Darstellung und Charakterisierung der μ_3 -Oxo-Cluster [Cp₃Mo₃(CO)₄(μ -Cl)(μ_3 -O)] und [Cp₃Mo₃(μ -CO)₃(CO)₃(μ_3 -O)]⁺

Synthesis and Characterization of the μ_3 -Oxo Clusters [Cp₃Mo₃(CO)₄(μ -Cl)(μ_3 -O)] and [Cp₃Mo₃(μ -CO)₃(CO)₃(μ_3 -O)]⁺

B. Nuber, W. Schatz und M. L. Ziegler*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg

Z. Naturforsch. 45b, 508-514 (1990); eingegangen am 4. Oktober 1989

Synthesis, X-Ray, Oxo-Clusters

[CpMo(CO)₃]₂(1) (Cp = cyclopentadienyl) reacts with InCl₃ in diglyme to yield the oxo-cluster [Cp₃Mo₃(CO)₄(μ -Cl)(μ ₃-O)] (2) and the cationic oxo-cluster [Cp₃Mo₃(μ -CO)₃(CO)₃(μ ₃-O)]⁺ as the salt [Cp₃Mo₃(μ -CO)₃(CO)₃(μ ₃-O)][CpMo(CO)₃InCl₃] (3). The compounds were characterized by elemental analysis, spectroscopic data and X-ray structure analysis. Compound 2 crystallizes in the orthorhombic space group P2₁2₁2₁ with a=1006.0(3), b=1244.6(4) and c=1600.8(5) pm, V = 2004.3×10⁶ pm³, Z = 4. Compound 3 crystallizes in the monoclinic space group P2₁/m with a=874.4(8), b=1407(1) and c=1500(1) pm, $\beta=92.95(6)^{\circ}$, V = 1843×10^{6} pm³, Z = 2.

Einleitung

Seit einigen Jahren ist ein wachsendes Interesse an Organometall-Komplexen mit Oxo-Liganden zu verzeichnen. Getragen wird diese Entwicklung von der Bedeutung metallorganischer Spezies mit Metalloxid-Teilstrukturen im Bereich der anorganischen Biochemie [1].

Im folgenden wird über die ungewöhnliche Synthese zweier neuer Oxo-Cluster des Molybdäns und deren Charakterisierung berichtet. Beide Verbindungen gehören der Klasse dreikerniger Cluster mit einem dreifach-verbrückenden Oxo-Liganden und pyramidaler M_3O -Einheit an, deren erster Vertreter der von Uchtman und Dahl [2] beschriebene Cobalt-Cluster [Cp₃Co₃(μ_3 -CO)(μ_3 -O)] ist.

Ergebnisse und Diskussion

1. Präparative Ergebnisse

Die Umsetzung von [CpMo(CO)₃]₂ (1) (Cp = Cyclopentadienyl) mit InCl₃ in Diglyme bei 120 °C führt nach dreistündiger Reaktionszeit zu der bekannten Verbindung CpMo(CO)₃Cl [3] und den neuen Spezies [Cp₃Mo₃(CO)₄(μ -Cl)(μ ₃-O)] (2) und [Cp₃Mo₃(μ -CO)₃(CO)₃(μ ₃-O)][CpMo(CO)₃InCl₃]

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/90/0400-0508/\$ 01.00/0

(3). Angaben über die Herkunft des Oxo-Liganden in 2 und 3 können nicht gemacht werden.

CpMo(CO)₃Cl wurde IR-spektroskopisch identifiziert. Die Charakterisierung der Produkte **2** und **3** erfolgte durch Röntgenstrukturanalyse, IR-, ¹H-NMR- und Massenspektroskopie sowie C,H-Analysen. Die spektroskopischen und analytischen Daten finden sich in Tab. I. Im ¹H-NMR-Spektrum von **2** treten zwei Singuletts bei $\delta = 5,35$ und 5,62 ppm auf, die im Verhältnis 2:1 integrieren. Demnach liegt in Lösung eine C_s -Symmetrie vor, während im Kristall die Molekülsymmetrie auf C_1 reduziert ist (Abb. 1).

In der salzartigen Verbindung 3 treten das einfach positiv geladene Oxo-Cluster-Kation $[Cp_3Mo_3(\mu\text{-}CO)_3(CO)_3(\mu_3\text{-}O)]^+$ (Abb. 2) und das einfach negativ geladene Komplexanion $[CpMo(CO)_3InCl_3]^-$ [4, 5] auf. Die Protonen der drei Cp-Ringe des Kations von 3 erscheinen im $^1\text{H-NMR-Spektrum}$ als Singulett bei δ = 6,15 ppm. Die so indizierte C_{3v} -Symmetrie besteht nur in Lösung, im Kristall ist die Molekülsymmetrie auf C_s erniedrigt.

Für 2 und das Kation von 3 resultieren die verringerten Molekülsymmetrien aus der im Kristall nicht mehr vorhandenen freien Drehbarkeit der Cp-Ringe um ihre C₅-Achsen.

2. Strukturbeschreibung von 2

Tab. II a gibt Lageparameter und thermische Parameter, Tab. II b Bindungsabstände und -win-

^{*} Sonderdruckanforderungen an Prof. Dr. M. L. Ziegler.

Verbindung $C_{19}H_{15}ClMo_3O_5(2)$ $\substack{C_{29}H_{20}Cl_{3}InMo_{4}O_{10}\left(3\right)\\\left(1133,41\right)}$ (646,60)Analyt. Daten (ber.) 35,89 (35,29) 31,35 (30,73) Н 1,90 (1,78) 2,63 (2,34) Fp. [°C] 160 > 280¹H-NMR 200 MHz 90 MHz $(\delta$ -Werte, Aceton-d₆, 5,35 s (10 H) 5,47 s (5 H) 6,15 s (15 H) int. Standard LM) 5,62 s (5 H) 2020 s IR-Spektrum 1970 vs (KBr-Preßling, cm⁻¹, 1955 sh 1995 vs 1975 sh v(CO)1905 s 1840 sh 1970 sh 1830 vs 1950 s 1775 s 1915 vs EI-MS FD-MS Massenspektrum (100 eV, (Aceton-Lösung, $Tp = 265 \,^{\circ}C)$ Fadenheizung 15 mA) m/e646 [Cp₃Mo₃(CO)₄ClO]⁺ 590 [Cp₃Mo₃(CO)₂ClO]⁺ 667 [Cp₃Mo₃(CO)₆O]⁺ 562 [Cp₃Mo₃(CO)ClO]⁺ 534 [Cp₃Mo₃ClO]⁺ 499 [Cp₃Mo₃O]⁺

Tab. I. Analytische und spektroskopische Daten von 2 und

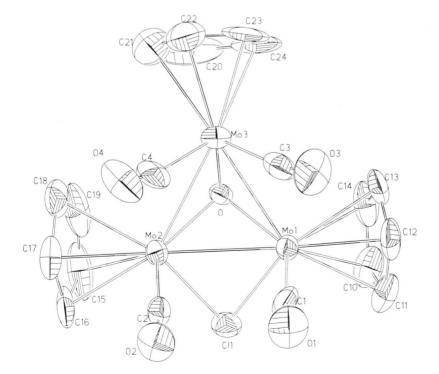


Abb. 1. Moleküldarstellung von **2.** Die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

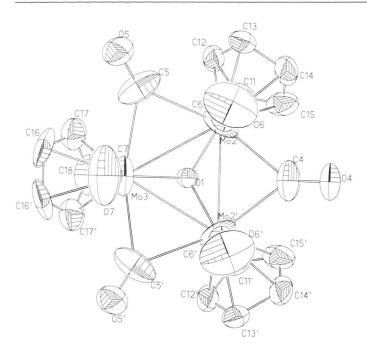


Abb. 2. Moleküldarstellung des Kations von 3. Die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

kel wieder. Abb. 1 zeigt eine Moleküldarstellung von 2.

In **2** bilden drei Molybdänatome ein gleichschenkliges Dreieck mit Mo-Mo-Einfachbindungsabständen [6, 7] von 279,5(2) pm

(Mo(1)–Mo(2)), 287,5(2) pm (Mo(1)–Mo(3)) und 287,3(2) pm (Mo(2)–Mo(3)). Über dieser Dreiecksfläche befindet sich das Sauerstoffatom O(5), welches an jedes Molybdänatom koordiniert ist. Die Mo–O(5)-Abstände sind innerhalb 3σ gleich und betragen im Mittel 202,6(9) pm. Sie entsprechen damit den bei anderen Mo₃(μ_3 -O)-Systemen gefundenen Werten für Mo–(μ_3 -O)-Bindungslängen [8, 9]. Die beiden Molybdänatome Mo(1) und Mo(2) sind zusätzlich über das μ -Chloratom Cl(1) miteinander verknüpft. Mit gemittelten 249,5(4) pm sind die beiden innerhalb 3σ identischen Mo–Cl(1)-Abstände etwas kürzer als beispielsweise in

 $[Mo_3(\mu-Cl)_3(H_2O)_3(\mu_3-O)(O_2CCH_3)]^{2+}$ [9]. Das Brückenatom Cl(1) ist oberhalb der von den Übergangsmetallatomen aufgespannten Grundfläche zum O(5) hin orientiert. Der Winkel zwischen den beiden Ebenen Mo(1), Mo(2), Mo(3) und Mo(1), Mo(2), Cl(1) beträgt 158,0(1)°. Die Ebenen Mo(1), Mo(2), Cl(1) und Mo(1), Mo(2), O(5) bilden einen Winkel von 75,9(3)° miteinander. Außer durch

Tab. IIa. Lageparameter ($\times 10^4$) und thermische Parameter U_{eq} ($\times 10^3$) von **2.**

Atom	x/a	y/b	z/c	U_{eq}^{*}
Mo(1)	2774(1)	2108(1)	8590(1)	29(1)
Mo(2)	704(1)	3122(1)	7733(1)	27(1)
Mo(3)	3230(1)	2869(1)	6919(1)	34(1)
Cl(1)	366(4)	1875(3)	8930(2)	39(1)
O	1908(9)	1860(7)	7468(5)	26(3)
C(1)	2968(17)	3452(14)	9309(10)	47(6)
O(1)	3226(16)	4177(10)	9679(8)	75(6)
C(2)	881(17)	4372(13)	8523(11)	37(6)
O(2)	949(14)	5114(9)	8910(8)	62(6)
C(3)	4537(18)	3378(13)	7781(12)	48(6)
O(3)	5413(13)	3762(11)	8142(9)	72(6)
C(4)	2536(15)	4410(15)	6996(12)	50(7)
O(4)	2406(13)	5274(9)	6917(10)	68(6)
C(10)	3049(22)	468(14)	9255(13)	54(8)
C(11)	3609(21)	1263(15)	9749(12)	55(8)
C(12)	4710(19)	1682(15)	9250(12)	56(7)
C(13)	4713(17)	1101(14)	8528(12)	53(7)
C(14)	3718(18)	346(15)	8537(15)	56(8)
C(15)	-1440(18)	2653(15)	7291(15)	76(9)
C(16)	-1430(17)	3743(15)	7685(13)	55(7)
C(17)	-660(17)	4378(14)	7104(11)	54(7)
C(18)	-219(18)	3744(15)	6440(13)	54(7)
C(19)	-677(18)	2721(15)	6610(13)	78(9)
C(20)	3087(25)	1845(20)	5671(12)	108(11)
C(21)	3060(27)	2889(25)	5430(13)	83(11)
C(22)	4214(26)	3332(20)	5636(12)	66(9)
C(23)	4980(24)	2603(29)	6002(15)	92(13)
C(24)	4335(40)	1540(24)	6082(15)	116(15)

^{*} $U_{eq} = 1/3 \text{ Spur } \tilde{U}$.

Tab. IIb. Ausgewählte Bindungslängen (pm) und Bindungswinkel (*) von 2.

	2 0				
Mo(1)-Mo(2) Mo(1)-O(5) Mo(1)-C(10) Mo(1)-C(10) Mo(1)-C(13) Mo(2)-C(1) Mo(2)-C(4) Mo(2)-C(17) Mo(3)-O(5) Mo(3)-C(20) Mo(3)-C(23) C(2)-O(2) Mo(1)-Mo(2)-Mo(3) Mo(1)-Mo(2)-O(5) Mo(2)-Mo(3)-O(5) Mo(1)-O(5)-Mo(2) Mo(1)-Cl(1)-Mo(2) Mo(1)-Cl(1)-Mo(2) Mo(1)-Mo(2)-Cl(1) Cl(1)-Mo(2)-Cl(1) Cl(1)-Mo(2)-C(2) Mo(2)-Mo(3)-C(3) O(5)-Mo(1)-C(1) O(5)-Mo(3)-C(4)	279,5(2) 202,0(8) 231,8(18) 232,0(17) 249,0(4) 271,3(18) 231,1(17) 202,9(9) 237,5(21) 231,6(25) 111,4(20) 60,9 46,2(2) 44,9(3) 87,3(3) 68,1(1) 56,1(1) 76,1(3) 80,5(5) 103,5(5) 131,9(5) 109,3(5)	Mo(1)-Mo(3) Mo(1)-C(1) Mo(1)-C(11) Mo(1)-C(14) Mo(2)-C(15) Mo(2)-C(15) Mo(2)-C(15) Mo(3)-C(21) Mo(3)-C(24) C(3)-O(3) Mo(1)-Mo(3)-O(5) Mo(1)-Mo(3)-O(5) Mo(1)-O(5)-Mo(3) Mo(1)-O(5)-Mo(3) Mo(2)-Mo(1)-C(1) Mo(2)-Mo(1)-C(1) Mo(2)-Mo(1)-C(1) Mo(2)-Mo(2)-C(2) Mo(2)-Mo(2)-C(2) Mo(2)-Mo(2)-C(2) C(1(1)-Mo(1)-C(1) Mo(1)-C(1)	287,5(2) 203,9(17) 229,2(19) 239,2(19) 202,9(9) 234,4(19) 239,8(20) 200,8(19) 238,9(21) 240,2(31) 115,7(23) 60,9 44,7(2) 44,9(2) 90,5(4) 113,3(1) 55,8(1) 88,7(5) 106,9(5) 64,4(5) 132,6(5) 93,7(5) 171,9(16)	Mo(1)-Cl(1) Mo(1)-C(2) Mo(1)-C(3) Mo(1)-C(12) Mo(2)-Mo(3) Mo(2)-C(2) Mo(2)-C(16) Mo(2)-C(19) Mo(3)-C(4) Mo(3)-C(22) C(1)-O(1) C(4)-O(4) Mo(1)-Mo(3)-Mo(2) Mo(2)-Mo(1)-O(5) Mo(3)-Mo(2)-O(5)-Mo(3) Mo(3)-Mo(2)-Cl(1) Cl(1)-Mo(1)-O(5) Mo(3)-Mo(1)-Cl(1) Mo(1)-Mo(3)-C(1) Mo(1)-Mo(3)-C(3) Mo(1)-Mo(3)-C(3) Cl(1)-Mo(2)-C(2) Mo(2)-C(2)-O(2)	250,0(4) 270,5(19) 227,8(19) 227,8(19) 287,3(2) 201,2(16) 228,3(17) 232,7(20) 204,5(18) 235,1(21) 111,0(21) 109,0(22) 58,2 46,5(3) 44,9(2) 90,2(4) 113,7(1) 76,0(3) 103,8(5) 64,5(5) 101,5(5) 109,1(6) 90,6(5) 174,5(14)

Mo-Mo-Einfachbindungen und dem μ_3 -Sauerstoffatom O(5) sind die Molybdänatome Mo(1) und Mo(2) mit dem Atom Mo(3) über je einen halbverbrückendern Carbonyl-Liganden verknüpft. Beide CO-Gruppen liegen näher am Atom Mo(3). Der mittlere Mo(3)-C-Abstand beträgt 203(2) pm. Mit $ca.\ 271(2)$ pm (Mittelwert) ist der Mo(1)-C(3)- bzw. Mo(2)-C(4)-Abstand zwar ausgesprochen lang, aber noch als bindend zu bezeichnen [10]. Die Winkel Mo(3)-C-O sind im Mittel $165(2)^\circ$. Die den angegebenen Mittelwerten zugrundeliegenden Mo-C-Abstände und

Mo-C-O-Winkel sind innerhalb 3σ identisch. Die Molybdänatome Mo(1) und Mo(2) koordinieren mit jeweils einer terminalen CO-Gruppe. Alle vier Carbonyl-Liganden nehmen Positionen unterhalb der Mo₃-Ebene ein. An jedes Molybdänatom ist ein Cp-Ring gebunden. Die Mittelpunkte der Cp-Liganden liegen oberhalb der Mo₃-Ebene. Die Flächen der Fünfringe (C(10)-C(14)), (C(15)-C(19)) und (C(20)-C(24)) bilden zu dieser Ebene Winkel von $105(2)^{\circ}$, $104(2)^{\circ}$ und $116(2)^{\circ}$.

3. Strukturbeschreibung von 3

Lageparameter und thermische Parameter sind in Tab. IIIa, Bindungsabstände und -winkel in Tab. III b aufgelistet. Abb. 2 zeigt eine Moleküldarstellung des Kations von **3.** Anion und Kation liegen auf der Spiegelebene der Raumgruppe P2₁/m. Die Atome Mo(3), C(7), O(7), C(18), O(1), C(4) und O(4) des Kations, sowie eine CO-Gruppe, ein C-Atom des Cp-Rings, ein Cl-Atom und die Atome Mo und In des Anions besetzen Lagen auf dieser Spiegelebene.

Im Cluster-Kation besetzen drei Molybdänatome die Eckpunkte eines gleichseitigen Dreiecks. Der Mittelwert aller Mo-Mo-Abstände entspricht mit 290,1(1) pm einer Mo-Mo-Einfachbindungslänge [6, 7]. Die Dreiecksfläche wird von dem μ_3 -Sauerstoffatom O(1) überspannt. Die Mo-O(1)-Abstände sind innerhalb 3σ identisch und ergeben im Mittel 200,5(6) pm. Dieser Wert entspricht dem von 2. Weiterhin sind alle Molybdänatome durch drei unterhalb der Mo3-Ebene liegende symmetrisch verbrückende CO-Gruppen miteinander verknüpft. Die innerhalb 3σ gleichen Mo-C-Abstände betragen gemittelt 238(1) pm. Der Mittelwert der Mo-C-Mo-Winkel ist 75,3(4)°. Die Ebenen Mo(2), Mo(2'), C(4) und Mo(2), Mo(3), C(5) bzw. Mo(2'), Mo(3), C(5') bilden mit der Mo3-Fläche jeweils Winkel von 18,7(3)°. Die Molybdänatome koordinieren noch mit je einer unterhalb der Übergangsmetallebene

Tab. III a. Lageparameter ($\times 10^4$) und thermische Parameter U_{eq} ($\times 10^3$) von 3.

Atom	x/a	y/b	z/c	U_{eq}
In(1)	2687(1)	2500	2714(1)	39(1)
Mo(1)	5708(1)	2500	2303(1)	36(1)
Cl(1)	669(4)	2500	1558(2)	52(1)
Cl(2)	1995(3)	1152(2)	3606(2)	63(1)
C(2)	6698(15)	2500	1133(9)	51(6)
O(2)	7254(11)	2500	465(6)	82(5)
C(3)	4690(10)	1413(7)	1705(5)	50(4)
O(3)	4213(8)	728(5)	1353(4)	80(3)
C(8)	7828(10)	2013(6)	3178(5)	41(3)
C(9)	6548(10)	1709(7)	3608(5)	51(4)
C(10)	5716(15)	2500	3868(8)	50(6)
Mo(2)	1530(1)	1471(1)	8179(1)	66(1)
Mo(3)	457(2)	2500	6589(1)	61(1)
O(1)	4(9)	2500	7890(5)	34(3)
C(4)	2935(18)	2500	9160(11)	75(8)
O(4)	3816(13)	2500	9714(7)	86(5)
C(5)	1250(13)	881(10)	6694(8)	83(6)
O(5)	1408(9)	262(6)	6271(5)	72(3)
C(6)	3645(12)	1364(9)	7792(7)	65(5)
O(6)	4862(10)	1277(7)	7586(6)	116(5)
C(7)	2478(18)	2500	6042(9)	59(7)
O(7)	3656(13)	2500	5732(7)	106(6)
C(11)	-454(12)	840(8)	8995(6)	71(5)
C(12)	-50(13)	154(7)	8361(6)	63(5)
C(13)	1468(12)	-85(7)	8578(6)	66(4)
C(14)	1957(13)	432(7)	9333(6)	77(5)
C(15)	803(14)	1002(8)	9583(7)	80(6)
C(16)	-704(11)	2013(7)	5262(6)	80(5)
C(17)	-1651(11)	1708(8)	5935(6)	72(5)
C(18)	-2223(15)	2500	6342(10)	82(8)

^{*} $U_{eq} = 1/3 \text{ Spur } \tilde{U}$.

liegenden terminalen CO-Gruppe und einem Cp-Ring. Die Mittelpunkte der Fünfringe nehmen Positionen oberhalb der Mo₃-Ebene ein, ihre Flächen bilden mit ihr Winkel von 59(1)°.

Der als Gegenion fungierende anionische Komplex [CpMo(CO)₃InCl₃] wurde bereits als [NaTHF₂][CpMo(CO)₃InCl₃] (4) durch Röntgenstrukturanalyse charakterisiert [5]. Im Kristall sind bei 4 je zwei Einheiten über Cl-Na-Cl-Brücken assoziiert. Jedes Natriumion koordiniert mit vier Chloratomen (jeweils zwei von jedem [CpMo(CO)₃InCl₃]-Ion) und zwei THF-Molekülen. Bei 3 besteht im Kristall keine zusätzliche Koordination der drei an das Indiumatom gebundenen Chloratome des Komplexanions, es diskrete [CpMo(CO)₃InCl₃]⁻-Einheiten vor. Die In-Cl-Abstände sind in 3 innerhalb 3σ identisch und ergeben im Mittel 241,4(3) pm. Cl-In-Cl-Winkel betragen zwischen 101,7(1)° und 103,5(1)°. Als Folge der Assoziation unterliegen in 4 die In-Cl-Abstände mit 240,5(2) pm bis 245,0(2) pm einer deutlichen Schwankung, und es ergibt sich für die Cl-In-Cl-Winkel ein vergleichsweise großer Bereich von 96,2(1)° bis 103,0(1)°.

Tab. III b. Ausgewählte Bindungslängen (pm) und Bindungswinkel (°) von 3.

Mo(2)-Mo(3) Mo(2)-C(4) Mo(2)-C(11) Mo(2)-C(14) Mo(3)-C(5) Mo(3)-C(17) In(1)-Cl(2)	290,4(1) 236,3(12) 234,7(10) 228,1(9) 238,4(13) 232,7(10) 241,6(3)	Mo(2)-Mo(2') Mo(2)-C(5) Mo(2)-C(12) Mo(2)-C(15) Mo(3)-C(7) Mo(3)-C(18)	289,5(2) 237,9(12) 233,5(11) 232,6(11) 198,7(16) 235,3(13)	Mo(2)-O(1) Mo(2)-C(6) Mo(2)-C(13) Mo(3)-O(1) Mo(3)-C(16) In(1)-Cl(1)	200,1(5) 197,3(11) 227,1(10) 201,2(7) 229,2(9) 240,9(3)
Mo(2)-Mo(3)-Mo(2') Mo(2)-O(1)-Mo(2') O(1)-Mo(2)-Mo(2') C(4)-Mo(2)-Mo(2') C(5)-Mo(2)-Mo(2') Mo(2)-Mo(3)-C(5) C(4)-Mo(2)-C(5) Mo(2)-C(5)-O(5) C(6)-Mo(2)-Mo(2') C(5)-Mo(2)-C(6) C(5)-Mo(3)-C(7) Cl(1)-In(1)-Cl(2)	59,8 92,7(3) 43,7(2) 52,2(2) 110,4(3) 52,3(3) 145,3(5) 144,5(10) 94,4(4) 75,5(4) 76,4(3) 101,7(1)	Mo(3)-Mo(2)-Mo(2') Mo(2)-Mo(3)-O(1) Mo(2)-C(4)-Mo(2') O(1)-Mo(2)-C(4) C(5)-Mo(3)-Mo(2') O(1)-Mo(2)-C(5) C(5)-Mo(3)-C(5') Mo(3)-C(5)-O(5) O(1)-Mo(2)-C(6) Mo(2)-Mo(3)-C(7) Mo(2)-C(6)-O(6) Cl(2)-In(1)-Cl(2')	60,1 43,5(2) 75,5(5) 90,6(3) 110,0(3) 90,8(4) 145,7(5) 140,3(10) 128,0(4) 94,7(3) 177,8(10) 103,5(1)	Mo(2)-O(1)-Mo(3) Mo(3)-Mo(2)-O(1) Mo(3)-Mo(2)-C(4) Mo(2)-C(5)-Mo(3) Mo(3)-Mo(2)-C(5) O(1)-Mo(3)-C(5) Mo(2)-C(4)-O(4) Mo(3)-Mo(2)-C(6) C(4)-Mo(2)-C(6) O(1)-Mo(3)-C(7) Mo(3)-C(7)-O(7)	92,7(3) 43,8(2) 110,0(3) 75,2(4) 52,5(3) 90,4(3) 142,1(3) 93,7(3) 76,4(5) 128,6(5) 179,4(13)

Experimenteller Teil

1. Allgemeines

Sämtliche Arbeiten wurden unter Inertgasatmosphäre (Argon) durchgeführt. Alle verwendeten Lösungsmittel wurden nach den üblichen Methoden getrocknet und mit Argon gesättigt. Als stationäre Phase bei der säulenchromatographischen Aufarbeitung diente ausgeheiztes und mit Argon gesättigtes Kieselgel (Silitech, Korngröße *ca.* 0,063–0,2 mm, Fa. Woelm, Nr. 0.2067).

Die Ausgangsverbindung [CpMo(CO)₃]₂ (1) wurde nach Literaturvorschrift hergestellt [11], wasserfreies InCl₃ käuflich erworben (Fa. Alfa Ventron, Nr. 40123).

Die IR-Spektren wurden mit dem IR-Spektrometer 283 der Fa. Perkin Elmer als KBr-Preßlinge aufgenommen. Die Aufnahme der ¹H-NMR-Spektren erfolgte auf den Geräten Bruker AC 200 (200 MHz) und Jeol FX 90Q (90 MHz). Die Massenspektren wurden auf den Geräten Varian MAT 711 (100 eV) und Varian MAT 311 A (Felddesorption) aufgenommen. Die Durchführung der C,H-Analysen erfolgte im Mikroanalytischen Labor der Chemischen Institute der Universität Heidelberg.

2. Reaktion von 1 mit InCl2

Darstellung von $[Cp_3Mo_3(CO)_4(\mu\text{-}Cl)(\mu_3\text{-}O)]$ (2) und $[Cp_3Mo_3(\mu\text{-}CO)_3(CO)_3(\mu_3\text{-}O)][CpMo(CO)_3InCl_3]$ (3)

In einer 250-ml-Rührapparatur werden 1,25 g (2,5 mmol) 1 und 0,55 g (2,5 mmol) InCl₃ in 100 ml Diglyme suspendiert. Die dunkelrote Reaktionslösung wird langsam auf 120 °C erwärmt. Nach 3 h wird das braune Reaktionsgemisch auf Raumtemperatur abgekühlt und das Lösungsmittel im Vakuum abgezogen. Der erhaltene dunkelbraune Rückstand wird in ca. 8 ml CH2Cl2 gelöst und auf eine Säule (70×1,4 cm, Kieselgel) gebracht. Mit CH₂Cl₂ als Elutionsmittel entwickelt sich zuerst eine rote Zone, die unumgesetzte Ausgangsverbindung 1 enthält. Es folgt eine orange gefärbte Zone von CpMo(CO)₃Cl. Die dritte Zone ist hellbraun gefärbt und enthält 2, die vierte dunkelbraune Zone 3. Ausbeute an 2: 170 mg (16% bezogen auf 1). Ausbeute an 3: 210 mg (15% bezogen auf 1). Bei -11 °C wird 2 aus n-Hexan/CH₂Cl₂ und 3 aus n-Hexan/CH₂Cl₂/Aceton umkristallisiert. Beide Spezies bilden schwarze luftstabile Kristalle, die in chlorierten Kohlenwasserstoffen und Aceton gut löslich sind.

3. Röntgenstrukturanalyse von 2

Schwarzer säulenförmiger Kristall $(0.11 \times 0.17 \times 0.22 \text{ mm}); \quad a = 1006.0(3), \quad b = 1006.0(3)$ 1244,6(4), c = 1600,8(5) pm, $V = 2004,3 \times 10^6$ pm³, Z = 4; rhombisch $D_2^4 - P2_12_12_1$. Datensammlung mit einem Siemens-Stoe-Diffraktometer (AED II), θ/ω -scan (3° < 2 θ < 60°); h (min/max) 0/14, $k \ 0/18, \ l \ 0/23; \ MoK_{\alpha}$ -Strahlung ($\lambda = 0.71069 \ \text{Å}$); 3000 im vermessenen Bereich mögliche Reflexe, davon 1981 unabhängige (I > 2,50 σ (I)); Absorptionskorrektur (empirisch, \psi-scans, 6 Reflexe $7.7 < 2\theta < 33.2^{\circ}$, Transmissionsfaktoren (min/ max) 0.75/1.00, $u = 19.7 \text{ cm}^{-1}$, $d_r = 2.14 \text{ g/cm}^3$); Strukturlösung durch Patterson-, Fourier- und Differenzfouriersynthesen, Verfeinerung nach der Methode der kleinsten Quadrate (alle Nichtwasserstoffatome anisotrop, H-Atome auf idealen Positionen festgehalten (HFIX-Programm [12])); $R = 0.048, \ R_w = [\Sigma w(|F_o| - |F_c|)^2 / \Sigma w F_o^2]^{1/2} =$ 0.040, Goof = $[\Sigma w(|F_0| - F_c|)^2/(NO-NV)]^{1/2}$ = 2,5, Restelektronendichte $0.66/-1.3 \text{ e/Å}^3$, shift/esd (mean/max) 0,01/0,05. Alle Rechnungen wurden mit dem Programmsystem SHELXTL [12] durchgeführt. Die Atomformfaktoren wurden der Literatur entnommen [13].

4. Röntgenstrukturanalyse von 3

Schwarzer Kristall $(0.10 \times 0.17 \times 0.38 \text{ mm}); a =$ 874,4(8), b = 1407(1), c = 1500(1) pm, V = $1843.0 \times 10^6 \text{ pm}^3$, Z = 2; monoklin $C_{2h}^2 - P_{21}/m$. Datensammlung: θ/ω -scan (3° < 2 θ < 60°); $h \text{ (min/max) } 0/12, k 0/20, l -21/21; \text{ MoK}_{\alpha}\text{-Strah-}$ lung ($\lambda = 0.71069 \text{ Å}$); 5500 im vermessenen Bereich mögliche Reflexe, davon 1972 unabhängige (I > 2,50 σ (I)); Absorptionskorrektur (empirisch, ψ -scans, 6 Reflexe $6.2 < 2\theta < 29.2^{\circ}$, Transmissionsfaktoren (min/max) 0.78/1.00, u = 26.0 cm^{-1} , $d_r = 2.04 \text{ g/cm}^3$); Strukturlösung durch Pattersonmethoden. Alle Nichtwasserstoffatome anisotrop verfeinert, H-Atome auf idealen Positionen festgehalten (HFIX-Programm [12]); R = 0.051, $R_w = 0.038$, Goof = 1.41, Restelektronendichte 0,77/-0,86 e/Å3, shift/esd (mean/max) 0,02/ -0,1. Weitere Einzelheiten zu den Röntgenstrukturanalysen können beim Fachinformationszentrum Karlsruhe GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 54134, der Autoren und des Zeitschriftenzitats angefordert werden.

Dem Fonds der Chemischen Industrie sowie der Deutschen Forschungsgemeinschaft danken wir für die Gewährung von Sach- und Personalmitteln.

- [1] W. A. Herrmann, J. Organomet. Chem. **300**, 111 (1986), und die dort zitierte Literatur.
- [2] V. A. Uchtman und L. F. Dahl, J. Am. Chem. Soc. **91**, 3763 (1969).
- [3] T. S. Piper und G. Wilkinson, J. Inorg. Nucl. Chem. **3**, 104 (1956).
- [4] A. T. T. Hsieh und M. J. Mays, J. Organomet. Chem. 37, 9 (1972).
- [5] L. M. Clarkson, W. Clegg, N. C. Norman, A. J. Tucker und P. M. Webster, Inorg. Chem. 27, 2653 (1988).
- [6] R. Adams, D. M. Collins und F. A. Cotton, Inorg. Chem. 13, 1087 (1974).
- [7] H. Brunner, J. Wachter, E. Guggolz und M. L. Ziegler, J. Am. Chem. Soc. 104, 1765 (1982).

- [8] A. Bino, F. A. Cotton und Z. Dori, J. Am. Chem. Soc. 100, 5252 (1978).
- [9] A. Bino, F. A. Cotton und Z. Dori, Inorg. Chim. Acta 33, L 133 (1979).
- [10] W. I. Bailey (Jr.), M. H. Chisholm, F. A. Cotton und L. A. Rankel, J. Am. Chem. Soc. 100, 5764 (1978).
- [11] R. Birdwhistell, P. Hackett und A. R. Manning, J. Organomet. Chem. 157, 239 (1978).
- [12] G. M. Sheldrick, SHELXTL-Programm, Universität Göttingen (1983).
- [13] International Tables for X-Ray Crystallography, Vol. IV, Kynoch Press, Birmingham.