nebenprodukte entstanden. Die geringe Menge des verfügbaren **4b** führte zu keinem eindeutigen Ergebnis, die Umwandlung von **4a** in **5a** war unvollständig und von Zersetzung begleitet, und nur **4c** ging in brauchbaren Mengen in **5c** über. Die orangefarbenen Komplexe **5** sind kristallin und daher auch analytisch abgesichert.

Die IR-Daten (Tab. I) stellen wieder eine eindeutige Beziehung zwischen den Clustern 4 bzw. 5

und den analogen RuCo₂-Clustern her, die strukturanalytisch abgesichert sind [3]. Das bedeutet speziell für **4**, daß der Alkinligand parallel zur Os-Co-Bindung steht. Die μ_3 -alkinverbrückten RuCo₂- und OsCo₂-Cluster heben sich darin von den entsprechenden FeCo₂-Clustern ab, bei denen der Alkinligand parallel zur Co-Co-Bindung steht [14].

Die ¹H-NMR-Spektren (Tab. I) machen auf einen Unterschied zwischen den alkinverbrückten RuCo2- und OsCo2-Clustern aufmerksam. Während in den RuCo₂-Analoga von 4a und 4b die acetylenischen Protonen durch breite Signale in den 60 MHz-NMR-Spektren auf rasche Fluktuationen der Alkinliganden hinweisen, die quantitativ erfaßbar sind und erst unterhalb von −10 °C ausgefroren werden [3], ist dies in den Spektren von 4a-c nicht der Fall. Die Signale sind bei 30-40 °C scharf, und in 4b zeigt das Auftreten von je zwei Signalen für H und CH₃ das starre Vorliegen der beiden denkbaren Isomeren an. Die allgemein größere Inertheit der Osmiumverbindungen im Vergleich zu den Rutheniumverbindungen kommt also auch hierin zum Ausdruck.

Unsere Untersuchungen des Clusters OsCo₂(CO)₁₁ haben damit bisher seine weitgehende chemische Verwandtschaft zum Cluster RuCo₂(CO)₁₁ gezeigt. Die weiteren Arbeiten sollen sich nun darauf richten, unter Ausnutzung seiner größeren thermischen Stabilität zu Reaktionen zu kommen, die bei der Rutheniumverbindung nicht beobachtet wurden.

Experimenteller Teil

Die experimentellen Techniken waren wie beschrieben [15]. Die Ausgangsverbindungen wurden nach den genannten Literaturangaben hergestellt. Chromatographien erfolgten über Kieselgel, das bei 180 °C für 24 h i. HV. getrocknet worden war, oder über DC-Fertigplatten mit Kieselgel von 1 mm Schichtdicke.

Modifizierte Darstellung von $H_2Os(CO)_4$

Hierzu wurde ein Na2Os(CO)4 [9] eingesetzt, das unter Verwendung von völlig blankem Natrium hergestellt worden war. Es wurde in Anlehnung an die beschriebene Methode [10] wie folgt weiter verarbeitet: 250 mg (0,72 mmol) wurden in 40 ml Hexan aufgeschlämmt, mit 0,5 ml N₂-gesättigtem konz. H₃PO₄ versetzt und ca. 30 min heftig gerührt. Es bildete sich eine klare gelbe Lösung und etwas Niederschlag. Die organische Phase wurde abdekantiert, dreimal mit 10 ml N₂-gesättigtem Wasser gewaschen und über Na₂SO₄ getrocknet. Ihr IR-Spektrum zeigte nur die Banden von H₂Os(CO)₄. Der gelbe Rückstand wurde mit Wasser gewaschen und bei 50 °C i. Vak. getrocknet. Er bestand aus 82 mg (38%) Os₃(CO)₁₂. Die Ausbeute H₂Os(CO)₄ wurde dementsprechend mit 136 mg (62%) angenommen. Je nach Reinheit des Na₂Os(CO)₄ schwankte diese Ausbeute zwischen 30 und 65%.

Darstellung von OsCo₂(CO)₁₁

a) aus Os(CO)₄Cl₂: Zu einer Lösung von 477 mg (2,27 mmol) KCo(CO)₄ in 30 ml Methanol wurden

$Nr. \nu(CO)$					δ/J	
2	2105ss	2067 sst	2039 st	1981 m		
3	2095s	2053 sst	2034 m	1993 s	1969 s	7,3-8,0 M
4a	2103 ss 1996 s	2067 sst 1910 ss, br	2054 sst	2036 st	2024 m	10,27/D 2,7 8,12/D 2,7
4 b	2092 s 1995 m	2053 sst 1900 ss, br	2042 sst	2024 st	2014 st	9,64 (1 H) 7,73 (1 H) 2,57 (3 H) 2,54 (3 H)
4 c	2103 s 1995 s	2066 sst 1898 ss, br	2054 sst	2037 st	2026 m	10,10 (1 H) 7,1-7,3 M (5 H)
5a	2102 ss 2016 Sch	2065 sst 1995 ss	2055 sst 1981 s	2038 st	2021 m	5,01
5 c	2101 s 1991 ss	2061 sst 1979 ss	2055 sst	2037 st	2021 s	7,2-7,4 M ^a

^a Signal des Vinyliden-Protons unter dem Phenyl-Multiplett verborgen.

Tab. I. IR (*n*-Hexan, cm⁻¹) und ¹H-NMR-Daten (CDCl₃, int. TMS, ppm, Hz) der neuen Komplexe.

343 mg (0,92 mmol) Os(CO)₄Cl₂ gegeben und 2 h gerührt. Nach Einengen i. Vak. zur Trockne wurde in *n*-Hexan aufgelöst, filtriert und dreimal in der Kälte aus *n*-Hexan kristallisiert, wobei 113 mg (20%) 1 anfielen. Die Hauptprodukte der Reaktion waren Co₂(CO)₈ und Co₄(CO)₁₂ neben unidentifizierten Osmiumspezies.

Die analoge Reaktion in 20 ml einer 1:1-Benzol-Wasser-Emulsion mit 56 mg (0,27 mmol) $KCo(CO)_4$ und 53 mg (0,14 mmol) $Os(CO)_4Cl_2$ führte zu 16 mg (19%) **1.**

- b) aus [Os(Co)₃Cl₂]₂: 72 mg (0,34 mmol) KCo(CO)₄ und 56 mg (0,08 mmol) [Os(CO)₃Cl₂]₂ wurden in 10 ml Methanol wie zuvor umgesetzt und aufgearbeitet, wobei 16 mg (16%) **1** anfielen.
- c) aus Na₂Os(CO)₄: 30 mg (0,09 mmol) Na₂Os(CO)₄ wurden unter CO in 15 ml Ether suspendiert und tropfenweise mit 49 mg (0,09 mmol) Co₄(CO)₁₂ in 15 ml Ether versetzt. Nach 2 h Rühren wurde i. Vak. zur Trockne eingeengt und mit Hexan/CH₂Cl₂ (9:1) über eine 2×30-cm-Florosil-Säule chromatographiert. In der ersten Fraktion fielen 4 mg (8%) 1 an.
- d) aus H₂Os(CO)₄: Wie oben beschrieben, wurden 50 ml einer Hexan-Lösung von 0,52 mmol H₂Os(CO)₄ hergestellt. Dazu wurden 50 ml einer Hexan-Lösung von 187 mg (0,60 mmol) Co₂(CO)₆(μ-C₂H₂) gegeben und die Mischung für 90 min in einem Bestrahlungsgefäß aus Duranglas von innen mit einem Hanau-TQ-150-Hg-Hochdruckbrenner bestrahlt. Dann wurde i. Vak. auf 15 ml eingeengt und über eine 2×30-cm-Florosil-Säule chromatographiert. Nach geringen Mengen von Co₂(CO)₆(μ-C₂H₂) und von

 $Co_4(CO)_{10}(\mu - C_2H_2)$ wurden in einer roten Fraktion 172 mg (54%) 1 eluiert.

Überdachungsreaktionen

a) mit Schwefel: 35 mg (0,06 mmol) **1** in 10 ml Hexan wurden mit 7 μ l (6 mg, 0,11 mmol) frisch destilliertem Ethylensulfid versetzt. Nach 15 min wurde i. Vak. zur Trockne eingeengt, der Rückstand in einem Minimum an CH_2Cl_2 auf eine präparative Kieselgel-Dünnschichtplatte aufgebracht und mit Hexan/ CH_2Cl_2 (9:1) chromatographiert. Die erste, rotbraune Bande ergab 21 mg (61%) braunes **2** vom Schmp. 117 °C.

 $C_9Co_2O_9OsS$ (592,2) Ber. C 18,24 H 0,00, Gef. C 18,31 H 0,00. EI-Massenspektrum: $592 - n \cdot 28$ (n = 0 - 9).

b) mit Phenylphosphiniden: 61 mg (0,10 mmol) 1 in 15 ml Hexan wurden mit 13 μ l (13 mg, 0,12

mmol) PhPH₂ versetzt. Nach 15 min Rühren wurde über eine 1,5×15-cm-Kieselgel-Säule chromatographiert. Mit Hexan wurden in der ersten, orangeroten Fraktion 46 mg (69%) rotes 3 vom Schmp. 111 °C erhalten.

C₁₅H₅Co₂O₉OsP (668,2) Ber. C 26,95 H 0,75, Gef. C 26,98 H 0,88.

c) mit Acetylen: Durch eine Lösung von 100 mg (0.16 mmol) 1 in 40 ml Hexan wurde 30 s lang ein Strom von C_2H_2 geleitet. Sofort anschließend wurde mit Hexan über eine 2×20 -cm-Kieselgel-Säule chromatographiert. Die erste, orangefarbene Fraktion hinterließ 92 mg (96%) 4a als rotbraunes

Molmasse ber. für $C_{11}H_2Co_2O_9Os: 586,2$, EI-Massenspektrum: $586 - n \cdot 28 (n = 1 - 9)$.

d) mit Propin: Durch eine Lösung von 56 mg (0,09 mmol) 1 in 10 ml Hexan wurde eine Minute lang ein schwacher Propin-Strom geleitet. Es wurde noch 1 h gerührt und dann mit Hexan über eine $1,5\times15$ -cm-Kieselgel-Säule chromatographiert. Nach einem geringen, orangefarbenen Vorlauf von $\text{Co}_2(\text{CO})_6(\mu\text{-HCCMe})$ fielen aus dem orangefarbenen Eluat 17 mg (31%) 4b als rotes Öl an.

Molmasse ber. für $C_{12}H_4Co_2O_9Os: 600,2$, EI-Massenspektrum: $600 - n \cdot 28 (n = 0 - 9)$.

e) mit Phenylacetylen: 61 mg (0,10 mmol) $\bf 1$ in 10 ml Hexan wurden mit 22 μ l (18 mg, 0,20 mmol) PhCCH versetzt. Nach 30 min Rühren wurde wie zuvor chromatographiert, wobei aus dem orangefarbenen Eluat 48 mg (74%) $\bf 4c$ als rotes Öl anfielen.

Molmasse ber. für $C_{17}H_6Co_2O_9Os: 662,3$, EI-Massenspektrum: $662 - n \cdot 28$ (n = 1 - 9).

Alkin-Vinyliden-Umlagerungen

a) von **4a**: 92 mg (0,16 mmol) **4a** in 10 ml *n*-Oktan wurden für 24 h unter Rühren auf 80 °C erhitzt. Die Auftrennung der Produkte erfolgte mit Hexan an präparativen Kieselgel-Dünnschichtplatten und ergab nacheinander 8 mg **5a** (12% bezogen auf das verbrauchte **4a**), 27 mg unverbrauchtes **4a** und 7 mg eines braunen unbekannten Produkts. Die orangefarbenen Kristalle von **5a** schmelzen bei 81 °C.

C₁₁H₂Co₂O₉Os (586,2) Ber. C 22,52 H 0,34, Gef. C 22,44 H 0,67.

b) von **4c:** 48 mg (0,07 mmol) **4c** in 20 ml Cyclohexan wurden für 20 h zum Sieden erhitzt und

dann wie zuvor chromatographisch aufgearbeitet. Aus der ersten, orangefarbenen Fraktion kristallisierten beim Einengen 34 mg (70%) rotes 5c vom Schmp. 72 °C.

 $C_{17}H_6Co_2O_9Os$ (662,3)

Ber. C 30,82 H 0,91, Gef. C 30,71 H 0,84. Diese Arbeit wurde vom Fonds der Chemischen Industrie und von der Kommission der Europäischen Gemeinschaft unterstützt. Wir danken Herrn W. Deck für NMR-Spektren und Herrn Dr. H. Bantel für Massenspektren.

- [1] W. A. Herrmann, Chem. Unserer Zeit **22**, 113 (1988); E. Abel, Chem. Br. **25**, 1014 (1989).
- [2] E. Roland und H. Vahrenkamp, Chem. Ber. 118, 1133 (1985).
- [3] E. Roland, W. Bernhardt und H. Vahrenkamp, Chem. Ber. 118, 2858 (1985).
 [4] E. Roland, W. Bernhardt und H. Vahrenkamp,
- [4] E. Roland, W. Bernhardt und H. Vahrenkamp, Chem. Ber. 119, 2566 (1986).
- [5] J. R. Moss und W. A. G. Graham, J. Organomet. Chem. 23, C 23 (1970).
- [6] W. A. G. Graham und J. R. Moss, J. Organomet. Chem. 270, 237 (1984).
- [7] R. Psaro und C. Dossi, Inorg. Chim. Acta 77, L 255
- [8] Die Standard-Redoxpotentiale aus den Tabellenwerken sind für Ru/Ru³⁺ ca. 0,4 V und für Os/Os³⁺ ca. 0,8 V.

- [9] W. J. Carter, J. W. Kelland, S. J. Okrasinski, K. E. Warner und J. R. Norton, Inorg. Chem. 21, 3955 (1982).
- [10] R. D. George, S. A. R. Knox und F. G. A. Stone, J. Chem. Soc. Dalton Trans. 1973, 972.
- [11] D. Mani und H. Vahrenkamp, Chem. Ber. 119, 3639 (1986).
- [12] H. Vahrenkamp, Comments Inorg. Chem. 4, 253 (1985).
- [13] U. Krüerke und W. Hübel, Chem. Ber. **94**, 2829
- [14] S. Aime, L. Milone, D. Osella, A. Tiripicchio und A. M. Manotti Lanfredi, Inorg. Chem. 21, 501 (1982).
- [15] W. Deck, M. Schwarz und H. Vahrenkamp, Chem. Ber. 120, 1515 (1987).