Eine ¹⁵N-NMR-Untersuchung einiger Trimethylstannylhydrazine

A ¹⁵N NMR Study of Some Trimethylstannylhydrazines

Bernd Wrackmeyer*

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 101251, D-8580 Bayreuth

Theo Gasparis-Ebeling und Heinrich Nöth

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Z. Naturforsch. 44b, 653-658 (1989); eingegangen am 18. Januar 1989

Trimethylstannylhydrazines, Conformation, 119 Sn NMR Spectra, 15 N NMR Spectra, 119 Sn - 15 N Coupling Constants

The trimethylstannylhydrazines $(Me_3Sn)_2N-NMe_2$ (1), $Me_3Sn(Me)N-N(Me)SnMe_3$ (2), $(Me_3Sn)_2N-N(Me)SnMe_3$ (3), and $(Me_3Sn)_2N-N(Ph)SnMe_3$ (4) have been studied by ¹⁵N NMR at natural abundance. A correlation between $\delta^{15}N$ of hydrazines and $\delta^{15}N$ of corresponding amines (replacement of one N-atom by the CH-unit) is proposed in order to estimate $\delta^{15}N$ values and to support the non-trivial assignment of ¹⁵N resonances of hydrazines. Geminal coupling constants ² $J(^{119}SnN^{15}N)$ have been observed for the first time. Their relative magnitude is related to the probability of the N-Sn bond being in cis-position with respect to the orientation of the lone electron pair at the ¹⁵N nucleus in the ¹¹⁹Sn-N-¹⁵N fragment. Treatment of 4 with phenylacetylene causes non-selective cleavage of the Sn-N bonds, leading to the trimethylstannylhydrazines 5 and 6 which have been characterized by ¹¹⁹Sn and ¹⁵N NMR spectroscopy in solution.

Das zunehmende Interesse am Einsatz reaktiver Zinn-Stickstoff-Verbindungen in der metallorganischen Synthese [1, 2] verlangt auch ihre weitgehende Charakterisierung in Lösung. Neben den bereits relativ gut untersuchten Stannylaminen verdienen Hydrazin-Derivate Beachtung. So sind die Trimethylstannylhydrazine vom Typ 1–4 leicht zugänglich [3, 4] und mittels ¹³C- und ¹¹⁹Sn-NMR-Spektroskopie bereits ausführlich charakterisiert [4].

Für die Diskussion der Bindungsverhältnisse dieser Hydrazin-Derivate sollten 15 N-NMR-Parameter $[\delta^{15}$ N-Werte und Kopplungskonstanten $^{1}J(^{119}\text{Sn}^{15}\text{N})]$ ergänzende Informationen liefern, die zudem für die Charakterisierung anderer Hydrazine und Zinn-Stickstoff-Verbindungen wichtig sind. Im Rahmen unserer 15 N-NMR-Untersuchungen an Element-Stickstoff-Verbindungen [5] berichten wir in dieser Arbeit über Messungen an den Trimethylstannyl-

Dabei folgt aus der Temperaturabhängigkeit der 119 Sn-NMR-Parameter [chemische Verschiebungen δ^{119} Sn und Kopplungskonstanten $^2J(^{119}$ Sn 119 Sn), $^3J(^{119}$ Sn 119 Sn)], daß mehrere verschiedene Konformere (z.B. **A, B**) unterschiedlicher Energie vorliegen.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/89/0600–0653/\$ 01.00/0

hydrazinen **1–4.** Zudem haben wir erste Versuche unternommen, um Trimethylstannylhydrazine mit NH-Bindungen (**5–7**) in Lösung zu erzeugen und mittels ¹¹⁹Sn- und ¹⁵N-NMR zu identifizieren.

Sonderdruckanforderungen an Prof. Dr. Bernd Wrackmeyer.

Ergebnisse und Diskussion

Die ¹⁵N-NMR-Parameter finden sich in Tab. I zusammen mit bekannten [4] und neuen ¹¹⁹Sn-NMR-Daten. Für die Aufnahme der ¹⁵N-NMR-Spektren in natürlicher Häufigkeit hat sich die refokussierte INEPT-Pulssequenz [6] als vorteilhaft erwiesen (vgl. Experimentelles und Abb. 1, 2).

Für die schonende Protolyse der SnN-Bindungen wählten wir **4** und entschieden uns für eine Untersuchung der Reaktion mit Phenylacetylen [7]. Die ¹⁵N-NMR-Spektren der Reaktionslösungen, die bei der Umsetzung von **4** mit Phenylacetylen entstehen, wurden ebenfalls mit der refokussierten INEPT-Pulssequenz mit ¹H-Entkopplung [6] aufgenommen, jedoch mit den entsprechenden Wartezeiten für NH-Gruppen mit $^1J(^{15}N^1H) = 90 \text{ Hz}.$

Zuordnung der ¹⁵N-Resonanzen und der J(¹¹⁹Sn¹⁵N)-Werte

Bisher sind nur wenige metallorganisch substituierte Hydrazine mittels 15 N-NMR-Spektroskopie untersucht worden [8], so daß es keine zuverlässige Voraussage über den Substituenteneffekt einer Me₃Sn-Gruppe auf die δ^{15} N-Werte gibt. Für die Verbindung 4 läßt sich eine Zuordnung der 15 N-Resonanzen aufgrund der charakteristisch entschirmenden Wirkung der Phenyl-Gruppe treffen. Bei Berücksichtigung der relativen Intensität der $^{117/119}$ Sn-Satelliten folgt aus dieser Zuordnung, daß die großen $|J(^{119}$ Sn 15 N)|-Werte jeweils der Kopplung $^{1}J(^{119}$ Sn 15 N) zuzuschreiben sind. Es bleibt jedoch zu klären, ob diese Zuordnung für die Verbindungen 1 und 3 übernommen werden kann.

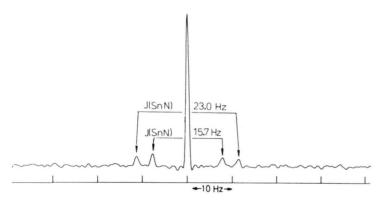


Abb. 1. 20,3 MHz 15 N-NMR-Spektrum von 1,2-Bis(trimethylstannyl)dimethylhydrazin (2) ca. 40% in C_6D_6 bei 27–28 °C, aufgenommen mit der refokussierten INEPT-Pulssequenz [6b, c] und 1 H-Entkopplung. Dabei wurde 3 J(15 NSnC 1 H) = 1,5 Hz angenommen ($D_2 = 0,167$ s, $D_3 = 0,0417$ s): 2000 scans, Acquisitionszeit 2s, Pulswiederholungszeit $D_1 = 3$ s (Meßzeit ~ 3 h). Auch bei Annahme einer Kopplung $J(^{15}$ NC 1 H) = 2 Hz läßt sich dieses Spektrum bei ungefähr gleichem Zeitaufwand erhalten. Die 111 119Sn-Satelliten sind klar zu erkennen und treten für 1 J(Sn 15 N) und 2 J(Sn 15 N) mit der gleichen Intensität auf.

Nr.	$\delta^{15}N$ [$J(^{119}Sn^{15}N)$]		δ^{119} Sn $[J(^{119}$ Sn 119 Sn $)]^c$	
1	-304,1 (NSn ₂)	-282,9 (NMe ₂)	49,0	
	$[5,1] (^{1}J)$	$[46,0]$ (^{2}J)	$[486,0]$ (^{2}J)	
2	-308,0		49,0	
	$[23,0, 15,7]^d$		[244,0] (³ J)	
3	-317,1 (NSn ₂)	-293,5 (NMeSn)	61,5 (NSn ₂)	56,7 (NMeSn)
	$[5,9]$ (${}^{1}J$)	$[19,1]$ (${}^{1}J$)	$[833,0]$ (^{2}J)	$[50,2]$ (^{3}J)
	$[14,6] (^2J)$	$[40,5]$ (^{2}J)	$[50,2]$ (^{3}J)	
4	-313,4 (NSn ₂)	-266,7 (NPhSn)	79,5	49,8
	$[46,4]$ (${}^{1}J$)	$[45,7]$ (${}^{1}J$)	$[640,5]$ (^{2}J)	[21,0] (³ J)
	$[20,0]$ (^{2}J)	$[<2]^{(2)}$	$[21,0]$ (^3J)	
5	n.b. (NSn ₂)	-270,7 (NHPh)	81.0	
		$[5,0]$ (^{2}J)	$[439,0]$ (^{2}J)	
6	-309,3 (NHSn)	n.b. (NPhSn)	64,9 (NHSn) ^e	49,5 (NPhSn) ^e
	$[29,0,25,0]^d$	—— (= =)	$[112,2]$ (${}^{3}J$)	$[112,2]$ (${}^{3}J$)

Tab. I. ¹⁵N- und ¹¹⁹Sn-NMR-Daten^{a,b} der Trimethylstannylhydrazine **1–6.**

^a In C₆D₆ (*ca.* 40–60%) bei 27–28 °C in 10-mm-Rohren; ^b δ¹⁵N-Werte relativ zu reinem MeNO₂ (extern) mit $\Xi_{(15_N)} = 10136757$ Hz; δ¹¹⁹Sn-Werte (für **1–4** vgl. [4]) relativ zu reinem Me₄Sn (extern) mit $\Xi_{(119_{Sn})} = 37290665$ Hz; Kopplungskonstanten in [] in Hz; $J(^{119}\text{Sn}^{15}\text{N}) \pm 1$ Hz; $J(^{119}\text{Sn}^{119}\text{Sn}) \pm 1$,5 Hz; ^cerhalten durch Multiplikation von $J(^{119}\text{Sn}^{117}\text{Sn})$ mit 1,0465 (= $\gamma(^{119}\text{Sn})/\gamma(^{117}\text{Sn})$); ^d eine Zuordnung bezüglich ¹*J* und ²*J* wurde nicht getroffen; ^c Zuordnung kann umgekehrt sein.

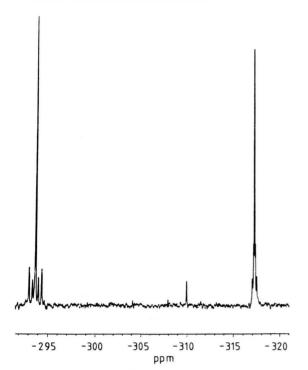


Abb. 2. 30,4 MHz 15 N-NMR-Spektrum von Tris(trimethylstannyl)methylhydrazin (3) ca. 60% in C_6D_6 bei 27–28 °C, aufgenommen unter ähnlichen Bedingungen wie bei Abb. 1 angegeben. Der 15 N-Kern der N(Me)SnMe $_3$ -Gruppe koppelt auch mit den Protonen der N-Methyl-Gruppe [$^2J(^{15}NC^1H) \sim 2$ Hz]. Bei Annahme von $J(^{15}N^1H) = 1$,8 Hz erhält man in einem Experiment rasch (~ 45 min) beide 15 N-Resonanzen mit $^{117/119}$ Sn-Satelliten. Die unterschiedliche Intensität der $^{117/119}$ Sn-Satelliten entspricht der Wahrscheinlichkeit, mit der das 117 Sn- bzw. 119 Sn-Isotop in der betreffenden Position [$^2J(\text{Sn}^{15}N)$ oder $^3J(\text{Sn}^{15}N)$] angetroffen wird.

Versuche mittels verschiedener Refokussierungszeiten in der INEPT-Pulssequenz zeigen, daß in 1-3 neben ³J(¹⁵N¹H) für die NSnMe₃-Gruppen (ca. 1,5 Hz) auch eine Kopplung $J(^{15}N^{1}H)$ zu den NMe-Gruppen besteht, die ca. 2 Hz beträgt. Verwendet man hierfür die entsprechenden Parameter in der INEPT-Pulssequenz, verliert in 1 und 3 jeweils die ¹⁵N-Resonanz bei niedrigen Frequenzen merklich an Intensität. Diese Kopplung $J(^{15}N^1H)$ kann über zwei Bindungen (15N-C-1H) oder über drei Bindungen (15N-N-C-1H) erfolgen, während eine signifikante Kopplung zu den Protonen der SnMe3-Gruppe nur über drei Bindungen (15N-Sn-C-1H) denkbar ist, zumal der Wert von ca. 1,5 Hz mit anderen Befunden für ³J(¹⁵NSnC¹H) übereinstimmt [9–11]. Dies wird durch die INEPT-15N-NMR-Spektren für 1 be-

stätigt, welche bei Verwendung der Parameter für $^{3}J(^{15}NSnC^{1}H) = 1.5$ Hz eine intensive ^{15}N -Resonanz bei niedriger Frequenz aufweist, neben einem Signal geringer Intensität bei höherer Frequenz. Somit ordnen wir in 1 die ¹⁵N-Resonanzen bei δ^{15} N = -282,9 der NMe₂- und bei δ^{15} N = -304.1 der N(SnMe₃)₂-Gruppe zu. Bei $J(^{15}N^1H) \sim 2$ Hz muß es sich demnach um eine geminale ¹⁵N-C-¹H-Kopplung handeln, deren Absolutwert merklich größer ist als in Alkylaminen $(|^2J(^{15}NC^1H)| \le 1 \text{ Hz})$ [8a, b]. Somit können auch die ¹⁵N-Resonanzen in 3 zugeordnet werden, und zusammen mit der relativen Intensität der ^{117/119}Sn-Satelliten in den ¹⁵N-NMR-Spektren sind auch die Wege für die verschiedenen 119Sn-15N-Kopplungen in 1 und 3 eindeutig, während in 2 aufgrund der ähnlichen Größe der $J(^{119}Sn^{15}N)$ -Werte keine Unterscheidung erfolgt. Im Gegensatz zu 4 entspricht der größere J(119Sn15N)-Wert in 1, 3 einer geminalen ¹¹⁹Sn-N-¹⁵N-Kopplung.

In den ¹⁵N-NMR-Spektren der Reaktionslösungen aus der Umsetzung von **4** mit Phenylacetylen wurden die ¹⁵N(NH)-Resonanzen von **5** und von **6** gefunden, mit einem kleinen $|{}^2J({}^{119}\mathrm{Sn}{}^{15}\mathrm{N})|$ -Wert für **5** (5,0 Hz) (vgl. mit **4**) und mittleren $|{}^1J({}^{119}\mathrm{Sn}{}^{15}\mathrm{N})|$ -, $|{}^2J({}^{119}\mathrm{Sn}{}^{15}\mathrm{N})|$ -Werten (29,0, 25,3 Hz ohne Zuordnung) für **6.** Die Präsenz von **5** und **6** folgt aus den ¹¹⁷Sn-Satelliten bzw. aus den ¹¹⁷Sn- und ¹¹⁹Sn-Satelliten, entsprechend ${}^2J(\mathrm{SnSn})$ bzw. ${}^3J(\mathrm{SnSn})$.

Chemische Verschiebungen $\delta^{15}N$

δ¹⁵N-Werte von Hydrazinen sind mehrfach diskutiert worden [12, 13], besonders im Hinblick auf die Diederwinkel θ für die Orientierung der freien Elektronenpaare an den beiden N-Atomen [13]. Dabei werden die δ^{15} N-Werte von Hydrazinen und die δ¹³C-Werte entsprechender Kohlenwasserstoffe (Ersatz der N-N- gegen die CH-CH-Einheit) verglichen, eine lineare Korrelation festgestellt, und Abweichungen hiervon, die besonders bei cyclischen oder bicyclischen Hydrazinen auftreten, werden mit Diederwinkeln $\theta \sim 180^{\circ}$ oder 0° erklärt. Solche Beziehungen sind für die Vorhersage von δ^{15} N-Werten für Hydrazine nicht sehr nützlich. Wir schlagen deshalb eine δ^{15} N/ δ^{15} N-Korrelation vor, wobei δ^{15} N-Werte der Hydrazine den δ^{15} N-Werten entsprechender Amine gegenübergestellt werden. In den Aminen ist ein N-Atom des jeweiligen Hydrazins durch die CH-Einheit ersetzt.

$$\delta^{15}N_{(Hydrazin)} = \delta^{15}N_{(Amin)} + 46,2; r = 0,99(20)$$
 (1)

Die Beziehung (1) schließt alle zur Verfügung stehenden vergleichbaren Daten von Aminen [8a, b] und Hydrazinen [13] ein. Sogar organometallisch substituierte Hydrazine und Amine passen in dieses Konzept [vgl. δ^{15} N von (Me₃Sn)₂NNMe₂ (1) (-304,2) und (Me₃Sn)₂N- i Pr (-347,6) [5], die δ^{15} N-Werte von (Me₃Si)₂NNH₂ (-332,0) [14] und (Me₃Si)₂N-Me (-378,0) [15] oder die δ^{14} N-Werte von Me₂BNHNMe₂ (-216,0) und Me₂B-NH- i Pr (-259,0) [16]]. Bemerkenswert ist, daß auch die δ^{15} N-Werte von Triaziridinen [17], im Vergleich zu den Diaziridinen [8a, 17], und diese wiederum im Vergleich zu den Aziridinen [18] die Gl. (1) erfüllen.

Die Beziehung (1) zeigt an, daß weniger die gauche-, anti- oder syn-Wechselwirkungen der freien Elektronenpaare der Stickstoffatome für die Änderungen der δ^{15} N-Werte verantwortlich sind als sterische Substituenteneffekte, die in den Aminen und Hydrazinen analog sein sollten. Mit Gl. (1) lassen sich δ^{15} N-Werte von Hydrazinen oder vergleichbaren Aminen relativ exakt (ca. ± 3 ppm) vorhersagen.

Kopplungskonstanten ${}^{n}J({}^{119}Sn^{15}N)$ (n = 1, 2)

zahlreichen Trimethylstannylaminen ${}^{1}J({}^{119}\mathrm{Sn}{}^{15}\mathrm{N}) < 0$, wie sich aus der experimentellen Ermittlung des Vorzeichens in Me₃Sn(Ph)N-H [9], $(Me_3Sn)_2NPh$ [10] und dem Vergleich mit ${}^1J({}^{29}Si^{15}N)$ in entsprechenden Trimethylsilylaminen [5a] ergibt. Ein Wechsel des Vorzeichens kann jedoch leicht erfolgen [vgl. z.B. Me₃SnN(H)Ph (-26,3 Hz) und Me₃SnN(Me)Ph (+2,2 Hz) [11]]. Führt man Größe und Vorzeichen von ¹J(¹¹⁹Sn¹⁵N) in Me₃SnN(R)R¹ auf einzeln additive oder paarweise additive Beiträge der Substituenten R und R1 zurück, dann sind die Beiträge von Me₃Sn-Gruppen stark negativ, die von H-Atomen weniger negativ und von Phenyl- und Methyl-Gruppen zunehmend positiv. Der Beitrag von $R^1 = NR^3R^4$ zu ${}^1J({}^{119}Sn^{15}N)$ scheint merklich von den Substituenten R3 und R4 abzuhängen, wie die $|{}^{1}J({}^{119}Sn^{15}N)|$ -Werte der (Me₃Sn)₂N-Gruppe in 1, 3 und 4 lehren. Somit läßt sich keine schlüssige Aussage über das Vorzeichen von ¹J(¹¹⁹Sn¹⁵N) in 1-4 treffen. Es bleibt festzustellen, daß keine offensichtliche Beziehung zwischen ¹J(¹¹⁹Sn¹⁵N) und anderen NMR-Parametern, wie ${}^2J({}^{119}\mathrm{Sn}{}^{119}\mathrm{Sn})$ oder $\delta^{119}\mathrm{Sn}$ besteht.

Für die geminale 119 Sn-N- 15 N-Kopplung überraschen auf den ersten Blick die großen $^{2}J(^{119}$ Sn 15 N)|-Werte. Jedoch zeigen andere NMR-Messungen [4],

daß in den Verbindungen **1–4** alle $|^2J(^{119}SnX)|$ -Werte $(X = ^{13}C, ^{119}Sn)$ zahlenmäßig groß sind, mit Ausnahme von $^2J(^{119}Sn^{13}C_{Ph})$ in der Me₃Sn(Ph)N-Einheit von **4.** Auch dies hat seine Parallele mit $^2J(^{119}Sn^{15}N) < 2$ Hz für den ^{15}N -Kern der Me₃Sn(Ph)N-Gruppe in **4.** Ist an geminalen X-E-Y-Kopplungen ein Kern X beteiligt, der ein freies Elektronenpaar besitzt, so spielt die Orientierung dieses freien Elektronenpaares bezüglich der E-Y-Bindung eine entscheidende Rolle. Die *cis*-Anordnung bedingt meist, daß $^2J(XY) \ge 0$ [die gyromagnetischen Verhältnisse $\gamma(X)$ und $\gamma(Y)$ sollen gleiches Vorzeichen besitzen], während bei *trans*-Position meist kleine $|^2J(XY)|$ -Werte wechselnden Vorzeichens resultieren [19].

Für die Verbindungen 1-4 sind die Strukturen A und B energetisch günstig, da die gauche-Anordnung der freien Elektronenpaare vorliegt [13, 20]. Trifft dies zu, dann ist für die 15N-Kerne der Me₂N- (1) und der Me₃Sn(Me)N-Gruppe (3) die Wahrscheinlichkeit einer zum freien Elektronenpaar des Stickstoffatoms cis-ständigen N-Sn-Bindung etwa doppelt so hoch, wie für die ¹⁵N-Kerne der Me₃Sn(Me)N-Gruppen in 2 und der (Me₃Sn)₂N-Gruppe in 3,4. Dies liefert einen Ansatz zur Erklärung der unterschiedlichen Größe der ${}^{2}J({}^{119}Sn^{15}N)$ -Werte [vgl. z. B. ${}^{2}J({}^{119}Sn^{15}N)$ in 1 (46,0 Hz) und in 3 (40,5 Hz bzw. 14,6 Hz)]. Das Stickstoffatom der Me₃Sn(Ph)N-Gruppe in 4 ist vermutlich trigonal planar koordiniert, im Gegensatz zu den übrigen Stickstoffatomen in 1-4, und läßt sich darum bezüglich seiner Kopplungskonstanten nicht in den Vergleich einbeziehen.

Umsetzung von 4 mit Phenylacetylen

Trimethylstannylhydrazine mit NH-Gruppen konnten bisher nicht isoliert werden. Es sollte jedoch möglich sein, solche Verbindungen in Lösung mittels $^{119}\mathrm{Sn}$ - und $^{15}\mathrm{N}$ -NMR-Spektroskopie nachzuweisen. Um dies zu überprüfen, wurde 4 mit Phenylacetylen im Unterschuß umgesetzt [Schema (1)], und von der Reaktionslösung wurden $^{119}\mathrm{Sn}$ - und $^{15}\mathrm{N}$ -NMR-Spektren registriert. Bei 25 °C in Benzol verläuft die Reaktion so langsam, daß auch nach 2 h mittels $^{119}\mathrm{Sn}$ -NMR nur wenig 5 und noch weniger 6 neben 4 und wenig Alkinylstannan 8 ($\delta^{119}\mathrm{Sn}$ -69,0) nachweisbar sind

Nach 10 min bei 80 °C nimmt der Anteil von **5, 6** und **8** merklich zu und außerdem bildet sich eine geringe Menge eines Hydrazin-Derivats, das nur noch eine SnN-Bindung enthält (δ^{119} Sn = 59,5; ohne

Schema 1. (7 könnte auch die Struktur Me₃Sn(H)N-N(H)Ph besitzen!)

^{117/119}Sn-Satelliten) und dem vermutlich die Struktur **7** zukommt.

Weitere Trimethylstannyl- und Trimethylsilylhydrazine, insbesondere die weniger stabilen Derivate mit NH-Gruppen, sollten mittels 15 N-, 119 Sn- oder 29 Si-NMR-Spektroskopie bequem zu untersuchen sein. Für die NH-Derivate bieten sich inverse zweidimensionale (2D) 1 H{ 15 N}-Experimente an [21], um 15 N-NMR-Daten verdünnter Lösungen zu erhalten. Ein größerer Satz von δ -Werten und Kopplungskonstanten kann dann für die Diskussion der Bindungsverhältnisse benutzt werden.

Experimentelles

Alle Verbindungen 1–4 wurden unter Ausschluß von Luft und Feuchtigkeit behandelt. Die Synthese von 1–4 folgte der Literatur [3,4]: Eliminierung von Diethylamin bei der Umsetzung der freien Hydrazine mit Diethylaminotrimethylstannan (Me₃Sn–NEt₂).

Reaktion von 4 mit Phenylacetylen

Für die Spaltung der SnN-Bindungen wurden 3 g 4 (5 mmol) in 10 ml Benzol gelöst und bei R.T. unter Rühren mit 0,26 g Phenylacetylen (2,5 mmol) versetzt. Von dieser Reaktionslösung wurden Proben entnommen und ¹¹⁹Sn-NMR-spektroskopisch untersucht. Nach 10 min bei 80 °C haben laut ¹¹⁹Sn-NMR *ca.* 40% des eingesetzten 4 reagiert und von diesem

Reaktionsgemisch (Verbindungen 4–8) wurden ¹⁵N-NMR-Spektren gemessen. Bei der destillativen Aufarbeitung des Gemisches konnten außer dem Alkinylstannan 8 (Sdp. 68–71 °C/0,1 Torr) keine weiteren definierten Produkte gewonnen werden.

NMR-Messungen

Die NMR-Spektren wurden mit Bruker-WP200und Bruker-AC300-Geräten aufgenommen (vgl. Tab. I und Abb. 1,2). Entsprechend den Erfahrungen mit ¹⁵N-angereicherten Trimethylstannylaminen [9-11] wurde für die INEPT-Pulssequenz im Fall 1-4 eine Kopplung ${}^{3}J({}^{15}NSnC^{1}H) = 1.5 Hz$ angenommen (maximale Signalintensität für ¹⁵N-Resonanzen bei niedrigen Frequenzen in 1,3). Bei 1-3 läßt sich für ${}^{2}J({}^{15}NC^{1}H) = 2Hz$ (Kopplung mit 3 bzw. 6 Protonen) ebenfalls die INEPT-Sequenz durchführen (maximale Signalintensität für die ¹⁵N-Resonanzen bei hohen Frequenzen in 1 und 3). Für die Aufnahme der ¹¹⁹Sn-NMR-Spektren ergab sich bei Anwendung der INEPT-Pulssequenz ein merklicher Gewinn an Signalintensität (maximal laut Theorie: Faktor 5; gefunden: ca. Faktor 3) im Vergleich zu "inverse gated" ¹H-entkoppelten ¹¹⁹Sn-NMR-Spektren [22] (Unterdrückung des negativen NOE).

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

(1984);

- Yu. I. Dergunov, V. F. Gerega und O. S. D'yachkovskaja, Russ. Chem. Rev. 46, 1132 (1977).
- [2] M. Pereyre, J.-P. Quintard und A. Rahm, Tin in Organic Synthesis, S. 304–312, Butterworths, London (1987).
- [3] a) N. Wiberg und M. Veith, Chem. Ber. 104, 3176 (1971);
 b) N. Wiberg und M. Veith, Chem. Ber. 104, 3191 (1971).
- [4] T. Gasparis-Ebeling, H. Nöth und B. Wrackmeyer, J. Chem. Soc. Dalton Trans. 1983, 17.
- [5] a) B. Wrackmeyer, S. Kerschl, C. Stader und K. Horchler, Spectrochim. Acta 42A, 1113 (1986);
 b) B. Wrackmeyer, Spectrochim. Acta 40a, 963
 - c) H. Nöth und B. Wrackmeyer, J. Magn. Reson. **69**, 492 (1986);
 - d) C. Stader, B. Wrackmeyer und D. Schlosser, Z. Naturforsch. **43b**, 707 (1988).
- [6] a) G. A. Morris und R. Freeman, J. Am. Chem. Soc. 101, 760 (1979);
 b) D. P. Burum und R. R. Ernst, J. Magn. Reson. 39, 163 (1980);
 - c) G. A. Morris, J. Magn. Reson. 41, 185 (1980).
- [7] K. Jones und M. F. Lappert, J. Organomet. Chem. 3, 295 (1965).
- [8] a) M. Witanowski, L. Stefaniak und G. A. Webb, Annual Rep. NMR Spectrosc. (Herausg. G. A. Webb)
 18, 1 (1986);
 b) G. J. Martin, M. L. Martin und J.-P. Gouesnard,
 - b) G. J. Martin, M. L. Martin und J.-P. Gouesnard, ¹⁵N NMR Spectroscopy, in NMR Basic Principles and Progress (Herausg. P. Diehl, E. Fluck und R. Kosfeld), Vol. 18, Springer Verlag, Berlin (1981); c) B. N. Khasapov, A. V. Kalinin, A. Ya. Shteinshneider, A. A. Blyumenfel'd, S. L. Ioffe und V. A. Tartakovskii, Izvest. Akad. Nauk., Ser. Khim. **1984**, 1296.

- [9] J. D. Kennedy, W. McFarlane, G. S. Pyne und B. Wrackmeyer, J. Chem. Soc. Dalton Trans. 1975, 386.
- [10] J. D. Kennedy, W. McFarlane, G. S. Pyne und B. Wrackmeyer, J. Organomet. Chem. 195, 285 (1980).
- [11] J. D. Kennedy, W. McFarlane und B. Wrackmeyer, Inorg. Chem. 15, 1299 (1976).
- [12] R. L. Lichter und J. D. Roberts, J. Am. Chem. Soc. 94, 4904 (1972).
- [13] S. F. Nelson und W. C. Hollinsed, J. Org. Chem. 45, 3609 (1980).
- [14] B. Wrackmeyer, unveröffentlichte Messungen.
- [15] H. Nöth, W. Tinhof und B. Wrackmeyer, Chem. Ber. 107, 518 (1974).
- [16] W. Beck, W. Becker, H. Nöth und B. Wrackmeyer, Chem. Ber. 105, 2883 (1972).
- [17] H. Hilpert und R. Hollenstein, Helv. Chim. Acta 69, 136 (1986).
- [18] K. Crimaldi und R. L. Lichter, J. Org. Chem. 45, 1277 (1980).
- [19] C. J. Jameson, in Multinuclear NMR (Herausg. J. Mason), S. 89–131, Plenum Press, London (1987).
- [20] a) Y. Shvo, in The Chemistry of Hydrazo-, Azo- and Azoxy Groups (Herausg. S. Patai), S. 1017, Wiley, London (1975);
 b) M. Klessinger and P. Rademacher, Angely Chem.
 - b) M. Klessinger und P. Rademacher, Angew. Chem. **91**, 885 (1979); Angew. Chem., Int. Ed. Engl. **18**, 826 (1979).
- [21] a) A. Bax, R. H. Griffey und B. L. Hawkins, J. Magn. Reson. 55, 301 (1983);
 - b) R. Benn und A. Rufinska, Magn. Reson. Chem. **26**, 895 (1988);
 - c) B. Wrackmeyer, K. Schamel, K. Guldner und M. Herberhold, Z. Naturforsch. **42b**, 703 (1987).
- [22] B. Wrackmeyer, Annual Rep. NMR Spectrosc. (Herausg. G. A. Webb) **16**, 73 (1985).