Notizen 609

NOTIZEN

Kristallstruktur von [Et₄N][PBr₄]. Strukturkorrelation für Halogenophosphate(III)

Crystal Structure of [Et₄N][PBr₄]. Structural Correlation for Halogenophosphates(III)

W. S. Sheldrick* und J. Kiefer

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-6750 Kaiserslautern

Z. Naturforsch. **44b**, 609–611 (1989); eingegangen am 30. Januar 1989

Tetrabromophosphate(III), Crystal Structure, Structural Correlation

The tetrabromophosphate(III) anion in $[Et_4N][PBr_4]$ displays an extremely distorted ψ -trigonal bipyramidal structure with axial P-Br distances of 2.970(2) and 2.305(2) Å. A structural correlation of bond distances in characterized halogenophosphates(III) indicates that such an asymmetric three-centre $Br-P\cdots Br$ interaction represents an energy minimum for isolated anions.

Einleitung

Wir haben bisher über die Strukturen der folgenden Halogenophosphat(III)-Anionen, [PCl₄]⁻, [P(CN)₃Cl]⁻ [1], [PBr₄]⁻, [P(CN)₂Br₂]⁻ [2] sowie [P₂(CN)₆Br₂]²⁻ [2,3] und [P₂(CN)₆I₂]²⁻ [3] berichtet. Sowohl für [PCl₄]⁻ im Salz [Et₄N][PCl₄] wie auch für [PBr₄]⁻ im [(nPr)₄N][PBr₄] wurde eine verzerrte ψ -trigonal bipyramidale Geometrie gefunden. Im ersten Anion weisen die beiden axialen P–Cl-Bindungen deutlich unterschiedliche Abstände von 2,118(4) bzw. 2,850(4) Å auf. Für [PBr₄]⁻ dagegen beträgt der Unterschied zwischen den axialen P–Br-Bindungslängen nur 0,093 Å.

Für Halogenoarsenate(III) haben wir über den Einfluß des Kations auf die beobachteten Aniongeometrien mehrfach berichtet [4–8]. Es ist uns nun gelungen, auch [Et₄N][PBr₄] zu kristallisieren, so daß wir jetzt zum ersten Mal die Struktur eines Halogenophosphat(III)-Anions in verschiedenen Salzen vergleichen können. In Analogie zu den Halogenoarsenaten(III) [8] berichten wir auch über die Strukturkorrelation von *trans*-ständigen Abständen in linearen X–P··· Y-Dreizentren-Bindungen.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/89/0500-0609/\$ 01.00/0

Experimentelles

Darstellung von $[Et_4N][PBr_4]$ (1)

Eine gesättigte Lösung von [Et₄N]Br in Methylenchlorid wurde mit einer äquimolaren Menge von PBr₃ versetzt und auf –20 °C gekühlt. Nach einigen Tagen hatten sich prismatische blaßgelbe Kristalle abgeschieden, die unter Feuchtigkeitsausschluß abfiltriert wurden. Die Kristalle zersetzen sich sofort an der Luft.

Röntgenstrukturanalyse

1 kristallisiert tetragonal $I4_1/a$ mit a = b =12,985(2), c = 37,470(6) Å, Z = 16, $D_{\text{ber}} =$ 2.02 g·cm⁻³. Die Röntgenintensitäten wurden für einen Kristall der Dimensionen 0,50×0,41×0,32 mm auf einem Enraf-Nonius-CAD4-Diffraktometer mit ω -Scans vermessen (2695 Reflexe, $2\theta \le 130^{\circ}$, CuK_a-Strahlung). Eine empirische Absorptionskorrektur $(\mu = 133.6 \text{ cm}^{-1})$ sowie eine Zerfallskorrektur wurden angebracht. Die Struktur wurde durch direkte Methoden gelöst und zu R = 0.073, $R_w = 0.072$ für 2007 Reflexe mit $F_0^2 \ge 3\sigma(F_0^2)$ verfeinert. Die Gewichtung erfolgte durch die Gleichung w = $(\sigma^2(F_0) +$ $p^2F_0^2$)⁻¹, p = 0,005. Die Positionen der H-Atome wurden geometrisch berechnet; die Nichtwasserstoffatome erhielten anisotrope Temperaturfaktoren. Lageparameter der Atome werden in Tab. I aufgelistet. Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungs-

 $\begin{tabular}{ll} Tab. \ I. \ Lage parameter der Atome mit \"{a}quivalenten isotropen Temperaturfaktoren. \end{tabular}$

Atom	x/a	y/b	z/c	$U(\mathring{A}^2 \cdot 10^3)$
Br 1	0,7893(1)	-0.0030(1)	0,2322(1)	39(1)
Br2	0.7419(1)	-0.0046(1)	0.0933(1)	60(1)
Br3	0.9373(1)	0.0605(1)	0.1496(1)	61(1)
Br4	0,4293(1)	0.0763(1)	0.0963(1)	56(1)
P1	0.7835(3)	-0.0128(3)	0.1531(1)	39(1)
N 1	0,00	0,75	0,7290(4)	26(3)
N2	0,00	0,75	0,4761(3)	31(4)
C11	-0.0839(8)	0.7030(9)	0.7059(3)	33(3)
C12	-0.1340(9)	0.7762(11)	0.6791(4)	50(4)
C13	-0.0430(9)	0,8375(9)	0.7517(3)	36(3)
C14	-0.1191(10)	0.8052(9)	0,7795(4)	45(4)
C21	-0.0857(9)	0,7067(9)	0.4536(3)	35(3)
C22	-0.1354(10)	0.7833(10)	0.4279(4)	52(4)
C23	0.0376(9)	0.6599(9)	0.4993(3)	36(3)
C24	0,1193(10)	0,6892(10)	0,5260(4)	47(4)

^{*} Sonderdruckanforderungen an Prof. Dr. W. S. Sheldrick.

Notizen Notizen

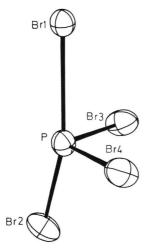


Abb. 1. ORTEP-Zeichnung von [PBr₄] in 1.

nummer CSD 53697, des Autors und des Zeitschriftenzitats angefordert werden.

Diskussion

Abb. 1 zeigt eine ORTEP-Zeichnung des [PBr₄]⁻-Anions in 1, das eine ähnlich verzerrte ψ -trigonal bipyramidale Geometrie aufweist wie [PCl₄] im analogen Tetraethylammoniumsalz. Die axiale Bindung P-Br1 ist um 0,665 Å länger als die trans-ständige Bindung P-Br2; der analoge Unterschied für $[PCl_4]^$ beträgt 0,732 Å. Im Gegensatz zu $[(nPr)_4N][PBr_4]$ 2 werden keine weiteren P...Br-Wechselwirkungen kleiner als die Summe der vander-Waals-Radien (3,85 Å) für das [PBr₄]⁻-Anion in 1 beobachtet. Das analoge Anion in 2 bildet schwachassoziierte, zentrosymmetrische über sekundäre P-Br2'-Bindungen [3,460(4) Å] aus, wobei die Koordination des P-Atoms als verzerrt ψ -oktaedrisch beschrieben werden kann. Betrachtet man diese Anionstrukturen als Momentaufnahmen [1] auf dem Reaktionsweg für die nucleophile Addition von Br an PBr3, dann ist die Bildung eines symmetrischen Addukts [PBr₄] in 2 fast erreicht. Dies hat zur Folge, daß die Winkel Br1-P-Br(äq) nur geringfügig (durchschnittlich 0,07°) kleiner als die Winkel Br2-P-Br(äq) sind; für 1 dagegen beträgt der Unterschied durchschnittlich 6,05°. In beiden Anionen ähneln die äquatorialen Abstände denen in PBr₃ (2,22 Å) [9].

Die Bildung von linearen, asymmetrischen Bindungen X-El···Y (Y=X oder Y+X) ist typisch für Halogenoanionen von dreiwertigen Elementen der Gruppe 15. In einer vorangegangenen Arbeit [8] haben wir erläutert, warum eine symmetrische

Tab. II. Bindungsabstände (Å) und -winkel (°) in Tetrabromophosphat(III)-Anionen.

	$[Et_4N][PBr_4]$	$[(nPr)_4N][PBr_4]$
P-Br1	2,970(2)	2,620(4)
P-Br2	2,305(2)	2,527(4)
P-Br3	2,217(2)	2,221(3)
P-Br4	2,233(2)	2,255(3)
P-Br2'		3,460(4)
Br1-P-Br2	166,86(8)	170,0(1)
Br1-P-Br3	90,95(6)	92,9(1)
Br1-P-Br4	91,42(6)	92,8(1)
Br2-P-Br3	97,76(7)	93,9(1)
Br2-P-Br4	96,51(7)	93,3(1)
Br3-P-Br4	101,06(7)	99,4(1)
Lit.	diese Arbeit	[2]

Br-As-Br-Dreizentrenbindung ein Energiemaximum darstellen muß. Bedingt durch die relativ ähnlichen Energien der As4s- und Br4p-Orbitalen ist das $1\,\sigma_{\rm g}^+$ -Orbital für eine solche Dreizentrenbindung durch die merkliche Beteiligung des ersten Atomorbitals deutlich antibindend. Trotz Destabilisierung des bindenden $1\,\sigma_{\rm u}^+$ -Orbitals kann durch eine Asymmetrisierung der Br-As-Br-Wechselwirkung die Energie des $1\,\sigma_{\rm g}^+$ -Orbitals so gesenkt werden, daß ein Energieminimum erreicht wird. Ähnliche Überlegungen sollten auch für Halogenophosphate(III) gelten. Abb. 2 zeigt die Strukturkorrelation von

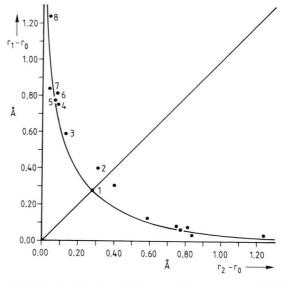


Abb. 2. Strukturkorrelation $r_1-(r_0)_1$ gegen $r_2-(r_0)_2$ für $X^1-P\cdots Y^2$ -Dreizentrenbindungen in Halogenophosphaten(III) ($r_0=$ Einfachbindungslänge für PX_3 bzw. PY_3): 1 $[P(CN)_2Br_2]^-$, 2 $[(nPr)_4N][PBr_4]$, 3 $[P(CN)_3Cl]^-$, 4 $[Et_4N][PBr_4]$, 5 $[PCl(CN)_2Ph]^-$ [10], 6 $[PCl_4]^-$, 7 $[P_2(CN)_6Br_2]^{2-}$, 8 $[(nPr)_4N][PBr_4]$.

Notizen 611

 $r_n-(r_0)_n$ (n=1,2) für lineare $X^1-P\cdots Y^2$ -Wechselwirkungen (r=Bindungsabstand, $r_0=A$ bstand in PX_3 bzw. PY_3). Die hyperbolische Kurve gibt die erwartete Korrelation nach der semiempirischen Beziehung $r_n=(r_0)_n-B\ln s_n$ (n=1,2; s=Bindungsordnung) unter den Annahmen wieder, daß die Gesamtbindungsordnung für P(III) gleich 3 bleibt (d. h. $s_1+s_2=1$ für eine Dreizentrenbindung), und daß der gleiche B-Wert für verschiedene X und Y benutzt werden kann. Y B wurde durch Extrapolation zu Y 0,399 für Y 1 (Y 2) berechnet; für Bromoarsenate(III) wurde ein ähnlicher Wert von Y 2,395 ermittelt [Y 3]. Für das fast symmetrische Anion [Y 3] in Y 2 sind die axialen Y 2. Y 3 sind die axialen Y 3 sind die axialen Y 3 sind die merklich länger als für y 4 zu 2000 sind die Axialen y 3 sind die axialen y 4 zu 3 sind die axialen y 5 sind die axialen y 6 sind die merklich länger als für y 5 sind die Axialen

erwarten wäre, was auf einen deutlichen antibindenden Charakter des $1\,\sigma_{\rm g}^+$ -Orbitals hinweist. Diese Tatsache läßt auf einen bedeutenden Beitrag des Phosphor-3s-Orbitals zu diesem MO schließen. Dagegen liegen die P-Br-Abstände in 1 in einem offensichtlich typischen Bereich für Halogenophosphate(III). Wie für Bromoarsenate(III) häufen sich Dreizentrenbindungen mit $r_2-(r_0)_2=r_1-(r_0)_1+[0.70\pm0.10~{\rm \AA}]$, was darauf hindeutet, daß das Energieminimum für isolierte Anionen in diesem Bereich liegen muß.

Wir danken dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

^[1] K. B. Dillon, A. W. G. Platt, A. Schmidpeter, F. Zwaschka und W. S. Sheldrick, Z. Anorg. Allg. Chem. 488, 7 (1982).

^[2] W. S. Sheldrick, A. Schmidpeter, F. Zwaschka, K. B. Dillon, A. W. G. Platt und T. C. Waddington, J. Chem. Soc. Dalton Trans. 1981, 413.

^[3] W. S. Sheldrick, F. Zwaschka und A. Schmidpeter, Angew. Chem. 91, 1000 (1979).

^[4] J. Kaub und W. S. Sheldrick, Z. Naturforsch. 39b, 1252 (1984).

^[5] J. Kaub und W. S. Sheldrick, Z. Naturforsch. 39b, 1257 (1984).

^[6] W. S. Sheldrick und H.-J. Häusler, Angew. Chem. 99, 1184 (1987).

^[7] W. S. Sheldrick, H.-J. Häusler und J. Kaub, Z. Naturforsch. 43b, 789 (1988).

^[8] W. S. Sheldrick und C. Horn, Z. Naturforsch. 44b, im Druck.

^[9] K. Emmerson und D. Britton, Acta Crystallogr. 17, 1134 (1964).

^[10] W. S. Sheldrick und K. B. Dillon, unveröffentlichte Ergebnisse.