Die Ligandeneigenschaften der Komplexe LMO₃ (M = Mo(VI), W(VI), L = cyclisches Triamin). Die Kristallstrukturen von [(LMoO₃)₄Co|[BPh₄]₂·C₂H₅OH, (LMoO₃)₄Fe][BPh₄]₃·NaBPh₄, [LWO₃BPh₃] und [(LWO₃)₂BPh₂][BPh₄]

The Ligating Properties of LMO₃-Complexes (M = Mo(VI), W(VI), L = Cyclic Triamine). The Crystal Structures of [(LMoO₃)₄Co][BPh₄]₂· C₂H₅OH, [(LMoO₃)₄Fe][BPh₄]₃· NaBPh₄, [LWO₃BPh₃] and [(LWO₃)₂BPh₂][BPh₄]

Peter Schreiber und Karl Wieghardt*

Lehrstuhl für Anorganische Chemie I, Ruhr-Universität, D-4630 Bochum

Bernhard Nuber und Johannes Weiss

Anorganisch-Chemisches Institut der Universität, D-6900 Heidelberg

Herrn Prof. Dr. Dirk Reinen zum 60. Geburtstag gewidmet

Z. Naturforsch. 45b, 619-628 (1990); eingegangen am 30. Oktober 1989

cis-Trioxomolybdenum(VI) Complexes, cis-Trioxotungsten(VI) Complexes, Synthesis, X-Ray

The reactivity of LMO₃ and L'MO₃ complexes as ligands has been investigated ($L = C_6H_{15}N_3$, 1,4,7-triazacyclononane; $L' = C_9H_{21}N_3$, N,N',N"-trimethyl-1,4,7-triazacyclononane; $M = Mo^{VI}$, W^{VI}).

The crystal structures of $[(L'MoO_3)_4Co^{II}][BPh_4]_2 \cdot C_2H_5OH$ (1) and $[(L'MoO_3)_4Fe^{III}][BPh_4]_3 \cdot Na[BPh_4]$ (2) have been determined by X-ray crystallography. Both the Co^{II} and Fe^{III} centers are in a tetrahedral environment of four oxygen atoms which are connected to $L'MO_2$ fragments. The reaction of LMO_3 complexes $(M = Mo^{VI}, W^{VI})$ in aqueous solution with tetraphenylborate(1–) anions yields LMO_3BPh_3 or $[(LMO_3)_2BPh_2][BPh_4]$ complexes and benzene. The crystal structures of LWO_3BPh_3 (3) and $[(LWO_3)_2BPh_2][BPh_4]$ (4) have been determined.

Die Koordinationschemie von monomeren, oktaedrischen Komplexen des Molybdän(VI) und Wolfram(VI), die eine oder zwei terminale Oxogruppen enthalten, ist recht gut bekannt [1–3]. Die Reaktivität dieser Oxogruppen ist in den letzten Jahren erneut intensiv untersucht worden, weil molybdän- oder – weniger gut belegt – wolframhaltige Metalloproteine eine Reihe verschiedener Oxotransferreaktionen mit kleinen anorganischen Substraten (NO₃⁻, SO₃²⁻ in der Nitratreduktase bzw. Sulfitoxidase) durchführen [4].

In Lösung stabile oktaedrische Mo^{VI}- und W^{VI}-Komplexe mit *drei cis*-ständigen terminalen Oxogruppen sind nun kürzlich von uns beschrieben worden [5–7]. Wir haben die Basizität und die nucleophilen Eigenschaften der Oxogruppen untersucht. Die wasserlöslichen, farblosen Neutralkom-

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/90/0500–0619/\$ 01.00/0

plexe $LMO_3 \cdot 3 H_2O$ und $L'MO_3 \cdot 3 H_2O$ (M = Mo^{VI} , W^{VI} und L = 1,4,7-Triazacyclononan, L' =N,N',N"-Trimethyl-1,4,7-triazacyclononan) sind kristalline Verbindungen, die in guten Ausbeuten durch vollständige oxidative Decarbonylierung der entsprechenden LM(CO)3- und L'M(CO)3-Komplexe mit H2O2 in THF oder durch Umsetzung der Liganden mit MoO3 oder WO3 in wäßriger Lösung erhältlich sind (Schema I) [5-7]. Im Gegensatz zu den bekannten Verbindungen $(dien)MoO_3$ [8] und $(dien)WO_3$ [9] (dien = Diethylentriamin), die nur im festen Zustand beständig sind, dissoziieren die cyclischen Aminliganden in saurer wäßriger Lösung von LMO3 und L'MO3 nicht. Es ist daher möglich, die Reaktivität der MO₃-Struktureinheit in Lösung zu studieren.

In nicht-koordinierenden wäßrigen Säuren (CH₃SO₃H, HClO₄) wird zunächst eine (M=O)-Gruppe protoniert. [L'WO₂(OH)]Br konnte z. B. kristallin erhalten und strukturanalytisch charakterisiert werden [10]. In stärker saurer Lösung bilden sich die zweikernigen Komplexe mit μ-Oxo-

Sonderdruckanforderungen an Prof. Dr. K. Wieghardt.

bis[(cis-dioxometall(VI))]²⁺-Gerüst. In konz. HBr entsteht aus LWO₃·3 H₂O dagegen [LWO₂Br]Br, das ebenfalls röntgenstrukturanalytisch charakterisiert wurde [10]. Diese Reaktionen demonstrieren die Basizität des cis-Trioxometall(VI)-Fragments.

In einer früheren Arbeit [7] hatten wir auch gezeigt, daß die cis-Trioxometall(VI)-Gruppe nucleophile Eigenschaften besitzt. LMO3- und L'MO3-Komplexe reagieren nämlich in schwach koordinierenden Lösungsmitteln wie Methanol (nicht aber H₂O) mit zwei- und dreiwertigen Übergangsmetallkationen (CoII, CuII, FeIII) zu den großen Kationen [(LMO₃)₄Co^{II}]²⁺ und [(LMO₃)₄Fe^{III}]³⁺, d.h. die Neutralkomplexe können als Liganden fungieren. Da zu der Zeit keine geeigneten Einkristalle von Salzen dieser Komplexe erhalten werden konnten, wurde die tetraedrische Struktur des Co^{II}O₄- bzw. Fe^{III}O₄-Koordinationspolyeders aus spektroskopischen Daten (UV-VIS) abgeleitet. Nach vielen vergeblichen Kristallisationsversuchen ist es uns nun gelungen, Einkristalle von $[(L'MoO_3)_4Co][BPh_4]_2 \cdot C_2H_5OH(1)$ und $[(L'MoO_3)_4Fe][BPh_4]_3 \cdot Na[BPh_4]$ (2) zu züchten

Schließlich haben wir eine unerwartete Reaktion zwischen LMO₃-Komplexen und dem "un-

und ihre Kristallstrukturen zu bestimmen.

schuldigen" (innocent) Tetraphenylborat(1–)-Anion in wäßriger Lösung gefunden. Je nach eingesetztem Verhältnis von LMO₃ zu [BPh₄]⁻ bilden sich farblose Kristalle von [(LMO₃)₂BPh₂][BPh₄], oder [LMO₃BPh₃] und Benzol (Schema II). Die Kristallstrukturen von LWO₃BPh₃ (3) und von [(LWO₃)₂BPh₂][BPh₄] (4) wurden bestimmt.

Synthese der Komplexe

Einkristalle von [(L'MoO₃)₄Co][BPh₄]₂·C₂H₅OH (1) wurden wie folgt gezüchtet. Aus einer methanolischen Lösung $Co(ClO_4)_2 \cdot 6 H_2O$, von L'MoO₃·3 H₂O und Na[BPh₄] fällt sofort ein mikrokristalliner Niederschlag [(L'MoO₃)₄Co][BPh₄]₂, der in Nitroethan, das etwa 5% Ethanol enthält, gelöst wurde. Mehrtägiges Stehenlassen dieser Lösung in einem offenen Gefäß bei 20 °C lieferte tiefblaue Einkristalle von 1. Die Verbindung zeigt ein temperaturunabhängiges magnetisches Moment von 4,5 μ_B , das typisch ist für Co^{II} in tetraedrischer Ligandenumgebung [11].

Bei der Umsetzung von L'MoO₃·3 H₂O mit Fe(ClO₄)₃·9 H₂O in Methanol entsteht sofort ein mikrokristalliner, oranger Niederschlag von [(L'MoO₃)₄Fe](ClO₄)₃ [7], der sich in Acetonitril mit gelber Farbe löst. Nach Zugabe von in CH₃CN gelöstem Na[BPh₄] schieden sich innerhalb von 24 h zur Röntgenstrukturanalyse geeignete Einkristalle von [(L'MoO₃)₄Fe][BPh₄]₃·Na[BPh₄] (2) aus. Der Natriumgehalt von 2 wurde qualitativ und quantitativ durch Atomabsorptionsspektroskopie bestimmt. In der Strukturanalyse konnte das Natriumion nicht lokalisiert werden (s. u.). Die Verbindung zeigt ein temperaturunabhängiges

(90-296 K) magnetisches Moment von 5,9 μ_B , das typisch für ein high-spin Fe(III)-Ion ist.

Bei dem Versuch, Salze der monoprotonierten Formen von LWO₃, L'WO₃ oder L'MoO₃ aus methansulfonsauren, wäßrigen Lösungen zu erhalten, entstanden nach Zugabe äquimolarer Mengen Na[BPh₄] bei 20 °C sofort farblose Niederschläge, deren Zusammensetzung der der Neutralkomplexe LWO₃BPh₃ (3), L'WO₃BPh₃ und L'MoO₃BPh₃ entspricht. Als Nebenprodukt wurde jeweils Benzol identifiziert. Statt der erwarteten Salze [LMO₂(OH)][BPh₄] entstehen also die Addukte zwischen LMO3 und BPh3. Wie die Kristallstrukturanalyse von 3 (s.u.) zeigt, ist das BPh₃-Fragment über das Boratom an eine terminale (M=O)-Gruppe koordinativ gebunden. In den Infrarotspektren sind die beiden typischen v(M=O)-Valenzschwingungen einer cis-Dioxometall(VI)-Struktureinheit ($v_{as}(M=O)$ und $v_{s}(M=O)$) zu erkennen, sowie eine weitere (M-O)-Valenzschwingung bei niedrigen Wellenzahlen, die der (M-O-B)-Einheit zugeordnet wird (Tab. I). Die Komplexe sind in Wasser unlöslich, sie können aber aus Acetonitril umkristallisiert werden.

Wurde das Verhältnis von LWO₃·3 H₂O zu Na[BPh₄] in obiger Reaktion auf 1:0,5 herabgesetzt, entsteht ein farbloser Niederschlag des Salzes [(LWO₃)₂BPh₂][BPh₄] (4) und wiederum Benzol. Einkristalle dieses Salzes wurden aus Acetonitrillösungen erhalten; die Kristallstruktur wird weiter unten beschrieben. Dieses Salz besteht aus dem Monokation [(LWO₃)₂BPh₂]⁺ und BPh₄⁻-Anionen. Zwei LWO₃-Gruppen sind über jeweils eine Oxobrücke an ein BPh2-Fragment gebunden. Im Infrarotspektrum werden auch hier die typischen v(M=O)-Valenzschwingungen der beiden cis-Dioxowolfram(VI)-Einheiten $(v_{as}(W=O))$ und 895 cm⁻¹ $(v_{s}(W=O))$ bzw. bei 915 und 879 cm⁻¹ beobachtet, da die beiden LWO₃-Fragmente im festen Zustand nicht äquivalent sind (s. u.).

Tab. I. Infrarotspektren der Komplexe (in KBr).

Komplex	ν(M-O), cm ⁻¹
[(L'MoO ₃) ₄ Co][BPh ₄] ₂ ·C ₂ H ₅ OH	919, 885, 828
[(L'MoO ₃) ₄ Fe][BPh ₄] ₃ ·Na[BPh ₄]	932, 906, 755
LWO ₃ BPh ₃	953, 905, 877
L'WO ₃ BPh ₃	951, 900, 886
L'MoÖ ₃ BPh ₃ [(LWO ₃) ₂ BPh ₂][BPh ₄]	922, 890 (sh), 876 933, 915, 895, 879, 841

Versuche, durch weiteres Herabsetzen des Verhältnisses LWO₃ zu BPh₄⁻ (1:<0,5) das Kation $[(LWO_3)_4B]^{3+}$ – etwa in Analogie zum $[(LMoO_3)_4Fe]^{3+}$ -Kation – herzustellen, schlugen fehl. Wahrscheinlich erlauben die viel kürzeren (B-O)-Bindungen von $\approx 1,50$ Å im Vergleich mit den (Fe-O)-Bindungen von $\approx 1,80$ Å in **2** nicht die Koordination von vier sperrigen LWO₃-Einheiten an ein Boratom.

Bei der Synthese von LWO3BPh3- und [(LWO₃)₂BPh₂]⁺-Komplexen wird offensichtlich die Oxophilie des Bors einerseits und die Nucleophilie der terminalen (W=O)-Gruppen andererseits genutzt. Es ist interessant, daß in den letzten Jahren eine Reihe von Oxoübergangsmetallkomplexen mit oxophilen Hauptgruppenelementfragmenten zu analog gebauten Komplexen umgesetzt werden konnten. Folgende Donor-Akzeptor-Komplexe, die kürzlich röntgenstrukturanalytisch charakterisiert wurden, seien beispielhaft genannt: $HPPh_3[W^VOCl_4(OPPh_3)]$ [12], $[L^2V^{IV}-O-BPh_3]$ [13], $[L^2V^{IV}-O-Si(CH_3)_3]BPh_4$ [13] (L^2) Benzo[bii]-1,4,8,11-tetraazocyclotetradecahexaenato(2-)), $SnPh_2Cl_2 \cdot VO(salen) \cdot H_2O$ (salen = N,N'-Ethylenbis(salicylideniminat)) [20].

Röntgenstrukturanalysen

Abb. 1 und Abb. 2 zeigen die Strukturen der komplexen Kationen in Kristallen von 1 und 2. Bindungslängen und -abstände sind in Tab. II zu-

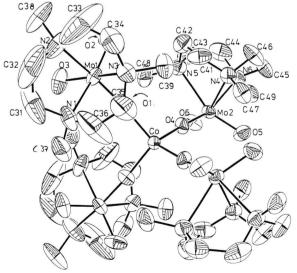


Abb. 1. Struktur des Kations in Kristallen von 1.

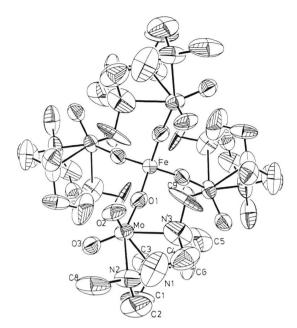


Abb. 2. Struktur des Kations in Kristallen von 2.

Tab. II. Ausgewählte Bindungsabstände [Å] und -winkel $[\,\mathring{\text{o}}\,].$

$[(L'MoO_3)_4Co][BPh_4]_2 \cdot C_2H_5OH (1)$				
Co-O1	1,914(5)	Co-O4	1,926(4)	
Mo1-O1	1,791(5)	Mo1-O2	1,688(5)	
Mo1-O3 Mo1-N2 Mo2-O4 Mo2-O6 Mo2-N5	1,711(5) 2,332(9) 1,783(4) 1,719(5) 2,333(6)	Mo1-N1 Mo1-N3 Mo2-O5 Mo2-N4 Mo2-N6	2,386(6) 2,363(6) 1,705(5) 2,348(6) 2,319(6)	
O1-Co-O4 O4-Co-O1' O1-Mo1-O2 O2-Mo1-N1 O1-Mo1-N2 O3-Mo1-N2 O1-Mo1-N3 O3-Mo1-N3 N2-Mo1-N3 O4-Mo2-O5 O5-Mo2-O6 O5-Mo2-N4	109,0(2) 112,9(2) 107,1(2) 105,8(3) 154,6(2) 156,6(2) 88,0(3) 87,6(2) 155,6(2) 72,8(3) 107,0(2) 105,5(2) 90,0(2)	O1-Co-O1' O1-Mo1-O3 O1-Mo1-N1 O3-Mo1-N1 O2-Mo1-N2 N1-Mo1-N3 N1-Mo1-N3 Co-O1-Mo1 O4-Mo2-O6 O4-Mo2-N4 O5-Mo2-N5	106,5(3) 106,8(2) 88,3(2) 88,2(2) 85,3(3) 73,9(3) 87,9(2) 72,3(2) 175,7(3) 105,7(2) 87,1(2) 155,5(2) 155,9(2)	
O4-Mo2-N5 O6-Mo2-N5	88,7(2) 86,9(2)	N4-Mo2-N5 O5-Mo2-N6	72,2(2) 85,3(2)	
O4-Mo2-N6 O6-Mo2-N6 N5-Mo2-N6	157,1(2) 88,9(2) 74,2(2)	N4-Mo2-N6 Co-O4-Mo2	73,3(2) 175,3(3)	

$[(L'MoO_3)_4Fe][BPh_4]_3 \cdot Na[BPh_4](2)$			
Mo-O1 Mo-O3 Mo-N2 Fe-O1	1,85(2) 1,67(2) 2,30(3) 1,79(2)	Mo-O2 Mo-N1 Mo-N3	1,64(2) 2,38(2) 2,33(3)
O1-Mo-O2 O2-Mo-O3 O2-Mo-N1 O1-Mo-N2 O3-Mo-N2 O1-Mo-N3 O3-Mo-N3 N2-Mo-N3 O1-Fe-O1'	103,0(8) 108,5(9) 154,9(8) 156,3(9) 91,2(10) 84,6(9) 157,7(9) 73,9(10) 107,1(5)	O1'-Fe-O1" Mo-O1-Fe O1-Mo-O3 O1-Mo-N1 O3-Mo-N1 O2-Mo-N2 N1-Mo-N2 O2-Mo-N3 N1-Mo-N3	114,3(11) 171,0(11) 106,2(8) 89,8(8) 88,1(9) 86,0(9) 74,6(9) 87,4(9) 72,1(9)
$[LWO_3BPh_3]$ (3)			
W1-O1 W1-O3 W1-N2 O3-B1 B1-C10	1,52(2) 1,78(1) 2,28(2) 1,59(3) 1,57(3)	W1-O2 W1-N1 W1-N3 B1-C16 B1-C22	1,72(1) 2,27(2) 2,30(2) 1,65(2) 1,60(3)
O1-W1-O2 O2-W1-O3 O2-W1-N1 O1-W1-N2 O3-W1-N2 O1-W1-N3 O3-W1-N3 N2-W1-N3 O3-B1-C16 O3-B1-C22 C16-B1-B22	96,6(9) 105,1(7) 91,9(9) 89,5(9) 156,8(6) 94,6(8) 90,4(6) 72,6(7) 103,4(15) 103,8(15)	O1-W1-O3 O1-W1-N1 O3-W1-N1 O2-W1-N2 N1-W1-N2 O2-W1-N3 N1-W1-N3 W1-O3-B1 O3-B1-C10 C10-B1-C16 C10-B1-C22	108,0(9) 159,7(8) 87,4(6) 87,4(9) 72,4(6) 156,9(10) 71,6(6) 154,2(10) 108,1(13) 108,1(15)
[(LWO ₃) ₂ BPh ₂][H	3Ph ₄] (4)		
W1-O1 W1-O3 W1-N2 O3-B1 W2-O4 W2-O6 W2-N5 O6-B1	1,729(5) 1,808(4) 2,317(5) 1,513(7) 1,731(4) 1,796(4) 2,310(6) 1,489(8)	W1-O2 W1-N1 W1-N3 W2-O5 W2-N4 W2-N6 B1-C19 B1-C13	1,741(3) 2,300(6) 2,268(5) 1,725(5) 2,247(6) 2,339(8) 1,616(10) 1,615(12)
01-W1-O2 02-W1-O3 02-W1-N1 01-W1-N2 03-W1-N2 01-W1-N3 03-W1-N3 N2-W1-N3 04-W2-O6 04-W2-N4 06-W2-N4 05-W2-N5 N4-W2-N5 05-W2-N6 N4-W2-N6 W2-O6-B1 06-B1-C13 06-B1-C19 03-B1-O6	105,0(2) 106,4(2) 90,1(2) 87,7(2) 88,8(2) 88,4(2) 156,9(2) 73,3(2) 105,8(2) 88,8(2) 156,0(2) 90,8(2) 72,8(2) 157,6(3) 72,7(2) 175,7(5) 109,5(5) 107,7(6)	01-W1-O3 01-W1-N1 03-W1-N1 02-W1-N2 N1-W1-N2 02-W1-N3 N1-W1-N3 W1-O3-B1 04-W2-O5 05-W2-O6 05-W2-N4 04-W2-N5 06-W2-N5 06-W2-N6 06-W2-N6 N5-W2-N6 03-B1-C19 03-B1-C13	105,7(2) 155,6(2) 87,6(2) 156,3(2) 72,0(2) 86,9(2) 73,2(2) 152,4(4) 106,6(2) 104,0(2) 89,5(2) 154,7(3) 87,0(2) 86,9(2) 88,8(2) 71,3(2) 109,2(4) 115,4(5) 108,6(6)

sammengestellt. Das Kation in 1 liegt auf einer kristallographischen C2-Achse, während es in 2 kristallographische T_d-Lagesymmetrie besitzt. Sowohl das CoII- als auch das FeIII-Zentrum sind tetraedrisch von vier O-Atomen umgeben, die ieweils an ein MoVI-Zentrum gebunden sind. In beiden Kationen sind die MoVI-Ionen verzerrt oktaedrisch von drei cis-ständigen O-Atomen, nämlich den zwei cis-ständigen, terminalen Oxo-Gruppen und dem verbrückenden O-Atom, und drei N-Atomen des cyclischen Triamins umgeben. Die Abmessungen der L'MoO₃-Einheiten in 1 und 2 sind sehr ähnlich: Die terminalen (Mo=O-Abstände sind mit 1.68 Å kurz und entsprechen denen einer typischen Doppelbindung dieser Art; der $(Mo-O_b)$ -Abstand ist in 1 1,791(5) und in 2 1,85(2) Å. Er ist gegenüber den terminalen (Mo=O)-Bindungen deutlich aufgeweitet, und ist in 1 länger als in 2 wegen der stärkeren Bindung des O-Brückenatoms zum Fe^{III}-Ion in 2 verglichen mit einer schwächeren Bindung zum Co^{II}-Ion in 1. Interessanterweise sind die drei (Mo-N)-Abstände nicht äquivalent. Die beiden Abstände in trans-Stellung zu den kurzen (Mo=O.)-Abständen sind um etwa 0,04 Å länger als der (Mo-N)-Abstand trans zur (Mo-O_b)-Gruppe. Es handelt sich dabei um den bekannten strukturellen trans-Einfluß von Metall-Oxo-Gruppen. Der (O-Mo-O)-Winkel der cis-MoO₂-Einheit ist deutlich größer als 90° und ist mit im Mittel 106° ebenso groß wie der im (dien)MoO₃ [8b]. Die (N-Mo-N)-Bindungswinkel sind wegen der sterischen Bedingungen des cyclischen Triamins wesentlich kleiner als 90° $(\approx 73^{\circ}).$

Tetraedrische $\text{CoO}_4\text{-Koordinationspolyeder}$ sind für die Komplexe $[\text{Co}(\text{Me}_3\text{PO})_4]^{2^+}$ und $[\text{Co}(\text{Ph}_3\text{PO})_4]^{2^+}$ aufgrund der UV-VIS-Spektren und der magnetischen Momente vorgeschlagen worden [14]. Der (Co-O)-Bindungsabstand von 1,92 in 1 ist identisch mit dem in dem Heteropolymolybdatanion $[\text{Co}^{\text{II}}\text{Mo}_{12}\text{O}_{40}]^{6^-}$ bestimmten [15], in dem ebenfalls ein $\text{CoO}_4\text{-Tetraeder}$ vorkommt. Verbindungen mit $\text{FeO}_4\text{-Tetraeder}$ sind ebenfalls bekannt und röntgenstrukturanalytisch charakterisiert: $\text{LiFe}^{\text{III}}(\text{OCHBu}_2{}^{\prime})_4$ [16], $[\text{Fe}^{\text{III}}\text{W}_{12}\text{O}_{40}]^{4^-}$ [17], $\text{Na}_{14}[\text{Fe}_6\text{O}_{16}]$ [18] und $[\text{Fe}(\text{OSi}(\text{CH}_3)_3)_4]^-$ [23]. $(\text{Fe}^{\text{III}}-\text{O})\text{-Abstände}$ von \approx 1,80 Å stimmen gut mit dem hier für 2 gefundenen überein.

Die Struktur des Neutralkomplexes in Kristallen von 3 ist in Abb. 3 gezeigt; Bindungslängen

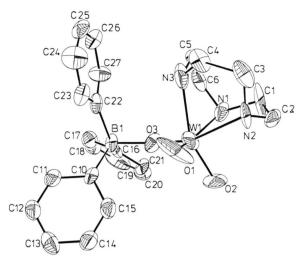


Abb. 3. Struktur des Neutralkomplexes in Kristallen von 3.

und -abstände sind in Tab. II angegeben. In der LWO₃-Teilstruktur ist das Wolfram(VI)-Ion von drei *cis*-ständigen O-Atomen und drei N-Atomen verzerrt oktaedrisch umgeben. Das N₃O₃W-Koordinationspolyeder ist dem des N₃O₃Mo-Polyeders in 1 und 2 sehr ähnlich. Auch hier sind die zwei *cis*-ständigen terminalen O-Atome über eine Doppelbindung an das Wolfram gebunden (mittlerer Abstand (W=O): 1,60 Å), während das O-Atom, das als Brücke zum B-Atom fungiert, einen längeren (W-O_b)-Abstand besitzt. Da die Struktur nicht mit hoher Genauigkeit bestimmt werden konnte, sind die Standardabweichungen relativ groß und daher verbietet sich eine detaillierte Diskussion der Bindungsabstände.

Der Abstand B1-O3 ist mit 1,59 Å deutlich länger als "normale" (B-O)-Einfachbindungen. Der mittlere (B-O)-Abstand in Metallboraten ist etwa 1,47 Å [19]; in L²V-O-BPh₃ [13] ist er 1,57 Å. Der mittlere (B-C)-Abstand von 1,60 Å ist etwas kürzer als der im BPh₄-Anion in 4 (1,64 Å) (s. u.). Dies spiegelt den Elektronenmangel, hervorgerufen durch die lange (B-O)-Bindung im O-BPh₃-Fragment, wider. Das gleiche Phänomen ist die Ursache für die beobachtete Aufweitung der (C-B-C)-Bindungswinkel vom idealen Tetraederwinkel nach ≈116° in 3. Der (B-O-W)-Bindungswinkel beträgt 154°, die (B-O-W)-Einheit ist somit nicht linear.

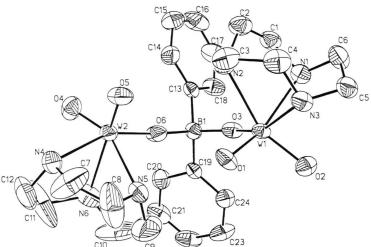


Abb. 4. Struktur des Kations in Kristallen von 4.

Abb. 4 zeigt das Monokation in Kristallen von 4. Zwei LWO₃-Gruppen sind über jeweils ein O-Atom an ein BPh₂-Fragment gebunden. Die Abmessungen der LWO3-Einheiten sind innerhalb der experimentellen Fehlergrenzen gleich groß und sind denen in Kristallen von 3 sehr ähnlich. Der mittlere (W=O)-Abstand der cis-ständigen terminalen WO₂-Gruppe beträgt 1,73 Å, während der (W-O)-Abstand der Oxobrücken 1,80 Å ist. Der mittlere (B-O)-Abstand von 1,50 Å ist kürzer als im Neutralkomplex 3. Die beiden (B-O-W)-Bindungswinkel sind nicht äquivalent: W1-O3-B1 152,4(4)° und W2-O6-B1 175,7(5)°. Das Boratom ist verzerrt tetraedrisch von zwei O-Atomen und zwei C-Atomen der beiden Phenylgruppen umgeben.

Experimenteller Teil

Die Synthese der Liganden [21] und der Komplexe LMO₃·3 H₂O sowie L'MO₃·3 H₂O (M = Mo, W) [5-7] erfolgte nach Literaturangaben, ebenso die Herstellung der Komplexe [(L'MoO₃)₄Co](ClO₄)₂ und [(L'MoO₃)₄Fe](ClO₄)₃ [7].

 $LWO_3B(C_6H_5)_3$ (3), $L'WO_3B(C_6H_5)_3 \cdot 0.5$ CH_3CN und $L'MoO_3B(C_6H_5)_3 \cdot CH_3CN$

1,2 mmol LWO₃·3 H₂O oder L'WO₃·3 H₂O wurden in 30 ml 2,5 M wäßriger Methansulfonsäure gelöst und mit einer äquimolaren Menge Na[B(C_6H_5)₄], gelöst in 20 ml H₂O, versetzt. Die

nun entstehende weiße Suspension wurde 24 h bei 20 °C gerührt. Anschließend wurde der farblose Niederschlag abfiltriert, mit viel H₂O gewaschen und an der Luft getrocknet. Der Niederschlag wurde in der Wärme in 40 ml CH₃CN gelöst. Aus dieser Lösung fiel beim Abkühlen auf 5 °C ein feinkristalliner, farbloser Niederschlag, der abfiltriert und an der Luft getrocknet wurde (Ausbeute: LWO₃BPh₃: 69%; L'WO₃BPh₃: ≈20%; L'MoO₃BPh: 30%).

Analyse für $C_{24}H_{30}BN_3O_3W$ (MG: 603,1) Ber. C 47,8 H 5,0 N 7,0, Gef. C 48,2 H 5,2 N 7,0.

Analyse für $C_{27}H_{30}BN_3O_3W\cdot 0.5$ CH_3CN (MG: 665,7)

Ber. C 50,5 H 5,7 N 7,4, Gef. C 50,1 H 5,5 N 7,2.

Analyse für $C_{27}H_{36}BMoN_3O_3 \cdot CH_3CN$ (MG: 598,4)

Ber. C 58,2 H 6,6 N 9,4, Gef. C 57,9 H 6,6 N 9,2.

 $[(LWO_3)_2B(C_6H_5)_2][B(C_6H_5)_4]$ (4)

Zu einer Lösung von 0,5 g (1,2 mmol) LWO $_3$ ·3 H_2 O in 25 ml 2,5 M Methansulfonsäure wurden 0,22 g (0,6 mmol) Na[B(C_6H_5) $_4$], gelöst in 10 ml H_2 O unter Rühren bei 20 °C gegeben. Nach 24 h Rühren bei 20 °C wurde der farblose Niederschlag abfiltriert, mit viel H_2 O gewaschen und an der Luft getrocknet. Dieser Niederschlag wurde in 20 ml C H_3 CN gelöst und filtriert. Nach Stehenlas-

sen dieser Lösung in einem offenen Gefäß an der Luft, bildeten sich innerhalb von 2-3 Tagen blaßgelbe Einkristalle des Komplexes (Ausbeute: 55%).

Analyse für $C_{48}H_{60}B_2N_6O_6W_2$ (MG: 1206,3) Ber. C 47,8 H 5,0 N 7,0, Gef. C 48,0 H 5,2 N 7,1.

Kristallstrukturanalysen

Die Abmessungen der Elementarzellen von 1–4 und Details der Intensitätsmessungen sind in Tab. III zusammengefaßt. Die Intensitäten wurden in der üblichen Weise korrigiert; empirische Absorptionskorrekturen (ψ -scans) wurden in allen Fällen durchgeführt. Die Strukturen wurden mittels Patterson- und Differenz-Fourier-Synthesen gelöst. Die Atomkoordinaten für 1, 2, 3 und 4 sind in den Tab. IV, V, VI und VII angegeben [22]. Im

folgenden sind Besonderheiten der einzelnen Röntgenstrukturanalysen zusammengestellt.

1: Alle Atome mit Ausnahme der H-Atome und der Atome des C_2H_5 OH-Solvensmoleküls wurden mit anisotropen Temperaturfaktoren verfeinert. Die Lagen der H-Atome wurden berechnet. Die C-Atome C32, C33, C36, C37, C38 zeigen sehr große, physikalisch bedeutungslose thermische Parameter. Dies ist Ausdruck der Fehlordnung der Mo-N-C-C-N-Chelatfünfringe, die in $(\lambda\lambda\lambda)$ -oder $(\delta\delta\delta)$ -Konformation vorliegen können. Dies Phänomen wird häufig in Strukturanalysen von Komplexen mit 1,4,7-Triazacyclononanliganden beobachtet.

2: Obwohl ein recht großer Kristall vermessen wurde, nahm die Intensität der Reflexe mit steigenden 9-Werten rasch ab. Um das Verhältnis beobachtete Reflexe/Anzahl der Parameter vernünftig zu halten, wurden die C-Atome der Tetraphe-

Tab. III. Kristallographische Daten.

	1	2	3	4
Formel	$[\{(C_9H_{21}N_3)MoO_3\}_4Co]$ $[B(C_6H_5)_4]_2 \cdot C_2H_5OH$	$[\{(C_9H_{21}N_3)MoO_3\}_4Fe]$ $[B(C_6H_5)_4]_5 \cdot Na[B(C_6H_5)_4]$	$[(C_6H_{15}N_3)WO_3B(C_6H_5)_3]$	$\frac{[\{(C_6H_{15}N_3)WO_3\}_2B}{(C_6H_5)_2[[B(C_6H_5)_4]]}$
Molgewicht	2004,3	2616,6	603,2	1206,4
Kristallsystem	monoklin	tetragonal	triklin	triklin
Raumgruppe	$C_{2/c}$ (C_{2h}^{6} ; No. 15)	$I4_1/a$ (C_{4h}^6 ; No. 88)	ΡĪ	ΡĪ
Gitterkonstanten:	,			
a [Å]	22,80(2)	32,52(1)	8,87(1)	10,244(4)
b [Å]	11,238(6)		10,31(1)	16,05(1)
c [Å]	29,04(1)	14,550(8)	14,25(1)	16,90(1)
a [$^{\circ}$]			94,3(1)	112,92(5)
$oldsymbol{eta}\left[^{\circ} ight]$	101,29(4)		98,3(1)	108,23(4)
γ [°]			114,9(1)	92,66(4)
Zahl der Formel- einheiten	4	4	2	2
Zellvolumen [Å ³]	9217.0	15487	1156	2413
ber. Dichte [gcm ⁻³]	1.43	1.12	1.73	1.68
Kristallgröße	$0.19 \times 0.46 \times 0.8$	$0.22 \times 0.30 \times 0.65$	$0.17 \times 0.40 \times 0.45$	$0.25 \times 0.25 \times 0.40$
Diffraktometer	AED II (Siemens)	AED II (Siemens)	Syntex R 3	Syntex R 3
Strahlung	Mo-Ka (Graphit-	Mo-Ka (Graphit)	Mo-Ka (Graphit)	Mo-Ka (Graphit)
Stramung	monochromator)	Wo Ka (Grapint)	Wo Ra (Grapint)	Mo Ka (Grapine)
Meßtemperatur [°C]	22	22	22	22
Scan-Typ	$\theta - \omega$	$\theta - \omega$	ω	ω
Meßbereich [°]	$3 < 2\theta < 55$	$3 < 2\theta < 50$	$3 < 2\theta < 60$	$3 < 2\theta < 57$
gem. Reflexe	11183	7345	~6600	~12000
unabhängige Reflexe	$5520 (I > 2, 5\sigma(I))$	$1864 (I > 2.5 \sigma(I))$	$3268 (I > 2.5 \sigma(I))$	$8394 (I > 2.5 \sigma(I))$
Absorptions-	7,55	4,52	51,34	49,75
koeffizient [cm ⁻¹]				
LS-Parameter	555	214	290	577
Transmissions- koeffizienten	0,82-1,0	0,84-1,0	0,20-1,0	0,79-1,0
R-Wert ^a	0,051	0,090	0,099	0,034
$R_{\rm w}$ -Wert ^b	0,045	0,081	0,084	0,030
max. Restelektronen- dichte [e Å ⁻³]	0,76 (-0,65)	0,74 (-0,45)	4,3 (-4,1)	0,64 (-1,24)

 $^{{}^{}a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; {}^{b}R_{w} = [\sum w ||F_{o}| - |F_{c}||^{2} / \sum w |F_{o}|^{2}]^{1/2}, w = 1/\sigma^{2}(I).$

Tab. IV. Atomkoordinaten ($\times 10^4$) und Temperaturfaktoren (Å $^2 \times 10^3$) für [(L'MoO $_3$) $_4$ Co][BPh $_4$] $_2 \cdot C_2$ H $_5$ OH (1).

Atom	X	У	Z	U
Co(1)	5000	2388(1)	7500	30(1)*
Mo(1)	5532(1)	4414(1)	6741(1)	42(1)*
O(1)	5262(2)	3408(4)	7088(2)	41(2)*
O(2)	5455(2)	3835(5)	6195(2)	63(2)*
O(3)	5205(2)	5695(5)	6689(2)	75(3)*
N(1)	5988(2)	5192(5)	7452(2)	63(3)*
N(2)	6144(3)	5505(8)	6525(3)	92(4)*
N(3)	6227(2)	3255(5)	6938(2)	50(2)*
C(31)	6236(3)	6294(8)	7341(4)	147(7)*
C(32)	6359(5)	6297(11)	6896(4)	200(9)*
C(33)	6508(5)	4655(13)	6411(5)	228(11)*
C(34)	6571(3)	3663(7)	6650(3)	89(5)*
C(35)	6414(3)	3343(8)	7458(3)	87(5)*
C(36)	6341(4)	4290(10)	7680(3)	155(7)*
C(37)	5676(3)	5519(8)	7762(3)	85(5)*
C(38)	5973(4)	6165(9)	6097(3)	120(6)*
C(39)	6099(3)	1995(6)	6810(3)	62(4)*
Mo(2)	4134(1)	314(1)	6807(1)	35(1)*
O(4)	4535(2)	1364(4)	7130(2)	43(2)*
O(5)	4167(2)	-945(4)	7139(2)	55(2)*
O(6)	3578(2)	881(4)	6794(2)	52(2)*
N(4)	4771(2)	-357(5)	6480(2)	47(2)*
N(5)	4143(2)	1427(5)	6130(2)	50(3)*
N(6)	3817(2)	-913(5)	6182(2)	50(3)*
C(41)	4943(3)	701(8)	6263(3)	67(4)*
C(42)	4567(3)	1279(8)	5932(3)	73(4)*
C(43)	3714(3)	1055(8)	5789(3)	76(4)*
C(44)	3694(3)	-268(8)	5732(3)	78(4)*
C(45)	4173(3)	-1836(7)	6160(3)	76(4)*
C(46)	4640(3)	-1338(8)	6142(3)	73(4)*
C(47)	5155(3)	-759(7)	6866(3)	63(4)*
C(48)	4073(3)	2701(6)	6242(3)	73(4)*
C(49)	3384(3)	-1473(7)	6290(3)	61(3)*
B(1)	2160(3)	5271(8)	977(3)	45(3)*
C(1)	2582(3)	4706(6)	744(2)	40(3)*
C(2)	2542(3)	4082(6)	331(2)	45(3)*
C(3)	2911(3)	3709(6)	139(3)	54(3)*
C(4)	3366(3)	3963(7)	352(3)	57(4)*
C(5)	3438(3)	4565(6)	776(3)	59(3)*
C(6)	3057(3)	4939(6)	962(2)	52(3)*
C(7)	1627(3)	4799(6)	728(2)	45(3)*
C(8)	1233(3)	5550(8)	609(3)	59(3)*
C(9)	779(3)	5151(8)	410(3)	73(4)*
C(10)	704(3)	3953(10)	331(3)	72(4)*
C(11)	1075(3)	3175(8)	451(3)	74(4)*
C(12)	1520(3)	3601(7)	644(3)	54(3)*
C(13)	2214(3)	6706(6)	915(2)	41(3)*
C(14)	2422(3)	7495(6)	1264(2)	43(3)*
C(15)	2503(3)	8665(6)	1177(3)	44(3)*
C(16)	2363(3)	9122(6)	738(3)	51(3)*
C(17)	2161(3)	8391(7)	373(3)	56(3)*
C(18)	2094(3)	7215(7)	466(2)	52(3)*
C(19)	2213(3)	4882(6)	1534(2)	47(3)*
C(20)	1970(3)	5486(7)	1833(3)	69(4)*
C(21)	1995(4)	5156(9)	2304(3)	99(6)*
C(22)	2258(4)	4169(11)	2479(4)	100(6)*

C(23)	2499(3)	3534(9)	2191(3)	79(5)*
C(24)	2476(3)	3883(7)	1730(3)	62(4)*
Ca	241(6)	9885(19)	-132(6)	156(7)
Ca(1)	166(7)	8587(18)	43(7)	94(7)
Ca(2)	-215(7)	8951(17)	229(6)	90(7)

^{*} Äquivalente isotrope U-Werte sind definiert als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

Tab. V. Atomkoordinaten ($\times 10^4$) und Temperaturfaktoren ($\mathring{A}^2 \times 10^3$) für [(L'MoO₃)₄Fe][BPh₄]₃·Na[BPh₄] (**2**).

Atom	X	\mathcal{Y}	Z	U
Mo(1)	826(1)	7151(1)	5240(2)	57(1)*
Fe(1)	0	7500	3750	40(2)*
O(1)	436(5)	7344(5)	4419(12)	60(8)*
O(2)	552(5)	7040(6)	6153(13)	73(9)*
O(3)	1007(5)	6712(6)	4794(13)	69(8)*
N(1)	1346(7)	7506(8)	4411(13)	70(12)*
N(2)	1376(8)	7194(9)	6226(18)	95(14)*
N(3)	841(9)	7829(9)	5765(17)	102(15)*
C(1)	1725(9)	7295(12)	4770(25)	117(22)*
C(2)	1754(9)	7285(11)	5745(18)	118(19)*
C(3)	1233(13)	7522(11)	6947(19)	114(21)*
C(4)	1128(11)	7899(12)	6494(26)	119(23)*
C(5)	956(10)	8077(12)	4933(29)	180(26)*
C(6)	1313(9)	7962(8)	4509(19)	89(16)*
C(7)	1311(9)	7382(10)	3431(18)	83(17)*
C(8)	1436(10)	6774(10)	6595(23)	116(21)*
C(9)	419(10)	7936(13)	6020(28)	146(23)*
B(1)	1876(10)	7027(11)	122(23)	65(16)*
C(10)	1719(5)	6518(6)	1542(15)	97(12)
C(11)	1782(5)	6373(6)	2433(14)	95(12)
C(12)	2103(5)	6531(6)	2964(14)	102(13)
C(13)	2360(5)	6834(6)	2603(14)	116(14)
C(14)	2297(5)	6978(6)	1711(14)	88(12)
C(15)	1976(5)	6821(6)	1181(14)	69(10)
C(16)	1607(5)	7686(6)	923(12)	83(11)
C(17)	1584(5)	8107(6)	1102(12)	89(12)
C(18)	1841(5)	8379(6)	634(12)	95(12)
C(19)	2120(5)	8231(6)	-14(12)	91(12)
C(20)	2143(5)	7810(6)	-193(12)	77(10)
C(21)	1887(5)	7538(6)	275(12)	65(9)
C(22)	1125(7)	7091(4)	-593(13)	91(12)
C(23)	789(7)	6933(4)	-1074(13)	84(12)
C(24)	784(7)	6521(4)	-1341(13)	91(12)
C(25)	1116(7)	6267(4)	-1127(13)	83(11)
C(26)	1452(7)	6424(4)	-646(13)	73(10)
C(27)	1457(7)	6836(4)	-380(13)	67(10)
C(28)	2289(6)	7019(5)	-1492(16)	109(14)
C(29)	2585(6)	6885(5)	-2116(16)	113(14)
C(30)	2887(6)	6607(5)	-1837(16)	100(13)
C(31)	2892(6)	6463(5)	-934(16)	110(14)
C(32)	2595(6)	6597(5)	-310(16)	89(11)
C(33)	2293(6)	6875(5)	-589(16)	81(11)

^{*} Äquivalente isotrope U-Werte sind definiert als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

Tab. VI. Atomkoordinaten ($\times 10^4$) und Temperaturfaktoren ($\mathring{A}^2 \times 10^3$) für [LWO₃BPh₃] (3).

Atom	x	у	Z	U
W(1)	1416(1)	1755(1)	1434(1)	53(1)*
O(1)	-495(24)	875(16)	1233(12)	132(11)*
O(2)	1593(27)	2083(17)	277(10)	101(12)*
O(3)	1909(16)	3459(10)	2097(8)	45(6)*
N(1)	4213(22)	2298(15)	1837(10)	52(8)*
N(2)	1699(26)	-305(18)	1040(13)	60(9)*
N(3)	1847(23)	877(16)	2833(13)	66(9)*
C(1)	4802(32)	1236(22)	1475(22)	98(16)*
C(2)	3194(44)	68(24)	735(14)	87(18)*
C(3)	1584(29)	-1223(19)	1806(17)	70(11)*
C(4)	963(30)	-710(19)	2652(17)	67(12)*
C(5)	3574(28)	1396(23)	3340(12)	54(12)*
C(6)	4694(26)	2642(22)	2937(15)	58(10)*
B(1)	1519(25)	4545(18)	2761(14)	32(8)*
C(10)	-65(22)	4672(15)	2207(11)	31(7)*
C(11)	-930(24)	5286(18)	2692(13)	44(9)*
C(12)	-2204(26)	5588(19)	2201(15)	51(10)*
C(13)	-2733(26)	5264(21)	1206(16)	58(11)*
C(14)	-1958(27)	4604(24)	732(14)	59(11)*
C(15)	-641(26)	4385(20)	1204(14)	50(10)*
C(16)	3192(22)	6107(16)	2838(12)	37(8)*
C(17)	3633(24)	7206(17)	3636(13)	45(9)*
C(18)	5005(29)	8530(20)	3712(17)	55(11)*
C(19)	5919(30)	8817(20)	3016(21)	72(12)*
C(20)	5477(28)	7780(21)	2208(15)	57(11)*
C(21)	4144(23)	6439(19)	2138(12)	39(8)*
C(22)	1263(24)	3844(17)	3728(12)	39(8)*
C(23)	-261(26)	2750(20)	3824(14)	46(9)*
C(24)	- 442(30)	1913(22)	4565(16)	67(11)*
C(25)	932(29)	2209(20)	5288(14)	51(11)*
C(26)	2462(30)	3320(24)	5252(15)	59(12)*
C(27)	2574(26)	4107(18)	4507(14)	50(9)*

^{*} Äquivalente isotrope U-Werte sind definiert als ein Drittel der Spur des orthogonalisierten U_{ij}-Tensors.

Tab. VII. Atomkoordinaten ($\times 10^4$) und Temperaturfaktoren ($\mathring{A}^2 \times 10^3$) für [(LWO₃)₂BPh₂][BPh₄] (4).

Atom	х	у	Z	U
W(1)	5117(1)	8898(1)	3471(1)	28(1)*
O(1)	3732(4)	8427(3)	3640(3)	40(2)*
O(2)	6439(4)	9409(3)	4553(3)	42(2)*
O(3)	5711(4)	7930(3)	2780(3)	35(2)*
N(1)	6200(5)	9787(3)	2982(3)	37(2)*
N(2)	3513(5)	8846(3)	2127(3)	34(2)*
N(3)	4338(5)	10248(3)	3858(4)	37(3)*
C(1)	5678(6)	9360(4)	1964(4)	43(3)*
C(2)	4099(7)	9199(5)	1583(4)	46(3)*
C(3)	2409(7)	9323(4)	2381(4)	46(3)*
C(4)	3059(7)	10267(4)	3140(4)	49(3)*
C(5)	5527(7)	10977(4)	4139(4)	46(3)*
C(6)	6156(7)	10779(4)	3396(5)	50(3)*
W(2)	2158(1)	6063(1)	1425(1)	33(1)*
O(4)	1746(4)	5223(3)	315(3)	52(2)*
O(5)	1337(4)	6953(3)	1332(3)	48(2)*
O(6)	3987(4)	6537(3)	1823(3)	45(2)*

N(4)	222(5)	5400(4)	1475(4)	44(3)*
N(5)	2402(6)	6604(4)	2956(4)	49(3)*
N(6)	2771(6)	4917(4)	1923(4)	58(4)*
C(7)	- 50(7)	6042(7)	2278(5)	88(5)*
C(8)	1072(9)	6532(7)	3065(7)	115(6)*
C(9)	3433(12)	6194(6)	3445(6)	125(7)*
C(10)	3490(9)	5307(7)	2934(6)	107(7)*
C(11)	1497(9)	4193(6)	1535(9)	128(9)*
C(12)	276(8)	4485(6)	1439(7)	92(6)*
B(1)	5481(7)	6941(5)	2088(5)	32(3)*
C(13)	5752(6)	6940(4)	1196(4)	31(3)*
C(14)	4718(7)	6920(4)	429(4)	46(3)*
C(14)	5024(8)	7016(5)	-292(5)	61(4)*
C(16)	6381(8)	7129(5)	-246(5)	65(4)*
C(17)	7427(8)	7127(5)	494(5)	63(5)*
C(17)	7121(7)	7061(5)	1224(5)	48(4)*
C(19)	6434(5)	6383(4)	2584(4)	28(2)*
C(19)	6273(7)	5424(4)	2109(5)	43(3)*
C(20)	6949(8)	4894(5)	2549(5)	58(4)*
C(21)	7826(8)	5325(5)	3452(5)	59(4)*
C(22)			3930(5)	
	8064(7)	6273(5)		55(4)*
C(24)	7362(7)	6789(4) 2026(5)	3490(4) 2639(5)	40(3)* 37(3)*
B(2)	-537(8)			
C(25)	-2127(7)	2196(4)	2579(5)	42(3)*
C(26)	-3296(7)	1701(5)	1793(6)	57(4)*
C(27)	-4661(8)	1792(6)	1746(7)	84(6)*
C(28)	-4891(10)	2408(7)	2517(8)	96(8)*
C(29)	-3756(10)	2892(6)	3293(8)	89(7)*
C(30)	-2427(8)	2787(5)	3337(6)	62(5)*
C(31)	- 387(6)	1168(4)	2944(4)	34(3)*
C(32)	- 840(6)	248(4)	2303(5)	44(3)*
C(33)	- 800(7)	- 484(5)	2553(6)	59(4)*
C(34)	- 302(7)	- 309(5)	3481(5)	65(5)*
C(35)	137(8)	597(5)	4134(5)	67(5)*
C(36)	72(7)	1306(5)	3860(5)	49(4)*
C(37)	701(6)	2921(4)	3368(4)	37(3)*
C(38)	2091(7)	2833(5)	3720(5)	52(4)*
C(39)	3179(8)	3575(6)	4304(5)	63(4)*
C(40)	2935(9)	4464(5)	4574(5)	64(4)*
C(41)	1565(9)	4586(5)	4230(5)	56(4)*
C(42)	501(7)	3823(4)	3626(4)	47(3)*
C(43)	-320(6)	1770(4)	1657(4)	37(3)*
C(44)	675(7)	1251(5)	1429(4)	50(3)*
C(45)	993(8)	1113(5)	650(5)	63(4)*
C(46)	351(8)	1474(5)	65(5)	64(4)*
C(47)	-642(8)	2005(5)	270(5)	61(4)*
C(48)	-955(7)	2152(4)	1056(4)	48(3)*

^{*} Äquivalente isotrope U-Werte sind definiert als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

nylboratanionen nur mit isotropen Temperaturfaktoren verfeinert, während die Nicht-H-Atome des Kations und das B-Atom mit anisotropen Temperaturfaktoren verfeinert wurden. Die Lage des Natriumatoms in 2 konnte nicht bestimmt werden. Es ist anzunehmen, daß wegen fehlender Koordinationsmöglichkeiten und hydrophober Oberfläche – sowohl des Kations als auch des Anions – die Na⁺-Ionen im Gitter sehr beweglich sind. Wie in 1 zeigen auch in 2 die Methylenkohlenstoffatome große, physikalisch bedeutungslose, anisotrope Temperaturfaktoren bedingt durch Fehlordnung der $(\lambda\lambda\lambda)$ - und $(\delta\delta\delta)$ -Konformation der Chelatringe. Die Lagen der H-Atome wurden berechnet.

3: Die Kristallinität der erhaltenen Kristalle war gering und die Qualität der Röntgenstrukturanalyse ist daher nicht gut; sie zeigt aber eindeutig die Konnektivitäten der Atome. Am W-Atom wurden hohe Abbruchseffekte beobachtet. Alle Nicht-H-Atome wurden mit anisotropen Temperaturfaktoren verfeinert; die Lagen der H-Atome wurden berechnet.

4: Alle Nicht-H-Atome wurden mit anisotropen Temperaturfaktoren verfeinert; die Lagen der H-Atome wurden berechnet.

Wir danken dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Arbeit. Der Firma Akzo-Chemie sowie der Bayer AG, Leverkusen, danken wir für großzügige Chemikalienspenden.

- [1] E. I. Stiefel, Progr. Inorg. Chem. 22, 1 (1977) und in G. Wilkinson, R. D. Gillard und J. A. McCleverty (Herausg.): Comprehensive Coordination Chemistry, Pergamon Press, Vol. III, 1375 (1987).
- [2] Z. Dori, Progr. Inorg. Chem. 28, 239 (1981) und in G. Wilkinson, R. D. Gillard und J. A. McCleverty (Herausg.): Comprehensive Coordination Chemistry, Pergamon Press, Vol. III, 973 (1987).
- [3] R. H. Holm, Chem. Rev. 87, 1401 (1987).
- [4] S. P. Cramer, in A. G. Sykes (Herausg.): Inorganic and Bioinorganic Mechanisms, Academic Press, Vol. 2, 259 (1983).
- [5] K. Wieghardt, M. Hahn, W. Swiridoff und J. Weiss, Inorg. Chem. 23, 94 (1984).
- [6] W. Herrmann und K. Wieghardt, Polyhedron 5, 513 (1986).
- [7] P. S. Roy und K. Wieghardt, Inorg. Chem. 26, 1885 (1987).
- [8] a) W. F. Marzluff, Inorg. Chem. 3, 395 (1964);b) F. A. Cotton und R. C. Elder, ibid. 3, 397 (1964).
- [9] R. S. Taylor, P. Gans, P. F. Knowles und A. G. Sykes, J. Chem. Soc. Dalton Trans. 1974, 24.
- [10] P. Schreiber, K. Wieghardt, B. Nuber und J. Weiss, Polyhedron 8, 1675 (1989).
- [11] F. A. Cotton und G. Wilkinson, in Advanced Inorg. Chemistry, 5. Aufl., S. 731, J. Wiley, New York (1988).
- [12] M. Kersting, C. Friebel, K. Dehnicke, M. Krestell und R. Allmann, Z. Anorg. Allg. Chem. 563, 70 (1988).
- [13] C.-H. Yang, J. A. Ladd und V. L. Goedken, J. Coord. Chem. 18, 317 (1988).
- [14] R. H. Holm und F. A. Cotton, J. Chem. Phys. 32, 1168 (1960).

- [15] A. S. Barrett, PhD Thesis, Boston University (1972), zitiert in M. T. Pope, Inorganic Chemistry Concepts 8: Heteropoly and Isopoly Oxometalates, S. 24, Springer-Verlag, Berlin (1983).
- [16] M. Bochmann, G. Wilkinson, G. B. Young, M. B. Hursthouse und K. M. Abdul Malik, J. Chem. Soc. Dalton Trans. 1980, 1863.
- [17] M. T. Pope und G. M. Varga (Jr.), Inorg. Chem. 5, 1249 (1966).
- [18] G. Brachtel und R. Hoppe, Angew. Chem. 89, 45 (1977); Angew. Chem., Int. Ed. Engl. 16, 43 (1977).
- [19] a) A. Karipides und J. Graf, Inorg. Nucl. Chem. Lett. 8, 161 (1972);
 b) J. Chenavas, I. W. Grey, J. C. Guitel, J. C. Houbert, M. Marezio, J. P. Remeika und A. S. Cooper, Acta Crystallogr. B 37, 1343 (1981).
- [20] B. Cashin, D. Cunningham, J. F. Gallagher, P. McArdle und T. Higgins, Polyhedron 8, 1753 (1989).
- [21] K. Wieghardt, P. Chaudhuri, B. Nuber und J. Weiss, Inorg. Chem. 21, 3086 (1982) und T. J. Atkins, J. E. Richmann und W. F. Oettle, Org. Synth. 58, 86 (1978).
- [22] Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 54220, der Autoren und des Zeitschriftenzitats angefordert werden.
- [23] H. Schmidbaur, Chem. Ber. 97, 837 (1964) und ibid. 97, 842 (1964).