Notizen 1607

Über die Interalkalimetallselenide KLiSe und KNaSe

The Inter Alkali Metal Selenides KLiSe and KNaSe

Karin Hippler, Petra Vogt, Regina Wortmann und Horst Sabrowsky*

Ruhr-Universität Bochum, Anorganische Chemie I, Arbeitsgruppe Festkörperchemie

Z. Naturforsch. **44b**, 1607–1609 (1989); eingegangen am 17. Juli 1989

Inter Alkali Metal Selenides

The colourless compounds KLiSe and KNaSe have been prepared and characterized by powder measurements. KLiSe crystallizes in a tetragonal lattice with a=451.7(1), c=724 1(2) pm, Z=2 (P4/nmm). KNaSe crystallizes in the orthorhombic space group Pnma with a=806.3(2), b=481.7(1) and c=865.1(2) pm, Z=4.

Einleitung

Bei unseren Untersuchungen zur Existenz von Interalkalimetallchalkogeniden der Zusammensetzung MM'X (M,M' = verschiedene Alkalimetalle, X = Chalkogen) konnten wir zunächst Verbindungen mit Sauerstoff und Schwefel darstellen und charakterisieren. Hiervon kristallisieren KNaO [1], RbNaO [2], NaLiS [3], KLiS [4], RbLiS [5] und RbNaS [6] im PbFCl-Typ, RbLiO [7], KNaS [8] und RbKS [9] im PbCl₂-Typ. KLiO [10] hingegen weist einen völlig neuen Strukturtyp mit & [Li₂O_{6/3}]-Anionen und Dreifachkoordination von Lithium gegenüber Sauerstoff auf. Um mehr über diese Verbindungsklasse zu erfahren, wobei primär die Struktursystematik interessiert, haben wir unsere Untersuchungen nun auch auf die Selenide und Telluride ausgedehnt. Bislang konnten wir hier die Verbindungen NaLiSe, KLiSe und KNaSe erhalten. NaLiSe [11] und KNaSe sind isotyp und kristallisieren im PbCl₂-Typ. KLiSe kristallisiert tetragonal im PbFCl-Typ. Hier wird über die Darstellung und röntgenographische Charakterisierung von KLiSe und KNaSe berichtet.

Experimentelles

Zur Darstellung von KLiSe und KNaSe wurden äquimolare Mengen von K₂Se und Li₂Se bzw. Na₂Se in verschlossenen Korund- und Silbertiegeln, die un-

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/89/1200-1607/\$ 01.00/0

ter Argon in Duran- bzw. Quarzglasampullen eingeschmolzen waren, zwischen 673 und 873 K 2 bis 7 Tage getempert. Bei der Präparation war es zweckmäßig, die Reaktionsgemenge im senkrecht stehenden Tiegel schnell aufzuheizen. Hierdurch sinterten die Proben zu einem zentrisch im Tiegel befindlichen Stab, so daß Reaktionen mit den Tiegelwandungen weitgehend ausgeschlossen werden konnten. Man erhielt so farblose, sehr hygroskopische polykristalline Proben von KLiSe und KNaSe mit typisch neuer Reflexabfolge ihrer Guinieraufnahmen (Tab. I und II).

Ergebnisse und Diskussion

Im System K_2Se/Li_2Se beobachten wir eine neue Phase, deren Guinieraufnahme sich vollständig tetragonal mit $a=451,7(1),\ c=724,1(2)$ pm (Z=2) indizieren läßt. Das Molvolumen $(V_M=44,5\text{ cm}^3)$

Tab. I. Tetragonale Indizierung und beobachtete Reflexintensitäten ($I_{\rm o}$) einer repräsentativen Guinieraufnahme ($\lambda=1,54051$ Å) von KLiSe (a=451,7,c=724,1 pm). Für die Intensitätsrechnung in der Raumgruppe P4/nmm (Ursprung in 2/m) wurden die Punktlagen folgendermaßen belegt: K⁺ in 2c, Li⁺ in 2a, Se²⁻ in 2c ($z_{\rm K^+}=0,6453,z_{\rm Se^2-}=0,1996$).

Nr.	h k l	$\sin^2\theta_{\rm o} \cdot 10^5$	$\sin^2\theta_{\rm c} \cdot 10^5$	I _o	I_c
1	0 0 1	_	1133	_	12,2
2	1 0 1	4026	4046	500	403,8
3	0 0 2	4520	4534	400	247,1
4	1 1 0	5810	5825	1000	1000,0
5	1 1 1	6932	6959	100	2,0
6	1 0 2	7428	7446	900	812,8
7	0 0 3	_	10201	-	17,0
8	1 1 2	10335	10359	650	423,3
9	2 0 0	11627	11651	650	446,7
10	2 0 1	_	12784	_	1,7
11	1 0 3	13101	13114	300	184,0
12	2 1 1	15661	15697	300	414,3
13	1 1 3	_	16026	-	18,1
14	2 0 2	16157	16185	300	166,8
15	0 0 4	_	18135	_	0,2
16	2 1 2	19056	19097	600	405,5
17	1 0 4	21015	21048	450	220,2
18	2 0 3	_	21852	_	27,6
19	2 2 0	23236	23302	350	162,4
20	1 1 4	_	23960	_	4,7
21	2 2 1	-	24435	_	0,4
22	2 1 3	24710	24764	200	147,7
23	3 0 1	27320	27348	100	36,2
24	2 2 2	27786	27835	100	79,3
25	0 0 5	-	28336	-	26,5
26	3 1 0	29107	29127	200	201,3
27	2 0 4	-	29786	-	0,2

^{*} Sonderdruckanforderungen an Prof. Dr. H. Sabrowsky

1608 Notizen

Tab. II. Orthorhombische Indizierung und beobachtete Reflexintensitäten (I_o) einer repräsentativen Guinieraufnahme ($\lambda=1,54051$ Å) von KNaSe (a=806,3,b=481,7,c=865,1 pm). Für die Intensitätsrechnung (I_c) wurden in der Raumgruppe Pnma die Punktlagen folgendermaßen belegt: K⁺ in 4c, Na⁺ in 4c, Se²⁻ in 4c ($x_{\rm K^+}=0,4867,z_{\rm K^+}=0,6847;x_{\rm Na^+}=0,3530,z_{\rm Na^+}=0,0757;x_{\rm Se^2-}=0,2214,z_{\rm Se^2-}=0,3956$).

Nr.	h k l	$\sin^2\theta_{\rm o} \cdot 10^5$	$\sin^2\theta_{\rm c} \cdot 10^5$	I_o	I_c
1	1 0 1	1703	1708	50	20,5
2	0 0 2	_	3176	_	2,7
3	0 1 1	3343	3355	100	71,6
4	2 0 0	3649	3656	150	116,4
5	1 0 2	4074	4090	600	432,2
6	1 1 1	4259	4269	600	529,3
7	2 0 1	_	4450	_	18,9
8	2 1 0	_	6218	_	1,1
9	1 1 2	6645	6651	650	465,8
10	2 0 2	6822	6832	250	182,9
11	2 1 1	7001	7012	1000	1000,0
12	1 0 3	8059	8059	150	72,5
13	3 0 1	9009	9021	400	226,7
14	2 1 2	_	9393	_	0,5
15	0 1 3	8059	8059	700	532,8
16	0 2 0	10215	10245	500	419,9
17	1 1 3	10597	10620	150	98,5
18	2 0 3	_	10802	_	0,0
19	3 0 2	11391	11403	400	220,1
20	3 1 1	11570	11582	400	222,3
21	1 2 1	_	11953	_	4,5
22	0 0 4	12675	12702	200	92,8
23	2 1 3	13341	13363	400	206,7
24	0 2 2	_	13420	_	1,4
25	1 0 4	_	13616	_	13.9
26	2 2 0	_	13901	_	43,2
27	3 1 2	13907	13964	100	44,8
28	1 2 2	14296	14334	250	156.8
29	4 0 0	14603	14626	100	69,4
30	2 2 1	_	14695	_	6,9
31	3 0 3	15380	15372	100	53,3
32	4 0 1	_	15420	_	4,2
33	1 1 4	_	16178	_	14,1
34	2 0 4	16337	16359	200	82,9
35	2 2 2	_	17077	_	94,1
36	4 1 0	17122	17187	250	51,5
37	4 0 2	_	17801		9,1
38	3 1 3	_	17933	_	8,9
39	4 1 1	_	17981	_	2,1
40	1 2 3	18265	18304	50	39,4
41	2 1 4	-	18920	_	8,5
42	3 2 1	19268	19266	350	148,3

stimmt gut mit dem für KLiSe aus den Biltzschen Volumeninkrementen zu $V_B = 49.5 \, \mathrm{cm}^3$ und dem aus der Summe der Molvolumina der binären Komponenten ($V_K = 50.5 \, \mathrm{cm}^3$) gemittelten überein. Die unter Annahme des PbFCl-Typs mit geschätzten Parametern durchgeführte Intensitätsrechnung korre-

spondiert gut mit aus Pulveraufnahmen ermittelten Reflexintensitäten (Tab. I).

Guinieraufnahmen der im System Na_2Se/K_2Se gefundenen Verbindung KNaSe lassen sich durchgängig orthorhombisch mit $a=806,3(2),\ b=481,7(1)$ und c=865,1(2) pm (Z=4) indizieren $(V_M=50,6~cm^3,\ V_B=54,5~cm^3,\ V_K=58,18~cm^3)$. Für die Existenz von KNaSe mit PbCl₂-Struktur spricht die vorliegende Intensitätsrechnung (Tab. II).

Zur Gegenüberstellung der hier bei den Seleniden vertretenen Strukturen sind in der Tab. III die Strukturen aller bislang bekannten Interalkalimetall-chalkogenide aufgeführt. Hiernach schließt sich KLiSe dem KLiS mit PbFCl- und KNaSe dem KNaS mit PbCl₂-Struktur an. Bei NaLiSe, dessen Struktur durch Einkristalluntersuchungen gesichert ist [11], findet man jedoch keine Isotypiebeziehungen zur homologen Verbindung NaLiS, was nicht ohne weiteres zu verstehen ist.

Vorläufig läßt sich herausstellen, daß die binären Chalkogenide mit CaF₂-Struktur zu ternären Verbindungen reagieren, die mit Ausnahme von KLiO zwei unterscheidbare Strukturtypen aufweisen.

Ersetzt man in der CaF₂-Struktur jede zweite Metallionenschicht durch eine Doppelschicht aus den größeren Kationen senkrecht zu [001], so erhält man eine kleinere Elementarzelle mit PbFCl-Geometrie.

Ist diese Substitution nicht mehr möglich, bilden die Chalkogenidionen eine mehr oder weniger verzerrte hexagonal dichteste Kugelpackung, in deren Oktaederlücken sich die größeren und alternierend in jeder zweiten Tetraederlücke sich die kleineren Kationen befinden, was zum PbCl₂-Typ führt.

Tab. III. Ternäre Verbindungen (oberhalb der Diagonalen) und deren Struktur (unterhalb der Diagonalen), die bisher in den binären Systemen der Alkalichalkogenide mit CaF₂-Struktur gefunden wurden.

	Li	Na	K	Rb
Li		NaLiS NaLiSe	KLiO KLiS KLiSe	RbLiO RbLiS
Na	PbFCl PbCl ₂	•	KNaO KNaS KNaSe	RbNaO RbNaS
K	KLiO-Typ PbFCl PbFCl	PbFCl PbCl ₂ PbCl ₂		RbKO RbKS
Rb	PbCl ₂ PbFCl	PbFCl PbFCl	MK PbCl ₂	•

Eine Sonderstellung nimmt überraschend KLiO ein, das abweichend von den obigen Strukturprinzipien eine völlig neue Kristallstruktur aufweist.

Um zu weiteren und insbesondere quantitativen Aussagen zu gelangen, sind wir mit der Darstellung der noch fehlenden Rubidium- und Cäsiumverbindungen und insbesondere mit der der homologen Tellurverbindungen beschäftigt.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die freundliche Unterstützung mit Personal- und Sachmitteln.

^[1] H. Sabrowsky und U. Schröer, Z. Naturforsch. 37b, 818 (1982).

^[2] H. Sabrowsky, P. Vogt-Mertens und A. Thimm, Z. Naturforsch. 40b, 1761 (1985).

^[3] H. Sabrowsky, A. Thimm und P. Vogt-Mertens, Z. Naturforsch. 40b, 1759 (1985).

^[4] H. Sabrowsky und A. Thimm, Naturwissenschaften **71**, 635 (1984).

^[5] H. Sabrowsky, K. Hippler, R. D. Hitzbleck, S. Sitta, A. Thimm, P. Vogt und R. Wortmann, Z. Naturforsch. 44b, 893 (1989).

^[6] K. Hippler, R. D. Hitzbleck, S. Sitta, P. Vogt,

R. Wortmann und H. Sabrowsky, Acta Crystallogr., Manuskript eingereicht.

^[7] H. Sabrowsky und P. Vogt, Z. Anorg. Allg. Chem. 553, 226 (1987).

^[8] H. Sabrowsky, A. Thimm, P. Vogt und B. Harbrecht, Z. Anorg. Allg. Chem. **546**, 169 (1987).

^[9] S. Sitta, P. Vogt und H. Sabrowsky, in Vorbereitung.

^[10] H. Sabrowsky, P. Mertens und F. O. Dönhoff, Z. Naturforsch. 40b, 122 (1985).

^[11] W. Bronger, C. Bomba und H. Sabrowsky, J. Less Common Met., im Druck.