Amphiphilic Carbohydrate-Based Mesogens, 4 [1] Synthesis of a Homologous Series of Mesogenic 1-O-n-Alkyl-D-mannitols

Wilhelm Volker Dahlhoff

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim an der Ruhr

Dedicated to Prof. Dr. Roland Köster on the occasion of his 65th birthday

Z. Naturforsch. 44b, 1105-1108 (1989); received April 18, 1989

Liquid Crystals, 1-O-n-Alkyl-D-mannitols, Glycoside Reductions

Regioselective reduction of a homologous series of O-n-hexyl to O-n-hexadecyl 2,3:5,6-bis-O-ethylboranediyl- β -D-mannofuranosides, 1a-k is achieved with ethyldiboranes(6) in the presence of 9-methanesulfonyloxy-9-borabicyclo[3.3.1] nonane [MSBBN]. After deboronation the mesogenic 1-O-n-alkyl-D-mannitols 2a-k are obtained, the liquid crystal ranges and solid state transitions of which are determined by D.S.C.

Introduction

Alditols which are ether-linked to lipophilic moieties can have important biological functions. Thus, for example, the simple amphiphile 1-O-n-pentyl-D/L-glycerol can permeate the blood-brain-barrier [2]. Ether phospholipids are naturally occurring membrane components which have potent platelet activating ability [3] and unsymmetrical double-reacted alditol ethers have been found to be bacterial membrane components [4].

It has also been shown that amphiphilic carbohydrates which have acyclic head-groups can also form liquid crystals [5]. Certain 1-C-[6] [7], 1-O-[8] and 1-S-*n*-alkyl alditols [9] are mesogenic, as are the double-tailed aldose di-*n*-alkyl-dithioacetals [10] and double-headed mannitol ethers [1]. N-alkyl-aldonamides [11, 12] and *n*-alkyl-gluconates [13] are less stable and decompose in the mesophase. The *n*-alkyl-aldonamides have recently been reported to

show interesting head-group dependent aggregation behaviour in water and xylene [14].

Below we report on the synthesis of a homologous series of stable amphiphilic 1-O-n-alkyl-D-mannitols by regioselective reductions of the ethylboranediyl protected n-alkyl- β -D-mannofuranosides.

Results and Discussion

O-n-Alkyl-2,3:5,6-bis-O-ethylboranediyl-mannofuranosides, $1\mathbf{a}-\mathbf{k}$, with aglycones ranging from n-hexyl to n-hexadecyl, served as educts in the reductions. $1\mathbf{a}-\mathbf{k}$ are readily prepared and isolated in 60-70% yields by stereoselective glycosylations of 2,3:5,6-bis-O-ethylboranediyl- α -D-mannofuranosyl bromide with the sodium n-alkyl-oxytriethylborates [15]. The glycosides $1\mathbf{a}-\mathbf{k}$ are quantitatively reduced under standard conditions [16] by heating them with ethyldiboranes(6) in the presence of 0.1 equivalent of 9-methanesulfonyloxy-9-borabicyclo[3.3.1]-

Scheme 1.

nonane (MSBBN) [17]. Regioselective hydroborations of the endocyclic acetal linkages occur and the desired 1-O-n-alkyl-D-mannitols (2a-k) are obtained in 58-76% yields after concentrating the product mixtures *in vacuo* and then deboronating the residue with methanol and ethane-1,2-diol (see typical experiment and Table I).

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/89/0900-1105/\$ 01.00/0

Compound	Yield	a Formula	Analyses C calcd (found)	H calcd (found)	H ^{+b} calcd (found)	$\begin{array}{c} [\alpha]_D^{20} \\ (c, \text{DMSO}) \end{array}$	MS
2a	70	$C_{12}H_{26}O_6$	54.12	9.84	1.89	9°	284
		[266.3]	[53.53]	[9.37]	[1.92]	[0.7]	
2 b	76	$C_{13}H_{28}O_6$	55.69	10.00	1.80	4.8°	298
		[280.4]	[55.51]	[9.93]	[1.81]	[0.7]	
2 c	58	$C_{14}H_{30}O_6$	57.12	10.27	1.71	8.6°	312
		[294.4]	[57.03]	[10.19]	[1.75]	[0.6]	
2 d	60	$C_{15}H_{32}O_6$	58.42	10.46	1.63	2.9°	326
		[308.4]	[58.29]	[10.12]	[1.61]	[1.6]	
2 e	58	$C_{16}H_{34}O_{6}$	59.60	10.63	1.56	8.8°	340
		[322.5]	[60.38]	[10.85]	[1.50]	[2]	
2f	67 ^d	$C_{17}H_{36}O_6$	60.68	10.78	1.50	4.6°	354
		[336.5]	[61.02]	[10.50]	[1.47]	[1.5]	
2 g	71	$C_{18}H_{38}O_6$	61.68	10.93	1.44	6.3°	368
8		[350.5]	[61.55]	[10.82]	[1.36]	[1.1]	
2h	58	$C_{19}H_{40}O_6$	62.60	11.06	1.38	6.9°	382
		[364.5]	[62.27]	[10.93]	[1.30]	[1.3]	
2i	68	$C_{20}H_{42}O_6$	63.46	11.18	1.33	5.5°	396
		[378.6]	[63.16]	[10.78]	[1.35]	[1.5]	
2j	71	$C_{21}H_{44}O_6$	64.25	11.30	1.28	4.5°	410
		[392.6]	[63.84]	[10.95]	[1.24]	[1.9]	
2k	75	$C_{22}H_{46}O_6$	64.99	11.40	1.24	3.7°	424
	, 5	[406.6]	[65.38]	[10.89]	[1.26]	[1.7]	127

Table I. Yields and analytical data for the 1-O-*n*-alkyl-D-mannitols **2a-k**.

Table II. D.S.C. Data for 2a-ka.

Compound	Heating scan ^b	Solid-state Transition ^c [°C]	m.p. [°C]	ΔH [KJ mol ⁻¹]	c.p. [°C]	ΔH [KJ mol ⁻¹]
2a	1	_	95	39	102 ^d	1 ^d
	2	-	95	38.5	102 ^d	1 ^d
2 b	1	24 [1.2]	100	45.8	132	2
	2	_	98.5	44.2	131	1.8
2 c	1	96.7 [5.1]	103.7	50.8	144.4	1.6
	2	-	103.5	50.1	144.2	1.8
2 d	1	90 [1.3]	102.3	46.7	155.4	1.8
	2	90 [1.8]	102.1	46.3	155.6	1.8
2 e	1	92 [4.8], 103.5 [6], 107 [7.8]	107.5	61.5	162	1.7
	2	=	103.2	54.4	161.3	1.7
2f	1	102.3 [1.1]	114.0	51.7	165	0.8
	2	69 [1.8], 82 [0.4], 88 [0.4], 97.5 [0.6], 110.5 [2.3]	113	51	165	0.8
2 g	1	89 [4], 106.4 [1.1]	111.2	57.5	167	1.3
	2	88 [4], 109 [3.7]	111.1	57.5	167	1.3
2h	1	70 [2.4], 80 [2.1]	113	60.4	166.3	1.1
	2	70 [2.7], 80 [2.4], 108 [24]	113	35	166	1.2
2i	1	68 [0.9], 75 [0.9], 100 [5]	105.3	51	158	1.5
	2	66 [1], 73 [1.3]	101	50	158.7	1.3
2j	1	_	111.5	61.8	161.5	0.8
-	2	51 [1.3]	111.3	60.8	161.8	0.8
2 k	1	_	114.3	80	162.6	0.9
	2	52[2.2]	114.5	78	162.7	0.9

^a Determined with a DuPont 1090–910 calorimeter. Heating rate 10 °C min⁻¹; ^b all the first heating scans with samples which had been recrystallized from ethanol. Reheats were measured <1 h after the first heating scan; ^c enthalpies (KJ mol⁻¹) in brackets []. The temperatures are given at the transition minima; ^d found on cooling the isotropic melt.

^a Yields of isolated products after reductions of **1a-k** and subsequent deboronations; ^b determined by using activated triethylborane [18]; ^c [M+NH₄] parent ions were found by DCI-MS using ammonia as the reactant gas [19]; ^d after recrystallization from ethanol.

Any competing reductive cleavage of the glycosidic bonds of **1** gives 2,3:5,6-bis-o-ethylboranediyl-1,4-anhydro-D-mannitol and ethylborane derivatives of the aglycones, both of which are removed by concentrating the product mixture *in vacuo*.

2a-k are colourless solids which were crystallized from ethanol prior to their analyses. All of these 1-O-n-alkyl-D-mannitols are stable mectogens, as is easily established by polarizing microscopy [20] and both the liquid crystal ranges and any solid-state changes were determined by D.S.C. (Differential Scanning Calorimetry).

In contrast to the mesogenic O-n-alkyl- β -D-mannofuranosides, which have no solid state phase changes prior to melting, the 1-O-n-alkyl-D-mannitols, 2a-k, exhibit a wide range of phase behaviour prior to the mesophase. 2a is the only member of the homologous series that shows no solid-state transition in both the first and second heating scans using D.S.C. In most cases there are differences between the first heating cycle using recrystallized samples and the subsequent scans [see Table II]. The greatest differences in the first and second heating cycles are found for the 1-O-n-decyland 1-O-n-undecyl-D-mannitols 2e and 2f, respectively. Whereas 2e has three crystal-to-crystal transitions in the first heating cycle, no solid phase changes are detected in the second and any further heating cycles. 2f, on the other hand, has only one solid-state phase change within the first heating cycle but upon reheating, five solid-state transitions are detected by D.S.C. 1-O-n-tridecyl-D-mannitol, 2h is exceptional in this series as a major solid-state phase change is brought about after the first heating scan.

The synthetic methodology for preparing 1-O-al-kyl alditols by regioselective endocyclic acetal bond hydroborations of O-ethylborane protected glycosides, is not restricted to the mannityl ethers presented here. The same approach has been successfully applied to prepare 1-S-*n*-alkyl-D-mannitols in

good yields [9] and also other amphiphilic 1-O-substituted alditols [21]. It is hoped that some of these stable amphiphiles will find usage for the solubilization and reconstitution of membrane proteins [22].

Experimental Section

All experiments were carried out under an atmosphere of dry argon. The O-ethylboranediyl protected n-alkyl- β -D-mannofuranosides $(1\mathbf{a}-\mathbf{k})$ were prepared as described previously [15].

Typical experiment: 1-O-n-alkyl-D-mannitols $(2\mathbf{a}-\mathbf{k})$ by reductions of 1-O-n-alkyl- β -D-mannofuranosides $(1\mathbf{a}-\mathbf{k})$ and subsequent deboronations.

MSBBN (~ 1 mmol) is added to the *n*-alkyl- β -mannofuranoside (~ 10 mmol) followed by addition of ethyldiboranes(6) (~40 mmol) and the stirred mixture is heated to 120 °C (bath) for ca. 4 h. The colourless mixture is concentrated in vacuo (10^{-3} torr) and the volatiles are distilled off (bath temperature 100-120 °C/ 10^{-3} torr). The viscous residue is then deboronated by adding methanol (10 ml) and 3 ml portions of ethane-1,2-diol and concentrating in vacuo (10^{-3} torr/70 °C). This process is repeated until the residue is boron-free [flame test]. Last traces of glycol are removed by adding ethanol (10 ml) and finally diethyl ether (10 ml) and concentrating in *vacuo* (10^{-3} torr) each time. The 1-O-*n*-alkyl-mannitols 2a-k are obtained as colourless solids in 57-76% yields. 2a-k are finally crystallized from hot ethanol. For yields and analytical data see Table I.

Typical ¹H and ¹³C NMR data for the D-mannityl moieties in **2a**–**k** after per-O-acetylation with acetic anhydride in pyridine. ¹H NMR (CDCl₃, 200 MHz): $\delta = 5.47$ (m, H-3, H-4), 5.08 (m, H-2, H-5), 4.22 (dd, $J_{5.6} = 2.9$ Hz, $J_{6.6'} = 12.5$ Hz, H-6), 4.07 (dd, $J_{5.6'} = 5.0$ Hz, $J_{6.6'} = -12.5$ Hz, H-6'), 3.53 (dd, $J_{1.2} = 4.1$ Hz, $J_{1.1'} = -10.8$ Hz, H-1), -3.45 (dd, $J_{1'.2} = -5$ Hz, $J_{1.1'} = -10.8$ Hz, H-1). ¹³C NMR (CDCl₃): $\delta = 71.8$, 69.2 (C-1, COCH₂), 68.9, 68.5, 68.2, 67.9 (C-2–C-5), 62.1 (C-6).

- [1] Part 3: see W. V. Dahlhoff, Z. Naturforsch. **43b**, 1367 (1988). A preliminary account of this work is given in [8].
- [2] H. Eibl, Angew. Chem. 96 247 (1984); Angew. Chem., Int. Ed. Engl. 23, 257 (1984).
- [3] C. A. Demopoulos, R. N. Pinckard, and D. J. Hanahan, J. Biol. Chem. 254, 9355 (1979).
- [4] J.-H. Fuhrhop and J. Mathieu, Angew. Chem. 96, 124 (1984); Angew. Chem., Int. Ed. Engl. 23, 100 (1984).
- [5] G. A. Jeffrey, Acc. Chem. Res. 19, 168 (1986).
- [6] A. Kjaer, D. Kjaer, and T. Skrydstrup, Tetrahedron **42**, 1439 (1986).
- [7] V. Kumar and S. Dev, Tetrahedron 43, 5 (1987).
- [8] W. V. Dahlhoff, Abstr. III, Europ. Symposium on Carbohydrates, p. 96, Grenoble, September 16–20 (1985).
- [9] W. V. Dahlhoff, Abstr. XIII. Intern. Carbohydrate Symposium, p. 26, Cornell Univ., Ithaca, N.Y., August 10–15 (1986).
- [10] W. V. Dahlhoff, Z. Naturforsch. 42b, 661 (1987).
- [11] B. Pfannemüller, W. Welte, E. Chin, and J. W. Goodby, J. Liq. Cryst. 1, 357 (1986).

- [12] D. Baeyens-Volant, P. Cuvelier, R. Fornasier, E. Szalai, and C. David, Mol. Cryst. Liq. Cryst. 128, 277 (1985).
- [13] S. Bhattacharjee, G. A. Jeffrey, and J. W. Goodby, Mol. Cryst. Liq. Cryst. 131, 245 (1985).
- [14] J.-H. Fuhrhop, P. Schneider, E. Boekema, and W. Helfrich, J. Am. Chem. Soc. 110, 2861 (1988).
- [15] W. V. Dahlhoff, Synthesis, 1987, 366.
- [16] R. Köster, S. Penades-Ultate, and W. V. Dahlhoff, Angew. Chem. 97, 508 (1985); Angew. Chem., Int. Ed. Engl. 24, 519 (1985).
- [17] R. Köster, W. V. Dahlhoff, and W. Schüssler, Organomet. Synth. 4, 450, Elsevier, Amsterdam (1988).
- [18] R. Köster, K.-L. Amen, and W. V. Dahlhoff, Liebigs Ann. Chem. 1975, 752.
- [19] D. Henneberg, H. Damen, W. Joppek, and W. Schmöller, Max-Planck-Institute für Kohlenforschung, Mülheim a. d. Ruhr.
- [20] G. W. Gray and J. W. Goodby, Smectic Liquid Crystals, Leonhard Hill, Glasgow and London (1984).
- [21] W. V. Dahlhoff, manuscripts in preparation.
- [22] T. Tsuchiya and S. Saito, J. Biochem. 96, 1593 (1984).