Lithio-di-*tert*-butylfluorsilyl-*tert*-butylphosphan — Kristallstruktur und Reaktionen

Lithio-di-tert-butylfluorosilyl-tert-butylphosphane - Crystal Structure and Reactions

Roland Boese* und Dieter Bläser

Institut für Anorganische Chemie der Universität Essen, Universitätsstraße 5-7, D-4300 Essen Mbolatiana Andrianarison und Uwe Klingebiel*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Z. Naturforsch. 44b, 265-270 (1989); eingegangen am 7. November 1988

Fluorosilvlphosphanes, Lithium Salt, Crystal Structure, Phosphasilene, Fluoro-Chloro Exchange

Di-*tert*-butylfluorosilyl-*tert*-butylphosphane (1) reacts with n- C_4 H₉Li to give the lithium salt $(CMe_3)_2SiF$ - $PLi(THF)_3CMe_3$ (2) and butane. The crystal structure of 2 has been determined. Fluorosilylphosphanes of the type $(CMe_3)_2SiFP(R)CMe_3$ [$R = SiMe_3$ (5), $SiCl_2Me$ (6), $SiCl_3$ (7), $SiF_2C_6H_5$ (8), $BFN(SiMe_3)_2$ (9), $SiClMeP(CMe_3)SiF(CMe_3)_2$ (10)] are obtained in the reaction of 2 with halogenosilanes and -borane. 6 and 7 undergo rearrangement *via* chloro-fluoro exchange reaction to give $(CMe_3)_2SiCl$ - $P(SiClRF)CMe_3$ [R = Cl (11), Me (12)].

Einleitung

Seit der Synthese der ersten Silylphosphane vor 35 Jahren wurden zahlreiche cyclische und acyclische Vertreter dieser Verbindungsklasse bekannt [1]. Aufgrund der leichten Spaltung der Si-P-Bindung fanden sie in intermolekularen Halogensilan-Abspaltungen Verwendung als Posphorylierungs-Reagenzien. Intramolekulare Halogensilan-Eliminierungen verhinderten bis 1986 die Isolierung stabiler P-Halogen-P-silvlphosphane [2,3]. Auch halogenfunktionelle Silylphosphane des Typs R₂SiHal-PHR (R = Alkyl, Aryl, Silyl) wurden erst in jüngster Zeit dargestellt [4-6]. Im Gegensatz zu Chlorsilylphosphanen konnten Fluorsilylphosphane ohne Zersetzung destillativ gereinigt werden. P-Lithio-P-halogensilylphosphane [R₂Si(Hal)-P(Li)R] wurden bisher nur als Reaktionsintermediate bei der Darstellung von 1,3-Diphospha-2,4-disilacyclobutanen [1,4,6] und von Phosphasilenen [7] formuliert.

Wir stellen hier die Synthese, Kristallstrukturanalyse und einige Reaktionen des Lithio-di-*tert*-butylfluorsilyl-*tert*-butylphosphans zu bisher unbekannten, halogenfunktionellen Silylphospanen vor.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/89/0300–0265/\$ 01.00/0

Ergebnisse und Diskussion

Wie die homologe Stickstoffverbindung [8,9] reagiert Di-*tert*-butylfluorsilyl-*tert*-butylphosphan (1) [3] mit *n*-Butyllithium unter Butanabspaltung zum Lithiumsalz (2).

2 wird durch Kristallisation aus einem *n*-Hexan/ THF-Gemisch gereinigt. Im Gegensatz zur homologen N-Verbindung, die als Dimer mit einem THF-

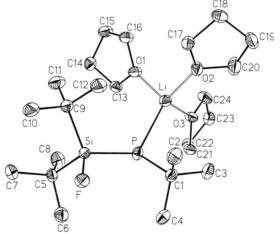


Abb. 1. Kristallstruktur von 2.

^{*} Sonderdruckanforderung an Dr. R. Boese oder Prof. Dr. U. Klingebiel.

	Me ₃ C – Si – P (^{Me} 3 (1)	CMe ₃ Me ₃ C – Si – P	CMe ₃ (2)
¹H-NMR	1,07 SiCCH ₃	${}^{4}J_{HF} = 1.0$ ${}^{4}J_{HP} = 0.5$	1,16 SiCCH ₃	$^{4}J_{HF} = 0.86$
	1,12 SiCCH ₃	${}^{4}J_{HF} = 1.0$ ${}^{4}J_{HP} = 0.4$		
	1,33 PCCH ₃ 2,55 PH		1,42 PCCH ₃	$^{3}J_{HP} = 10,75$
⁷ Li-NMR			0,25	
¹³ C-NMR	21,78 SiC	${}^{2}J_{\text{CP}} = 19,35$ ${}^{2}J_{\text{CF}} = 12,16$	23,35 SiC	$^{2}J_{CP} = 13,80$
	22,41 SiC	${}^{2}J_{\text{CP}} = 1,19$ ${}^{2}J_{\text{CF}} = 9,11$		$^{2}J_{CF} = 9,30$
	27,18 SiC \underline{C}_3	${}^{3}J_{\text{CP}} = 4,43$ ${}^{3}J_{\text{CF}} = 0,95$	29,45 SiCC ₃	$^{3}J_{CP} = 3,10$
	27,27 SiC <u>C</u> ₃ 29,41 PC	$^{3}J_{\rm CF} = 0.75$ $J_{\rm CP} = 10.75$	34,35 PC	${}^{3}J_{\text{CF}} = 0.70$ $J_{\text{CP}} = 13.90$
	34,24 PC <u>C</u> ₃	${}^{3}J_{CF} = 0,90$ ${}^{2}J_{CP} = 11,68$ ${}^{4}J_{CF} = 2,2$	39,7 PC <u>C</u> ₃	${}^{3}J_{CF} = 4.2$ ${}^{2}J_{CP} = 12.50$ ${}^{4}J_{CF} = 1.90$
¹⁹ F-NMR	- 16,48	$^{2}J_{PF} = 4.6$	- 10,9	$^{2}J_{PF} = 16,3$
²⁹ Si-NMR	34,95	$J_{\text{SiF}} = 350,0$ $J_{\text{SiP}} = 56,8$	45,40	$J_{\text{SiF}} = 341,94$ $J_{\text{SiP}} = 90,69$
³¹ P-NMR	-110,72	$^{2}J_{PF} = 4,6$	-142,5	$^{2}J_{PF} = 16,3$

Tab. I. Chemische Verschiebungen [ppm] und Kopplungskonstanten [Hz] von 1 [3] und 2 in C₆D₆/THF.

Molekül kristallisiert, ist **2** im festen Zustand ein Monomer. Lithium ist mit drei THF-Molekülen koordiniert.

Die Lithiierung von 1 zu 2 hat einen drastischen Einfluß auf die NMR-Spektren, die in Tab. I gegenübergestellt sind.

Verursacht durch die Chiralität des Phosphors in **1**, zeigen die diastereotopen *tert*-Butylgruppen im ¹H- und ¹³C-NMR-Experiment unterschiedliche Verschiebungen und Kopplungskonstanten.

In **2** sind die CMe₃Si-Gruppen äquivalent. Von **1** nach **2** erfährt der 31 P-Kern eine extreme Hochfeldund der 29 Si-Kern eine beachtliche Tieffeldverschiebung. Einher geht von **1** nach **2** eine Zunahme der Kopplungskonstanten J_{SiP} und J_{PF} . Alle diese Befunde sprechen gegen eine kovalente Bindung des Lithium- an das Phosphoratom und für einen ionischen Charakter von **2** in Lösung mit einer möglichen Orientierung des Lithiums zum Fluor, wie sie bei der homologen Stickstoffverbindung gefunden wird.

$$\begin{array}{c} \text{CMe}_3 \\ \text{Me}_3 \text{C} - \text{Si} - \text{P} \\ \text{I} \\ \text{F} \end{array} \begin{array}{c} \text{CMe}_3 \\ \text{Li}(\text{THF})_3 \end{array} \qquad \underbrace{\begin{array}{c} \text{THF} \\ \text{THF} \\ \text{Me}_3 \text{C} - \begin{array}{c} \text{Si} - \overline{\text{P}} - \text{CMe}_3 \\ \text{I} \\ \text{\Theta}_{\Theta} \\ \text{Li} \end{array} (\text{THF})_4 \end{array}$$

Thermisch verliert **2** LiF unter Bildung des dimeren Phosphasilens **4** [3]. Beim kurzzeitigen Erwärmen, z. B. der Umkristallisation aus einem *n*-Hexan/THF-Gemisch, tritt im ³¹P-NMR-Spektrum außer den Signalen für **2** und **4** ein weiteres bei einer Verschiebung von 129,8 ppm auf, das zu jenem von **4** in seiner Intensität zu der von **4** im Verhältnis von *ca.* 1:3 steht. Da nach 1–2 h im Spektrum der Lösung nur noch das Signal von **4** vorhanden ist, muß die Tieffeldverschiebung von 129,8 ppm dem monomeren Phosphasilen **3** zugeordnet werden. **3** konnte nicht isoliert werden.

$$\begin{array}{c}
\mathbf{2} \xrightarrow{\Delta} \xrightarrow{\mathsf{Me}_3\mathsf{C}} \mathsf{Si} = \mathsf{P}^{\mathsf{CMe}_3} & \longrightarrow \frac{1}{2} \xrightarrow{\mathsf{Me}_3\mathsf{C}} \mathsf{Si} \xrightarrow{\mathsf{P}} \mathsf{Si} \xrightarrow{\mathsf{CMe}_3} \\
& & \mathsf{Me}_3\mathsf{C} & \mathsf{P} & \mathsf{CMe}_3 \\
& & \mathsf{CMe}_3 & \mathsf{CMe}_3 \\
& & \mathsf{CMe}_3 & \mathsf{CMe}_3 \\
& & \mathsf{CMe}_3 & \mathsf{CMe}_3 & \mathsf{CMe}_3 \\
& & \mathsf{CMe}_3 & \mathsf{CMe}$$

Lithiierte Fluorsilylphosphane sind somit mögliche Vorstufen zu Phosphasilenen. Mit Halogensilanen und Bis(trimethylsilyl)amino-difluorboran reagiert 2 zu LiHal und den Substitutionsverbindungen 5–9.

$$2 \xrightarrow{\begin{array}{c} + \text{HalSi} \stackrel{<}{\sim} \\ - \text{LiHal} \end{array}} \xrightarrow{\text{Me}_3 \text{C} - \text{Si}} \xrightarrow{\begin{array}{c} \text{CMe}_3 \\ \text{P} \\ \text{Si} - \text{R'} \\ \text{F} & \textbf{5} - \textbf{8} \\ \text{F} & \textbf{5} - \textbf{8} \\ \text{CMe}_3 \\ \text{P} \\ \text{CMe}_3 \\ \text{P} \\ \text{F} & \textbf{N}(\text{SiMe}_3)_2 \\ \text{-LiF} & \text{F} & \textbf{9} \end{array}$$

	5	6	7	8
R	Me	Me	Cl	C_6H_5
R'	Me	Cl	Cl	F
R"	Me	Cl	Cl	F

Reaktionen von 2 mit Polyhalogeniden im Verhältnis 2:1 oder die erneute Umsetzung eines halogenfunktionellen Produktes mit 2 führt, wie am Beispiel der Synthese von 10 gezeigt wird, zur Si-P-Kettenverlängerung.

Ungewöhnlich sind die starken Tieffeldverschiebungen der SiF-Signale (35–40 ppm) in den ²⁹Si-NMR-Spektren von **5–9** sowie die der SiCH₃-Gruppe in den ¹H-NMR-Spektren von **6** und **10**.

Fluor-Chlor-Austauschreaktionen wurden kürzlich bei N-Halogensilvlphosphiniminen [10]

und halogenierten 1,3-Disilazanen [11]

$$-Si \atop F$$

$$SiCl_3 \xrightarrow{\sim Cl/F} -Si \atop Cl$$

$$SiCl_2F$$

festgestellt.

Auch 6 und 7 neigen zu derartigen Isomerisierungen. Eine destillative Reinigung von 7 gelang nicht. Während der Destillation wurde das zu 7 strukturisomere 11 zu ca. 30% gebildet. Die F/Cl-Austauschgeschwindigkeit ist bei Raumtemperatur sehr gering.

Ein Austausch konnte nach einem Monat NMR-spektroskopisch noch nicht beobachtet werden. Beim Erwärmen von 7 auf 90–100 °C entsteht 11 nach 24 Stunden quantitativ. Unter gleichen Bedingungen bildet sich 12 aus 6 mit 10% Ausbeute, konnte jedoch nicht rein isoliert werden.

6, 7
$$\stackrel{\text{CMe}_3}{\sim}$$
 Me₃C $\stackrel{\text{CMe}_3}{\sim}$ P $\stackrel{\text{R}}{\mid}$ Si - Cl Cl F

Die NMR-Experimente mit **5–9, 11** und **12** zeigen bei R.T. äquivalente Si(CMe₃)₂-Gruppen, das ¹⁹F-NMR-Spektrum von **8** äquivalente Fluorkerne und die ¹H-, ¹³C- sowie ²⁹Si-NMR-Spektren von **9** äquivalente N(SiMe₃)₂-Gruppen.

Experimenteller Teil

Zur Strukturaufklärung der dargestellten Verbindungen wurden NMR- und Massenspektren herangezogen. Die Molekulargewichte wurden massenspektroskopisch bestimmt. Von 2 wurde eine Einkristallstrukturanalyse durchgeführt, von 5 und 9 CH-Elementaranalysen. Die Reinheit der Verbindungen wurde NMR-spektroskopisch überprüft.

Massenspektren: CH-5-Spektrometer, Varian. – NMR-Spektren: 30-proz. Lösungen in C₆H₆/C₆D₆, TMS, C₆F₆ int., Bruker-WP80- oder -AM250-Kernresonanzgerät.

Lithio-di-tert-butylfluorsilyl-tert-butylphosphan (2)

 $0,01 \text{ mol } 1 \text{ [3] in } 30 \text{ ml } n\text{-Hexan werden bei } 0 ^{\circ}\text{C}$ mit $0,01 \text{ mol } n\text{-C}_4\text{H}_9\text{Li}$ (15-proz. in n-Hexan) versetzt. Anschließend wird auf R.T. erwärmt. Der Reaktionsfortschritt wird $^{19}\text{F-NMR-spektroskopisch}$ verfolgt. Die Lithiierung ist nach ca. 1 h quantitativ. 2 wird durch Umkristallisieren aus einem n-Hexan/THF-Gemisch einkristallin erhalten.

Ausbeute 2,3 g (90%); Spektren: siehe Tab. I.

Silylphosphane 5-10

0,01 mol **2** in 100 ml *n*-Hexan/THF wird unter Eiskühlung zur äquimolaren (**5–9**) bzw. halbmolaren Menge (**10**) des Halogensilans (**5–8, 10**) oder des Aminofluorborans (**9**) getropft. Anschließend wird langsam auf R.T. erwärmt und das Reaktionsgemisch ¹⁹F-NMR-spektroskopisch vermessen. Die Reaktion von **5–9** erfolgt destillativ (**7** kann nach der

Destillation nur in einem Gemisch mit 1 im Verhältnis 3:1 charakterisiert werden). 10 wird durch Kristallisieren aus *n*-Hexan gereinigt.

tert-Butyl-(fluordi-tert-butylsilyl)-(trimethylsilyl)-phosphan (5)

Ausbeute 2,5 g (78%); Sdp. 76 °C/0,01 mbar; MS: m/e = 322 (100) M⁺; ¹H-NMR: 0,36 SiCH₃ ($^3J_{\rm HP} = 4,8$ Hz, $^5J_{\rm HF} = 0,5$ Hz), 1,14 SiCCH₃ ($^4J_{\rm HP} = 1,3$ Hz, $^4J_{\rm HF} = 0,3$ Hz), 1,36 PCCH₃ ($^3J_{\rm HP} = 13,4$ Hz, $^5J_{\rm HF} = 0,4$ Hz); ¹³C-NMR: 4,1 SiC₃ ($^2J_{\rm CP} = 13,5$ Hz, $^4J_{\rm CF} = 1,5$ Hz), 23,65 SiC ($^2J_{\rm CP} = 11,8$ Hz, $^2J_{\rm CF} = 10,9$ Hz), 28,3 SiCC₃ ($^3J_{\rm CP} = 2,7$ Hz, $^3J_{\rm CF} = 1,6$ Hz), 31,7 PC ($J_{\rm PC} = 12,5$ Hz), 35,6 PCC₃ ($^2J_{\rm CP} = 11,2$ Hz, $^4J_{\rm CF} = 2,7$ Hz); ¹⁹F-NMR: -8,01 ($^2J_{\rm PF} = 5,8$ Hz); ²⁹Si-NMR: 0,2 Si(CH₃)₃ ($J_{\rm SiP} = 30,0$ Hz, $^3J_{\rm SiF} = 2,9$ Hz), 39,7 SiF ($J_{\rm SiP} = 55,8$ Hz, $J_{\rm SiF} = 333,2$ Hz); ³¹P-NMR: -113,9.

C₁₅H₃₆FPSi₂ (322,6) Ber. C 55,85 H 11,25, Gef. C 55,67 H 11,08.

tert-Butyl-(fluordi-tert-butylsilyl)-(dichlormethylsilyl)phosphan (6)

Ausbeute 2,3 g (63%); Sdp. 87 °C/0,01 mbar; MS (FI-Messung): 362 M⁺; ¹H-NMR: 0,95 SiCH₃ (${}^{3}J_{HP} = 4,2$ Hz, ${}^{5}J_{HF} = 0,8$ Hz), 1,18 SiCCH₃ (${}^{4}J_{HP} = 1,4$ Hz, ${}^{4}J_{HF} = 0,5$ Hz), 1,41 PCCH₃ (${}^{3}J_{HP} = 14,9$ Hz, ${}^{5}J_{HF} = 0,4$ Hz); ¹³C-NMR: 13,2 SiCH₃ (${}^{2}J_{CP} = 18,8$ Hz), 24,0 FSiC (${}^{2}J_{CP} = 12,5$ Hz, ${}^{2}J_{CF} = 10,1$ Hz), 28,0 SiCC₃ (${}^{3}J_{CP} = 2,6$ Hz, ${}^{3}J_{CF} = 1,6$ Hz), 33,7 PC (${}^{2}J_{CP} = 12,9$ Hz), 34,4 PCC₃ (${}^{2}J_{CP} = 11,1$ Hz, ${}^{4}J_{CF} = 3,14$ Hz); ¹⁹F-NMR: ${}^{2}J_{CP} = 11,1$ Hz, ${}^{4}J_{CF} = 3,14$ Hz); ¹⁹F-NMR: ${}^{2}J_{CP} = 1,12$ Hz, 38,1 SiF (${}^{2}J_{CF} = 1,12$ Hz, 31,2 SiP = 52,4 Hz); ³¹P-NMR: ${}^{2}J_{CP} = 1,12$ Hz, ${}^{2}J_{CF} = 1$

C₁₃H₃₀Cl₂FPSi₂ (363,4)

tert-Butyl-(fluordi-tert-butylsilyl)-(trichlorsilyl)-phosphan (7)

Ausbeute (NMR-Integration nach Destillation **7: 11** = 3:1) 2,1 g (56%); Sdp. 87 °C/0,01 mbar; MS (FI-Messung): 382 M⁺; ¹H-NMR: 1,25 SiCCH₃ (${}^{4}J_{HF} = {}^{4}J_{HP} = 0,46$ Hz), 1,53 PCCH₃ (${}^{3}J_{HP} = 15,4$ Hz, ${}^{5}J_{HF} = 0,8$ Hz); ${}^{13}C$ -NMR: 24,4 SiC (${}^{2}J_{CP} = 12,6$ Hz, ${}^{2}J_{CF} = 9,9$ Hz), 28,2 SiCC₃ (${}^{3}J_{CP} = 2,6$ Hz, ${}^{3}J_{CF} = 1,4$ Hz); ${}^{19}F$ -NMR: 70,3 (${}^{2}J_{PF} = 5,6$ Hz); ${}^{29}Si$ -NMR: 9,2 SiCl₃ (${}^{3}J_{SiP} = 83,8$ Hz, ${}^{3}J_{SiF} = 7,1$ Hz), 37,6 SiF (${}^{3}J_{SiF} = 338,1$ Hz, ${}^{3}J_{SiP} = 55,0$ Hz); ${}^{31}P$ -NMR: -79,1.

C₁₂H₂₇Cl₃FPSi₂ (383,9)

tert-Butyl-(fluordi-tert-butylsilyl)-(difluorphenylsilyl)phosphan (8)

Ausbeute 2,8 g (72%); Sdp. 130 °C/0,01 mbar; MS (FI-Messung): $392\,\mathrm{M}^+$; $^1\mathrm{H}\text{-NMR}$: 1,20 SiCCH₃ ($^4J_{\mathrm{HF}}$ = 1,3 Hz), 1,36 PCCH₃ ($^3J_{\mathrm{HP}}$ = 14,4 Hz, $^5J_{\mathrm{HF}}$ = 0,4 Hz), 7,2,7,8 C₆H₅; $^{13}\mathrm{C}\text{-NMR}$: 23,8 FSiCC₃ ($^2J_{\mathrm{CP}}$ = 12,2 Hz, $^2J_{\mathrm{CF}}$ = 10,2 Hz), 27,6 SiCC₃, 32,4 PC (J_{CP} = 10,6 Hz), 35,4 PCC₃ ($^2J_{\mathrm{CP}}$ = 10,8), 128,4, 132,0, 134,5 C₆; $^{19}\mathrm{FNMR}$: -8,0 SiF ($^2J_{\mathrm{PF}}$ = 7,6 Hz), 41,7 SiF₂ ($^2J_{\mathrm{PF}}$ = 2,4 Hz); $^{29}\mathrm{Si}\text{-NMR}$: -7,0 SiF₂ (J_{SiF} = 340,1 Hz, J_{SiP} = 25,7 Hz, $^3J_{\mathrm{SiF}}$ = 4,8 Hz), 38,1 SiF (J_{SiF} = 336,6 Hz, J_{SiP} = 47,0 Hz); $^{31}\mathrm{P}\text{-NMR}$: -135,6 ($^2J_{\mathrm{FSiP}}$ = 7,5 Hz, $^2J_{\mathrm{FSiP}}$ = 3,1 Hz).

 $C_{18}H_{32}F_3PSi_2$ (392,6)

tert-Butyl-fluor[bis(trimethylsilyl)amino]boryl-(fluordi-tert-butylsilyl)phosphan (9)

Ausbeute 3,5 g (80%); Sdp. 110 °C/0,01 mbar; MS (FI-Messung): 439 M⁺; 1 H-NMR: 0,17 SiCH₃, 1,00 SiCCH₃ ($^{4}J_{SiP} = 1,2$ Hz, $^{4}J_{SiF} = 0,4$ Hz), 1,21 PCCH₃ ($^{3}J_{HP} = 13,4$ Hz); 13 C-NMR: 4,58 SiC₃ ($^{4}J_{CP} = 5,1$ Hz, $^{4}J_{CF} = 2,4$ Hz), 23,8 FSiC₂ ($^{2}J_{CP} = 12,2$ Hz, $^{2}J_{CF} = 10,9$ Hz, $^{4}J_{CF} = 0,7$ Hz), 28,1 SiCC₃, 30,6 PC ($J_{CP} = 3,5$ Hz), 34,1 PCC₃ ($^{2}J_{CP} = 12,1$ Hz, $^{4}J_{CF} = 2,9$ Hz); 19 F-NMR: -9,7 SiF ($^{2}J_{PF} = 4,9$ Hz), 133,0 BF; 29 Si-NMR: 6,2 NSi₂ ($^{3}J_{SiP} = 11,0$ Hz, $^{3}J_{SiF} = 6,8$ Hz), 37,2 SiF ($J_{SiF} = 340,8$ Hz, $J_{SiP} = 57,5$ Hz); 31 P-NMR: -115,2.

C₁₈H₄₅BF₂PNSi₃ (439,6) Ber. C 49,18 H 10,32, Gef. C 49,02 H 10,17.

Bis[tert-butyl-(fluordi-tert-butylsilyl)phosphoryl]-chlormethylsilan (10)

Ausbeute 2,0 g (70%); Schmp. 95 °C; MS (FI-Messung): 576 M⁺; ¹H-NMR: 1,14, 1,17 SiCCH₃, 1,18 ClSiCH₃ ($^{3}J_{HP} = 12,0$ Hz), 1,4–1,5 PCCH₃; ¹³C-NMR: 11,0 ClSiC, 24,3 FSiC, 28,2, 28,8 SiCC₃, 33,6 PC, 35,7 PCC₃; ¹⁹F-NMR: -3,1; ³¹P-NMR: -84,5, -97,2, -105,1.

C₂₅H₅₇ClF₂P₂Si₃ (577,4)

tert-Butyl-(chlordi-tert-butylsilyl)-(dichlorfluorsilyl)phosphan (11)

0,01 mol 7 wird unter Rühren 24 h bei 90-100 °C getempert. Die anschließende Destillation liefert ausschließlich das Strukturisomere 11.

Ausbeute 3,4 g (90%); Sdp. 87 °C/0,01 mbar; MS (FI-Messung): $382 \,\mathrm{M}^+$; $^1\mathrm{H}\text{-NMR}$: 1,21 SiCCH₃ ($^4J_{\mathrm{HP}} = 0.5 \,\mathrm{Hz}$), 1,51 PCCH₃ ($^3J_{\mathrm{HP}} = 14.9 \,\mathrm{Hz}$, $^5J_{\mathrm{HF}} = 14.9 \,\mathrm{Hz}$

Tab. II. Experimentelle Daten von 2.

Kristalldimensionen (mm)	$0,33 \times 0,21 \times 0,18$
Meßtemperatur (K)	110
Strahlung	Mo-K _a , Graphitmonochromator
Zelldimensionen (pm)	a = 986,9(3)
	b = 3102,8(9)
	c = 1097,5(3)
	$\beta = 121,75(2)$
Raumgruppe	$P2_1/n$
Z	4
$d_{ber} (g/cm^3)$	1,098
$\mu \text{ (mm}^{-1})$	0,16
$2\theta_{\text{max}}$ (°)	45
Zahl unabhängiger Reflexe	3728
davon beobachtet $(F_o \ge 3.5 \sigma(F))$	3090
Strukturlösung und Verfeinerung	SHELXTL
$R, R_{\rm w} ({\rm w}^{-1} = \sigma^2({\rm F_o}))$	0,041, 0,035
max. Restelektronendichte (e/pm ³ ·10 ⁶)	0,58

Verfeinerung der Wasserstoffatomlagen als starre Gruppen mit dem 1,2-fachen isotropen U-Wert des äquivalenten U_{ij} -Wertes des zugehörigen C-Atoms

Tab. III. Atomkoordinaten ($\times 10^4$) und äquivalente isotrope atomare Temperaturfaktoren (pm²·10⁻¹).

Atom	X	y	z	U_{eq}
Si	1034(1)	954(1)	2489(1)	19(1)*
P	2154(1)	1529(1)	3701(1)	21(1)*
F	806(1)	979(1)	816(1)	25(1)*
Li	4155(4)	1510(1)	6239(4)	24(2)*
C(1)	2949(3)	1815(1)	2505(3)	23(1)*
C(2)	3949(3)	1533(1)	2045(3)	32(1)*
C(3)	3886(3)	2189(1)	3406(3)	31(1)*
C(4)	1701(3)	2001(1)	1176(3)	32(1)*
C(5)	-960(3)	944(1)	2350(3)	23(1)*
C(6)	-1784(3)	1316(1)	1362(3)	32(1)*
C(7)	-1807(3)	523(1)	1739(3)	33(1)*
C(8)	-984(3)	1024(1)	3825(3)	36(1)*
C(9)	2037(3)	411(1)	3070(3)	25(1)*
C(10)	1394(3)	63(1)	1907(3)	36(1)*
C(11)	1975(3)	255(1)	4472(3)	38(1)*
C(12)	3665(3)	469(1)	3329(3)	36(1)*
O(1)	3825(2)	1105(1)	7547(2)	28(1)*
O(2)	6241(2)	1438(1)	6629(2)	33(1)*
O(3)	4108(2)	2062(1)	7172(2)	26(1)*
C(13)	2475(3)	1146(1)	7769(3)	27(1)*
C(14)	2283(3)	722(1)	8387(3)	29(1)*
C(15)	3871(3)	579(1)	9231(3)	34(1)*
C(16)	4632(3)	730(1)	8301(3)	29(1)*
C(17)	6888(3)	1054(1)	6339(3)	26(1)*
C(18)	8527(3)	1107(1)	7149(3)	28(1)*
C(19)	8724(3)	1592(1)	7082(3)	35(1)*
C(20)	7372(3)	1766(1)	7181(4)	51(2)*
C(21)	2939(3)	2374(1)	6569(3)	27(1)*
C(22)	2591(3)	2518(1)	7808(3)	30(1)*
C(23)	4124(3)	2533(1)	9020(3)	29(1)*
C(24)	4919(3)	2160(1)	8678(3)	33(1)*
				G0-1 170 II II II II

^{*} Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

0,5 Hz); ${}^{13}\text{C-NMR}$: 25,9 SiC (${}^{2}J_{\text{CP}} = 10,7$ Hz), 27,8 SiCC₃, 34,1 PCC₃ (${}^{2}J_{\text{CP}} = 9,4$ Hz, ${}^{4}J_{\text{CF}} = 3,6$ Hz). $C_{12}H_{27}Cl_3\text{FPSi}_2$ (383,9)

Kristallstrukturbestimmung von 2

Die experimentellen Daten sind der Tab. II zu entnehmen, die Atomkoordinaten und äquivalente Temperaturfaktoren der Tab. III, die wichtigsten Bindungslängen und -winkel sind in Tab. IV aufgelistet*. Eine Abbildung des Moleküls ist in Abb. 1 wiedergegeben.

Tab. IV. Die wichtigsten Abstände (pm) und Winkel (°) von 2.

Si-P	220,0(1)	P-Si-F	112,0(1)
Si-F	163,0(2)	P-Si-C5	109,0(1)
Si-C5	191,6(3)	P-Si-C9	117,2(1)
Si-C9	192,3(2)	F-Si-C5	102,6(1)
P-Li	254,7(4)	F-Si-C9	101,6(1)
P-C1	191,1(3)	C5-Si-C9	113,3(1)
Li-O1	195,3(5)	Si-P-C1	105,1(1)
Li-O2	194,7(5)	Si-P-Li	124,1(1)
Li-O3	196,9(5)	C1-P-Li	108,0(1)
		P-Li-O2	122,3(2)
		P-Li-O3	108,1(2)
		O1-Li-O2	103,8(2)
		O2-Li-O3	103,3(2)
		O1-Li-O3	100,9(2)

^{*} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 53700 und des vollständigen Zeitschriftenzitats angefordert werden.

Diskussion der Molekülstruktur

Auffallend ist der kurze Si-P-Abstand von 220,0(1) pm, der nur noch vergleichbar mit dem durch Elektronenbeugung ermittelten Abstand von 220,7(3) pm im F₃Si-PH₂ [12] ist. Ähnlich kurze Abstände wurden im

 $(CH_3)_3Si-P(C_6H_6)[C(NC_6H_4Cl)(OSi(CH_3)_3)]$ [13] und im

 $(CH_3)_3Si-P(C(CH_3)_3)(CO)[(RuC(O)(CO)_2)(\eta^5-C_5(CH_3)_5)]$

[14] mit 227,8(1) bzw. 222,6(2) pm durch Röntgenbeugung gefunden sowie in den cyclischen Phosphasilaborolen [15], ihren Übergangsmetallkomplexen [16] mit 219,1 bis 225,2 pm und weiterhin im (C₆H₅)₂SiP₂(CH₃)₂ [17] mit 222,3(2) pm, bei dem der

kurze Abstand durch gebogene Bindungen in dem SiP_2 -Dreiringgerüst erklärbar ist. Die Vergleichsdaten legen hier eine $d_{\pi}-p_{\pi}$ -Wechselwirkung als Ursache für die kurze Bindung nahe, wobei der kleine Torsionswinkel F-Si-P-Cl von 15,1° die geometrischen Voraussetzungen dafür schafft. Die Umgebung des Silicium-Atoms weicht etwas von der idealen Tetraedergeometrie ab, stärker ist jedoch die Umgebung des Phosphoratoms gestört, was durch die sperrigen Liganden verursacht wird.

Der Stiftung Volkswagenwerk, der Humboldt-Stiftung und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

- [1] G. Fritz, Adv. Inorg. Chem. 31, 171 (1987).
- [2] M. Haase und U. Klingebiel, Z. Naturforsch. 41b, 697 (1986).
- [3] M. Haase, U. Klingebiel und L. Skoda, Z. Naturforsch. 39b, 1500 (1984).
- [4] W. Clegg, M. Haase, U. Klingebiel und G. M. Sheldrick, Chem. Ber. 116, 146 (1983).
- [5] U. Klingebiel und N. Vater, Angew. Chem. 94, 870 (1982).
- [6] U. Klingebiel und N. Vater, Z. Naturforsch. 38b, 1557 (1983).
- [7] C. N. Smit und F. Bickelhaupt, Organometallics 6, 1156 (1987).
- [8] D. Stalke, N. Keweloh, U. Klingebiel, M. Noltemeyer und G. M. Sheldrick, Z. Naturforsch. 42b, 1237 (1988).
- [9] D. Stalke, U. Klingebiel und G. M. Sheldrick, J. Organomet. Chem. 344, 37 (1988).

- [10] U. Kliebisch und U. Klingebiel, J. Organomet. Chem. 314, 33 (1986).
- [11] E. Helmers, M. Hesse und U. Klingebiel, Z. Anorg. Allg. Chem. 565, 81 (1988).
- [12] R. Demuth, H. Oberhammer, Z. Naturforsch. 28a, 1862 (1973).
- [13] G. Becker und O. Mundt, Z. Anorg. Allg. Chem. 459, 87 (1979).
- [14] L. Weber, K. Reizig und R. Boese, Organometallics 4, 2097 (1985).
- [15] R. Köster, G. Seidel, G. Müller, R. Boese und B. Wrackmeyer, Chem. Ber. 121, 1381 (1988).
- [16] R. Köster, G. Seidel, R. Boese und B. Wrackmeyer, Chem. Ber. 121, 1941 (1988).
- [17] K.-F. Tebbe, Z. Anorg. Allg. Chem. 468, 202 (1980).