Dynamisches Verhalten dimerer 1,3,2,4 λ^2 -Diazasilastannetidine und -plumbetidine in Lösung — eine Multikern-NMR-Studie

Dynamic Behaviour of Dimeric $1,2,3,4\lambda^2$ -Diazasilastannetidines and -plumbetidines in Solution – a Multinuclear NMR Study

Bernd Wrackmeyer*, Klaus Horchler und Hong Zhou

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 101251, D-8580 Bayreuth

Michael Veith

Institut für Anorganische Chemie der Universität des Saarlandes, Im Stadtwald, D-6600 Saarbrücken

Z. Naturforsch. 44b, 288-292 (1989); eingegangen am 9. November 1988

Diazastannylenes, Diazaplumbylenes, Dynamic Multinuclear NMR

1,3-Diisopropyl-2,2-dimethyl-1,3,2,4 λ^2 -diazasilastannetidine (**1b**) and -plumbetidine (**2b**) are dimeric [(**1b**)₂, (**2b**)₂] in solution. At room temperature the structure of (**1b**)₂ is fluxional. The dynamic behaviour is interpreted — on the basis of ${}^{1}H$, ${}^{13}C$, ${}^{29}Si$ and ${}^{119}Sn$ NMR data — as an intramolecular process in which the four-membered rings keep their identity. Such a process involves either concerted opening of the two coordinative Sn—N bonds and mutual slippage of the two rings, or consecutive cleavage of one of the coordinative Sn—N bonds and rotation about the other one. At room temperature the dimer (**2b**)₂ is in equilibrium with its monomer **2b**, whereas at low temperature the dynamic process corresponds to that established for (**1b**)₂. In solutions which contain a mixture of the dimers (**1b**)₂ and (**2b**)₂, the presence of the mixed dimer **1b/2b** can be proved unambiguously by consistent ${}^{29}Si$, ${}^{119}Sn$ and ${}^{207}Pb$ NMR data.

Bis(amino)stannylene oder -plumbylene werden je nach sterischem Anspruch der Aminogruppen als Monomere, Dimere oder Polymere erhalten [1]. Im Rahmen dieser Thematik haben neben den offenkettigen Verbindungen [2] besonders die Vierringe 1 [3] viel Beachtung gefunden. Im Fall von 1a, das in Lösung strikt monomer ist, wird je nach Vorbehandlung im kristallinen Zustand neben dem Monomeren auch die dimere Spezies gefunden [4]. Dagegen liegt 1b sowohl im festen Zustand als auch in Lösung als Dimeres (1b)₂ vor [5]. In dieser Arbeit berichten wir über das dynamische Verhalten von (1b)₂ in Lösung, sowie über das entsprechende Blei-Derivat (2b)₂, und über den Versuch, ein gemischtes Dimeres 1b/2b in Lösung zu erhalten.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/89/0300-0288/\$ 01.00/0

Ergebnisse und Diskussion

Die Verbindung $(2\mathbf{b})_2$ wurde entsprechend zur Synthese von $(1\mathbf{b})_2$ [5] in Form extrem luftempfindlicher, gelblicher Kristalle erhalten (Gl. (1)).

$$2 \operatorname{Me}_{2}\operatorname{Si}(\operatorname{N}_{i} \overset{\text{Li}}{\underset{|P_{\Gamma}}{\bigvee}})_{2} + 2 \operatorname{PbCl}_{2} \xrightarrow{\text{Ether} I} \overset{\text{i}_{P_{\Gamma}}}{\underset{|P_{\Gamma}}{\bigvee}} 4 \operatorname{LiCl} + (\operatorname{Me}_{2}\operatorname{Si} \overset{\text{i}_{P_{\Gamma}}}{\underset{|P_{\Gamma}}{\bigvee}} (1)$$

Zur Untersuchung des gemischten Dimeren **1b/2b** in Lösung wurde eine verdünnte Lösung von **2b** in Toluol im Unterschuß mit **1b** versetzt (Gl. (2)).

$$(1b)_{2} + (2b)_{2} \Longrightarrow 2 \xrightarrow{N} \underset{P_{r}}{N} \underset{P_{r}}{N} \underset{P_{r}}{N}$$

$$(1b)_{2} + (2b)_{2} \Longrightarrow 2 \xrightarrow{N} \underset{P_{r}}{N} \underset{P_{r}}{N} \underset{P_{r}}{N}$$

$$(2b)_{2} \Longrightarrow 1b/2b$$

Die 1 H-, 13 C-, 29 Si-, 119 Sn- bzw. 207 Pb-NMR-Daten für $(\mathbf{1b})_{2}$ und $(\mathbf{2b})_{2}$ finden sich in Tab. I, und für $\mathbf{1b}/\mathbf{2b}$ sind 29 Si-, 119 Sn- und 207 Pb-NMR-Parameter in Tab. II angegeben.

Sonderdruckanforderungen an Prof. Dr. Bernd Wrackmeyer.

Verbindung	$\delta(^{1}\mathrm{H})$	Gruppe	$\delta(^{13}\text{C})$	$\delta(^{29}\text{Si})$	$\delta(^{119}\mathrm{Sn})$
	(−50 °C) ^c		(−40 °C) ^d	(27 °C) ^e	(27 °C)
(1b) ₂	0,43 (s), 0,60 (s) [12,8]	SiMe ₂	7,4, 9,7 [4,5] [94,7, 16,3]	+6,7 [26,2, 16,7]	+202,3
	1,31 (d), 1,21 (d), 1,08 (d) 4,00 (sep), 3,79 (sep)	$NCH(CH_3)_2$ NCH	30,6, 26,3; 29,4, 24,2 46,6, 46,5 [12,0] [16,0]	(−60 °C) +7,1	(-60 °C) +200,0
			[12,0] [10,0]		$\delta(^{207}\text{Pb})$
	(−45 °C)		(−60 °C)	(25 °C)	(−10 °C)
$(2b)_2$	0,22(s), 0,35(s) [breit] [breit]	SiMe ₂	15,0, 7,2 [breit] [breit]	[-1,1]	$+2956,0^{g}$
	1,08 (breit) 4,50 (breit)	NCH(CH ₃) ₂ NCH	32,4, 28,4; 31,1, 26,9 45,5, 45,4 [breit] [breit]	$(-20 ^{\circ}\text{C})$ -1,1 [~50,~20]	(-30 °C) +2945,5 ^h

Tab. I. ${}^{1}\text{H-}$, ${}^{13}\text{C-}$, ${}^{29}\text{Si-}$, ${}^{119}\text{Sn-}$ und ${}^{207}\text{Pb-NMR-Daten}^{a,b}$ für dimeres 1,3,2,4 λ^2 -Diazasilastannetidin (**1b**)₂, und -plumbetidin (**2b**)₂.

Tab. II. ²⁹Si-, ¹¹⁹Sn- und ²⁰⁷Pb-NMR-Daten^{a,b} für das gemischte Dimere **1b/2b**.

Verbindung	$\delta(^{29}\mathrm{Si})$	$\delta(^{119}\mathrm{Sn})$	$\delta(^{207}\text{Pb})$
1b/2b	(-10 °C) +4,2 [36,8, 17,6] ^d +1,1 [57,0, 26,5] ^d	(-40 °C) ^c +235,0 [530,0]	(-10 °C) +2930,0

 $^{^{\}rm a}$ Vgl. Tab. I; $^{\rm b}$ vgl. Tab. I; $^{\rm c}$ vgl. Abb. 3; $^{\rm d}$ es wurde keine Zuordnung für $^{\rm 117/119}{\rm Sn}$ - und $^{\rm 207}{\rm Pb}\text{-Satelliten}$ getroffen.

Für (1b)₂ in Lösung wurde anhand der 60 MHz ¹H-NMR-Spektren bei Raumtemperatur geschlossen, daß ein Dimeres vorliegt, das ebenso wie (1a) [4] eine "Stufenstruktur" besitzen sollte [5], die entsprechend den Ergebnissen von Röntgenstrukturanalysen ganz allgemein in einer Reihe von 1.3.2.4-Diazasilametalletidinen auftritt [6]. Es fällt jedoch auf, daß nur eine ¹H-Resonanz für die NCH-Gruppierung auftritt, obwohl der Strukturvorschlag die unterschiedliche Koordination der Stickstoffatome fordert. Ferner sollten bei fixierter Struktur von (1b)₂ im ¹H-NMR-Spektrum insgesamt vier Dubletts anstelle der beobachteten zwei Dubletts für die Methylgruppen in den NiPr-Resten auftreten (als Folge der unterschiedlichen Umgebung der Stickstoffatome und der Diastereotopie [7] dieser Methylgruppen). Andererseits zeigt das ¹H-NMR-Spektrum von (1b)₂ zwei Umgebungen für die Si-Methylgruppen. Das ¹³C-NMR-Spektrum von (1b)₂ bestätigt die ¹H-NMR-Befunde, weist jedoch zwei merklich verbreiterte ¹³C-Resonanzen für die Methylgruppen der NⁱPr-Einheiten auf. Dies zeigt einen dynamischen Prozeß an, der innerhalb der NMR-Zeitskala zu erfassen ist, und somit muß (1b)₂ in Lösung eine fluktuierende Struktur besitzen. Sowohl im ¹³C- als auch im ²⁹Si-NMR-Spektrum (vgl. Abb. 1) von (1b)₂ tre-

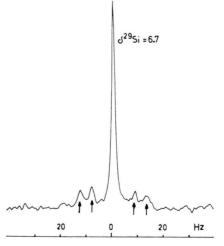


Abb. 1. 59,6 MHz ²⁹Si-NMR-Spektrum des Dimeren (**1b**)₂ in Toluol bei 27 °C, aufgenommen mit der refokussierten INEPT-Pulssequenz [11] und ¹H-Entkopplung. Die ^{117/119}Sn-Satelliten [$^2J(^{119}\text{Sn}^{29}\text{Si}) = 26,2 \text{ Hz}, 16,7 \text{ Hz}]$ sind mit Pfeilen gekennzeichnet.

 $[^]a$ In D_8 -Toluol (ca. 5%); chemische Verschiebungen δ relativ zu Me $_4$ Si ($^1H,\,^{13}C,\,^{29}Si),$ Me $_4$ Sn ($^{119}Sn),$ Me $_4$ Pb ($^{207}Pb);\,^b$ in [] sind Kopplungskonstanten $^nJ(^{119}SnX)$ bzw. $^nJ(^{207}PbX)$ angegeben; c vgl. Abb. 2a; d vgl. Abb. 2b; e vgl. Abb. 1; f breite ^{207}Pb -Satelliten; \pm 5 Hz; g Linienbreite $h_{1/2}=300$ Hz; h Linienbreite $h_{1/2}=175$ Hz.

ten doppelte Sätze von ^{117/119}Sn-Satelliten auf, die eindeutig belegen, daß ein Dimeres vorliegt und daß die Zinnatome bezüglich eines bestimmten ¹³C- oder ²⁹Si-Kerns unterschiedliche Positionen einnehmen. Somit handelt es sich um einen intramolekularen Prozeß.

Bei tiefer Temperatur wird in den ¹H- und ¹³C-NMR-Spektren eine weitere Aufspaltung der Resonanzen der NⁱPr-Gruppe gefunden (vgl. Abb. 2a, b). Bei –50 °C treten die erwarteten unterschiedlichen ¹H- und ¹³C-Resonanzen für die NCH-Einheiten auf; für die Methylgruppen des NⁱPr-Restes werden im ¹³C{¹H}-NMR-Spektrum vier Signale beobachtet

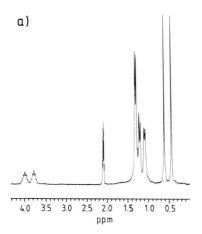
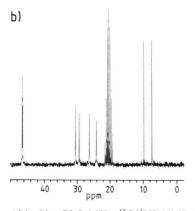
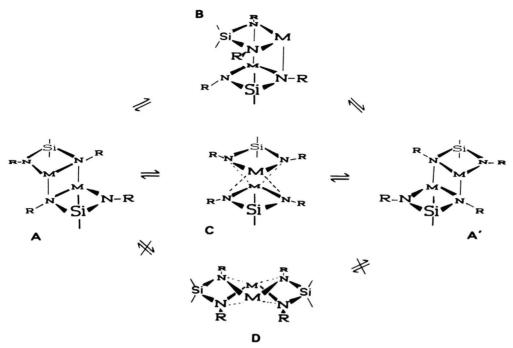


Abb. 2a. 300 MHz 1 H-NMR-Spektrum von $({\bf 1b})_2$ bei -50 $^{\circ}$ C in D₈-Toluol; für die Beschreibung der Signalaufspaltungen vgl. Text und Tab. I.




Abb. 2b. 75,5 MHz $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ -NMR-Spektrum von $(\mathbf{1b})_2$ bei -40 °C in D_8 -Toluol; für die Beschreibung der Signale vgl. Text und Tab. I.

und im 1 H-NMR-Spektrum (300 MHz) fallen zwei der vier Dubletts zusammen, so daß drei Dubletts im Verhältnis 2:1:1 resultieren. Aus den DNMR-Spektren läßt sich $\Delta G^{*}=49.1\pm2$ kJ/M abschätzen [8].

Da die Dissoziation des Dimeren (1b)₂ in Monomere 1b langsam bezüglich der NMR-Zeitskala ist, sind für das intramolekulare dynamische Verhalten drei Möglichkeiten zu diskutieren (vgl. Schema 1): (i) Die ursprünglichen Vierringe in A verlieren in dem Achtring D ihre Identität; (ii) die dimere Struktur A wird partiell aufgehoben: Spaltung einer koordinativen Sn-N-Bindung gefolgt von der Rotation der Vierringe um die verbliebene koordinative Sn-N-Bindung, wobei ein energiereicheres Isomer mit der Wannenform (B) [9] durchlaufen wird; (iii) die gleichzeitige Lösung beider koordinativer Sn-N-Bindungen und gegenseitige Verschiebung der beiden Vierringe, so daß die Zwischenstufe C entsteht.

Der Weg über D scheidet aus, da aufgrund der Symmetrie die ¹H- und ¹³C-Resonanzen der Si-Methylgruppen nicht unterschiedlich sein dürfen und zudem die beiden Sätze von Kopplungskonstanten $^{n}J(^{119}Sn^{13}C)$ sowie $^{n}J(^{119}Sn^{29}Si)$ nicht zu begründen wären. Die Form B hingegen beläßt die Si-Methylgruppen in ihrer Verschiedenheit, behält die unterschiedlichen Wege für die ¹¹⁹Sn-¹³C- und ¹¹⁹Sn-²⁹Si-Kopplungen bei und bedingt gleichzeitig, daß die NCH-Gruppen im zeitlichen Mittel identisch werden, ohne daß hierbei die Diastereotopie der Methylgruppen aufgehoben wird. Die gleichen NMRspektroskopischen Argumente lassen sich für den Weg über C vorbringen. Weiterhin fällt auf, daß man die beiden Vierringe in C als "trihapto-Liganden" betrachten kann, eine Eigenschaft, die für solche Stannylene bekannt ist [3a]. In C liegt C_{2h}-Symmetrie vor, so daß ein Symmetriegewinn gegenüber A (Punktsymmetrie C_i) besteht (dies ist nicht der Fall, wenn A in B (C₂) übergeht).

Das Blei-Derivat $(2b)_2$ zeigt ähnliches Verhalten wie $(1b)_2$. Bei Raumtemperatur ist jedoch auch das dissoziative Dimer-Monomer-Gleichgewicht $(\Delta G^* = 55, 2 \pm 2 \text{ kJ/M})$ beteiligt, wie die Koaleszenz der $^{13}\text{C}(\text{SiMe})$ -Resonanzen und die Äquivalenz der Methylgruppen der N'Pr-Reste anzeigt. Bei $-60\,^{\circ}\text{C}$ wird für $(2b)_2$ ein $^{13}\text{C-NMR-Spektrum}$ beobachtet, das völlig analog zu dem von $(1b)_2$ ist (vgl. Abb. 2b). Dagegen findet man im $^{1}\text{H-NMR-Spektrum}$ von $(2b)_2$ auch bei $-60\,^{\circ}\text{C}$ zwar zwei $^{1}\text{H}(\text{SiMe})$ -Resonanzen, aber alle übrigen $^{1}\text{H-Resonanzen}$ sind lediglich stark verbreitert. Aufgrund des Monomer-

Schema 1. Vorschläge zum Mechanismus der intramolekularen Umlagerung von (1b)₂ und (2b)₂; M = Sn, Pb; R = Pr.

Dimer-Gleichgewichts bei Raumtemperatur sind die 207 Pb-Satelliten in den 1 H- 13 C- und 29 Si-NMR-Spektren extrem breit und nicht genau auswertbar. Bei tiefer Temperatur verhindert die zunehmend rasche Relaxation der 207 Pb-Kerne über den Mechanismus der Anisotropie der chemischen Verschiebung (T_{1}^{CSA} , T_{2}^{CSA}) [10] die exakte Beobachtung der 207 Pb-Satelliten.

Da (1b), und (2b), mit den jeweiligen Monomeren im Gleichgewicht stehen, sollte sich ein gemischtes Dimeres 1b/2b bilden (Gl. (2)), auch wenn die Tendenz zur Bildung von 1b viel geringer ist als für 2b. Die ¹H- und ¹³C-NMR-Spektren der Mischung von überschüssigem (2b)2 und (1b)2 weisen zusätzliche Signale auf, sind jedoch unübersichtlich, und die Zuordnung erfordert großen Aufwand. Im Gegensatz dazu liefern 29Si-, 119Sn- und 207Pb-NMR-Messungen klare Information über die Existenz des Dimeren 1b/2b. Im ²⁹Si-NMR-Spektrum treten bereits bei Raumtemperatur zwei neue Signale auf, begleitet von 117/119Sn- und 207Pb-Satelliten. Im 119Sn-NMR-Spektrum (vgl. Abb. 3) findet sich ein neues Signal, welches bei -40 °C hinreichend scharf ist, um ²⁰⁷Pb-Satelliten erkennen zu lassen, entsprechend $^{2}J(^{207}Pb^{119}Sn) = 530 \text{ Hz.}$ Folglich wird auch im $^{207}Pb^{-1}$

NMR-Spektrum neben dem Signal für $(2b)_2$ bei -10 °C ein weiteres ²⁰⁷Pb-Resonanzsignal sichtbar, das dem Dimeren 1b/2b zugeordnet werden muß.

Die Ergebnisse belegen den Nutzen der Multikern-NMR-Messungen für die Beurteilung dynamischer Vorgänge $[(\mathbf{1b})_2, (\mathbf{2b})_2]$ und für die Analyse komplexer Mischungen $(\mathbf{1b}/\mathbf{2b})$. Die hier beobachte-

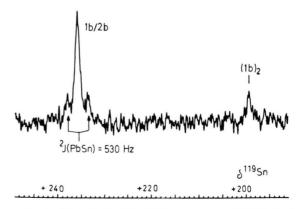


Abb. 3. 111,9 MHz 119 Sn $\{^{1}$ H-inverse gated $\}$ -NMR-Spektrum der Mischung von $(\mathbf{1b})_2$ und überschüssigem $(\mathbf{2b})_2$ in Toluol bei -40 °C. Die 207 Pb-Satelliten $[^{2}J(^{207}$ Pb 119 Sn)] sind mit Pfeilen gekennzeichnet.

ten ²⁹Si-, ¹¹⁹Sn- und ²⁰⁷Pb-NMR-Parameter (δ-Werte, Kopplungskonstanten und qualitative Information über Relaxationsprozesse) sind zum großen Teil neu. Ein größerer Datensatz, an dessen Erstellung wir derzeit arbeiten, wird die Einordnung der Daten ermöglichen und ihren analytischen Wert aufzeigen.

Experimentelles

Alle Arbeiten wurden unter sorgfältigem Ausschluß von Luft und Feuchtigkeit unter N₂-Schutzgas vorgenommen. Die Verbindungen (**1b**)₂ und (**2b**)₂ [schwach gelbliche Kristalle, Schmp. 110 °C (Zersetzung)] wurden in Anlehnung an Lit. [5] erhalten.

Die NMR-Messungen wurden an entsprechend ausgerüsteten Bruker-AC 300- und Bruker-MSL 300-Spektrometern durchgeführt (vgl. Tab. I, II). Für

die 59,6 MHz ²⁹Si-NMR-Spektren wurde die refokussierte INEPT-Pulssequenz [11] mit ¹H-Entkopplung verwendet. Hierbei muß beachtet werden, daß Austauschprozesse die transversale Relaxation $T_2(^{29}Si)$ beeinflussen, so daß eine quantitative Auswertung, z.B. hinsichtlich der Zusammensetzung von Gemischen erschwert ist. Die 111,9 MHz ¹¹⁹Sn-NMR-Spektren wurden mittels "inverse gated" ¹H-Entkopplung registriert, um den negativen NOE zu unterdrücken [12]. ²⁰⁷Pb{¹H}-NMR-Spektren konnten mit rascher Pulswiederholungsrate aufgenommen werden (Acquisitionszeit 0,05 s, Pulswinkel $\sim 60^{\circ}$), da $T_1(^{207}Pb)$ sehr kurz ist (z.B. für (2b)₂ bei $-30~^{\circ}C < 0,01~s)$.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

- [1] a) P. Foley und M. Zeldin, Inorg. Chem. **14**, 2264 (1975);
 - b) P. J. Corvan und J. J. Zuckerman, Inorg. Chim. Acta **34**, L 255 (1979).
- [2] a) M. F. Lappert und P. P. Power, J. Chem. Soc. Dalton Trans. 1985, 51;
 - b) H. Meyer, G. Baum, W. Massa, S. Berger und A. Berndt, Angew. Chem. **99**, 559 (1987); Angew. Chem., Int. Ed. Engl. **26**, 546 (1987);
 - c) C. Glidewell, D. Lloyd und K. W. Lumbard, J. Chem. Soc. Dalton Trans. **1987**, 509;
 - d) C. Stader und B. Wrackmeyer, J. Organomet. Chem. **321**, C1 (1987).
- [3] a) M. Veith, Angew. Chem. 99, 1 (1987); Angew. Chem., Int. Ed. Engl. 26, 1 (1987);
 b) M. Veith, Comments Inorg. Chem. 4, 179 (1985);
 c) C. Stader, B. Wrackmeyer, D. Schlosser, Z. Natur-
- forsch. **43b**, 707 (1988). [4] M. Veith, Z. Naturforsch. **33b**, 7 (1978).
- [5] M. Veith, Z. Naturforsch. 33b, 1 (1978).

- [6] M. Veith, W. Frank, F. Töllner und H. Lange, J. Organomet. Chem. 326, 315 (1987).
- [7] W. B. Jennings, Chem. Rev. 75, 307 (1975).
- [8] J. Sandström, Dynamic NMR Spectroscopy, S. 93-123, Academic Press, London (1982).
- [9] Ein Dimeres mit Wannenstruktur ist bekannt, [MeB(NSiMe₃)₂Sn]₂, in dem diese Konformation infolge intramolekularer N-B-Wechselwirkungen begünstigt ist; H. Fußstetter und H. Nöth, Chem. Ber. 112, 3672 (1979).
- [10] a) G. R. Hays, D. G. Gillies, L. P. Blaauw und A. D. H. Claque, J. Magn. Reson. 45, 102 (1981);
 b) B. Wrackmeyer und K. Horchler in G. A. Webb (Herausg.), Annual Rep. NMR Spectrosc., im Druck.
- [11] a) G. A. Morris, J. Magn. Reson. 41, 185 (1980);
 b) D. P. Burum und R. R. Ernst, J. Magn. Reson. 39, 163 (1980).
- [12] B. Wrackmeyer in G. A. Webb (Herausg.), Annual Rep. NMR Spectrosc. 16, 73 (1985).