Notizen 243

The Space Group of $(TTM-TTF)^{2+}(AuCl_4^-)_2$ [TTM-TTF = Tetra(methylthio)tetra-thiofulvalene]

Peter G. Jones*

Institut für Anorganische Chemie der Universität, Tammannstraße 4, 3400 Göttingen

Z. Naturforsch. **44b**, 243–244 (1989); received October 10, 1988

Tetra(methylthio)tetrathiofulvalene

The space group of the title compound is probably C2/m rather than the previously reported C2.

During the preparation of a review article on the crystal structures of gold compounds, it was noticed that the structure of $(TTM-TTF)^{2+}(AuCl_4^-)_2$, presented in space group C2 with cell constants a=14.799, b=11.513, c=8.034 Å, $\beta=97.05^\circ$ [1], displayed several unusual features. The atoms Au, Cl(2), Cl(4) and C(1) lay in or near the planes y=0 or 1/2; other atoms occurred in pairs with similar x and z coordinates, and y coordinates summing to 0 or 1; and some chemically equivalent bond lengths differed appreciably $(Au-Cl\ 2.247-2.309$ Å, $S-C(1)\ 1.573$, 1.787 Å). All these features could be ex-

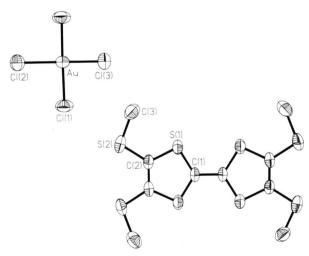


Fig. 1. Thermal ellipsoid plot (50% level) of the title compound, showing the numbering of the asymmetric unit in C2/m.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/89/0200-0243/\$ 01.00/0

plained if the true space group were C2/m, *i.e.* if a crystallographic centre of symmetry had been overlooked [2].

The deposited structure factors were obtained from the Fachinformationszentrum Energie, Physik, Mathematik, 7514 Eggenstein-Leopoldshafen 2 (deposition number CSD 52689). Anisotropic refinement in C2/m proceeded smoothly to an R value of 0.032 for 1511 reflections, 70 parameters (cf. 0.028 for 1581 reflections, 140 parameters in C2; only 1512 reflections were present in the deposited material and one was clearly in error). Atoms Au, Cl(2) and Cl(3) (in the new numbering scheme, see Tables I and II) were fixed in the mirror planes. The weighting scheme was $w = \sigma^{-2}(F)$, with σ values calculated by the method of Cruickshank [3] (no σ values had been deposited). H atoms were not included. The program system was SHELX-76, locally modified by its author Prof. G. M. Sheldrick.

The new refinement leads to more regular geometry, with Au-Cl 2.255-2.275 Å, C(1)-S(1) 1.684 Å, and to much lower e.s.d.'s [2]. The descrip-

Table I. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$).

	X	y	z	U(eq)*
Au	1448.9(2)	0	1147.5(4)	44(1)
Cl(1)	1498(2)	1974(2)	1252(3)	72(1)
Cl(2)	2495(2)	0	-689(4)	67(1)
Cl(3)	350(3)	0	2860(5)	83(1)
S(1)	470(1)	3756(2)	8307(2)	50(1)
S(2)	1376(1)	3584(2)	5204(2)	60(1)
C(1)	211(6)	5000	9244(9)	40(2)
C(2)	959(4)	4390(6)	6722(7)	42(2)
C(3)	1360(6)	2137(9)	6067(10)	72(3)

^{*} Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

Table II. Bond lengths (Å) and angles (°).

Au-Cl(1)	2.275(2)	Au-Cl(2)	2.266(3)
Au-Cl(3)	2.255(4)	S(1)-C(1)	1.684(5)
S(1)-C(2)	1.704(6)	S(2)-C(2)	1.707(7)
S(2) - C(3)	1.806(10)	C(1) - C(1a)	1.433(16)
Cl(1)-Au-Cl(2)	90.2(1)	Cl(1)-Au-Cl(3)	90.0(1)
Cl(2)-Au-Cl(3)	177.0(1)	Cl(1)-Au-Cl(1b))174.8(1)
C(1)-S(1)-C(2)	96.4(3)	C(2)-S(2)-C(3)	101.8(4)
S(1)-C(1)-S(1c)	116.5(5)	S(1)-C(1)-C(1a)	121.7(2)
S(1)-C(2)-S(2)	121.7(4)	S(1)-C(2)-C(2c)	115.4(2)
S(2)-C(2)-C(2c)	122.9(2)		

Symmetry operators: (a) -x,y,2-z; (b) x,-y,z; (c) x,1-y,z

 ^{*} Current address: Institut f
ür Anorganische und Analytische Chemie der Technischen Universit
ät, Hagenring 30, D-3300 Braunschweig

244 Notizen

tion in C2/m thus seems preferable. The anion possesses exact m symmetry and the cation exact 2/m symmetry.

Observed and calculated structure factors in C2/m and anisotropic thermal parameters have been deposited as above. Any request for this material

should quote the new reference number CSD 53456 and a full literature citation.

I thank the Fonds der Chemischen Industrie for financial support and the authors of the original report [1] for helpful correspondence.

^[1] K. Brunn, H. Endres, and J. Weiss, Z. Naturforsch. 43b, 224 (1988).

^[2] D. W. G. Cruickshank and W. S. McDonald, Acta Crystallogr. 23, 9 (1967).

^[3] D. W. G. Cruickshank, D. F. Pilling, A. Bujosa, F. M. Lovell, and M. R. Truter, "Computing Methods and the Phase Problem in X-Ray Crystal Analysis", Oxford, Pergamon (1961).