NOTIZEN

Synthese und Struktur von K₂Au₃, einer neuen Phase im System Kalium-Gold

Synthesis and Structure of K_2Au_3 , a New Phase in the System Potassium-Gold

Petra Krieger-Beck, Andreas Brodbeck und Joachim Strähle*

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, BRD Z. Naturforsch. **44b**, 237–239 (1989); eingegangen am 18. Oktober 1988

Dipotassium Triauride, Synthesis, Crystal Structure

 $\rm K_2Au_3$ is obtained from the elements in a sealed Ta ampoule as air-sensitive needles with a golden lustre. It crystallizes in the orthorhombic space group Immm with the lattice constants a=487.5(2), b=545.4(2), c=1000.4(4) pm; Z=2. The structure is composed of planar layers of Au atoms at z=0 and 0.5 and intercalated K atoms. The layers consist of triangles and hexagons with Au–Au distances between 268.8 and 280.2 pm. The K atoms have ten Au neighbours with distances from 334 to 389 pm.

Im System Kalium/Gold waren bisher die Verbindungen K₂Au, KAu, KAu₂ und KAu₅ bekannt [1]. KAu₅ kristallisiert im hexagonalen CaCu₅-Typ [2, 3]. KAu₂ ist eine hexagonale Laves-Phase mit MgZn₂-Struktur [4, 5]. Die Strukturen von KAu und K₂Au sind noch unbekannt. Im Rahmen unserer Untersuchungen über die Strukturen von Alkalimetall-Gold-Legierungen und die Reaktivität des Auridions Au⁻ haben wir versucht, die Struktur von KAu aufzuklären. Bisher gelang es uns jedoch nicht, KAu darzustellen. Statt dessen fanden wir die bisher unbekannte Verbindung K₂Au₃, über die wir im folgenden berichten.

Experimenteller Teil

Synthese von K_2Au_3

0,064 g (1,639 mmol) K und 0,322 g (1,634 mmol) Au werden unter Argon in eine Ta-Ampulle gefüllt, die anschließend unter Ar bei 0,2 bar im Lichtbogen verschweißt wird. Nun wird die Ampulle im Quarzrohr unter Vakuum für 2 h auf 1000 °C erhitzt und

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/89/0200–0237/\$ 01.00/0

danach langsam abgekühlt (4 Tage 850 °C, 4 Tage 620 °C, 2 Tage 450 °C). Nach dem Erkalten wird die Ampulle unter Schutzgas geöffnet und die kristalline Substanz mit einer Stahlnadel herausgebrochen.

Bestimmung der Struktur von K₂Au₃

Ein Kristall der Größe $0.1 \times 0.2 \times 0.05$ mm wurde unter N2 in einer innen paraffinierten Glaskapillare versiegelt. Aus Buerger-Präzessionsaufnahmen ergaben sich die groben Gitterkonstanten und das Kristallsystem. Die genauen Gitterkonstanten (Tab. I) wurden anhand von 25 Reflexen hoher Beugungswinkel auf einen Einkristalldiffraktometer [6] mit einer Ausgleichsrechnung ermittelt. Mit monochromatischer MoK α -Strahlung und ω/θ -scan wurden im Beugungswinkelbereich von $\theta = 3$ bis 37° 2718 Reflexe erfaßt, von denen nach der Mittelung 247 unabhängige Werte mit $I > 3\sigma(I)$ verblieben. Die Lösung der Struktur gelang mit direkten Methoden [7] in der Raumgruppe Immm. Die Verfeinerung mit isotropen Temperaturparametern führt auf R = 0.114. Nach einer empirischen Absorptionskorrektur [8] und erneuter Mittelung verbesserte sich R auf 0,094. Der endgültige R-Wert konvergierte nach Einführung anisotroper Temperaturparameter und bei Berücksichtigung des Extinktionskoeffizienten

Tab. I. Kristalldaten und Parameter der Strukturbestimmung von K_2Au_3 .

0 2 0	-
Formel	K_2Au_3
Molmasse	669,10
Gitterkonstanten [pm]	a = 487,5(2)
	b = 545,4(2)
	c = 1000,4(4)
Zellvolumen [pm ³]	$V = 265,96 \cdot 10^6$
Formeleinheiten	Z = 2
Berechnete Dichte [g·cm ⁻³]	$\rho_{x} = 8,355$
Kristallsystem	orthorhombisch
Raumgruppe	Immm
Strahlung	$MoK\alpha$
Meßtemperatur	18 °C
Meßmethode	ω/θ -scan
Beugungswinkelbereich	3-37°
Kristallgröße [mm]	$0.1 \times 0.2 \times 0.05$
Zahl gemessener Reflexe	2718
Zahl unabhängiger Reflexe	247
mit $I > 3\sigma(I)$	
Verfeinerte Parameter	13
Linearer Absorptionskoeffizient	838,13
[cm ⁻¹]	
R-Werte	R = 0.073
	$R_w = 0.097$

^{*} Sonderdruckanforderungen an Prof. Dr. Joachim Strähle.

Notizen Notizen

Tab. II. Ortsparameter und äquivalente isotrope Temperaturparameter B_{eq} der Atome in K_2Au_3 mit $B_{eq}=4/3(a^2B_{11}+b^2B_{22}+c^2B_{33})$. Standardabweichungen in Klammern.

Atom	Punkt- lage	х	у	z	$B [pm^2 \cdot 10^4]$
K	4 j	0,0000	0,5000	0,197(2)	1,5(3)
Au1	2a	0,0000	0,0000	0,0000	1,23(6)
Au2	4 h	0,5000	0,2536(6)	0,0000	0,82(3)

0,073. In Tab. II sind die Orts- und Temperaturparameter angegeben*.

Ergebnisse und Diskussion

Synthese und Eigenschaften von K_2Au_3

 K_2Au_3 bildet sich oberhalb 300 °C in einem Mo-Tiegel oder einer Ta-Ampulle aus den Elementen. Hierzu muß eine mindestens stöchiometrische Menge an Kaliummetall eingesetzt werden. Bei Anwendung eines Kaliumunterschusses oder wenn das Reaktionsgefäß nicht völlig dicht verschlossen ist, werden KAu_2 oder KAu_5 erhalten. Die in der Literatur beschriebenen Phasen KAu und K_2Au konnten von uns nicht nachgewiesen werden. Nach unseren Beobachtungen bildet sich K_2Au_3 auch, wenn ein großer Überschuß an Kalium eingesetzt wird. Interessant ist außerdem, daß das Röntgenbeugungsdiagramm des von uns erhaltenen K_2Au_3 völlig mit dem von Quadt, Weibke und Biltz [9] für KAu angegebenen Diagramm übereinstimmt. Man muß daraus schließen, daß es sich bei dem in der Literatur beschriebenen KAu in Wirklichkeit um K_2Au_3 handelt. K_2Au_3 bildet goldglänzende Kristallnadeln, die sich an Luft zersetzen.

Diskussion der Struktur von K2Au3

 K_2Au_3 kristallisiert in einer orthorhombischen Schichtstruktur. Die Au-Atome besetzen spezielle Lagen auf den Spiegelebenen parallel (001) (Tab. II) und bilden identische Schichten in z=0 und z=0,5, die jedoch aufgrund der Innenzentrierung der Raumgruppe Immm um x=0,5 und y=0,5 gegeneinander verschoben sind. Die planaren Schichten bestehen aus nahezu regulären Sechsecken und Rauten (Abb. 1). Die Au-Au-Abstände in den Schichten liegen zwischen 268,8 und 280,2 pm (Tab. III). Sie sind aufgrund der kleineren Koordinationszahl deutlich kürzer als im Goldmetall (288,4 pm) [10]

Tab. III. Wichtige interatomare Abstände [pm] in K₂Au₃.

280.2(1)	K-Au1	336,5(6)
, , ,	K'-Au1	389,0(6)
268,8(4)	K-Au2	341,0(8)
,	K'-Au2	333,2(8)
381,0(6)		
394,2(6)		
	381,0(6)	276,6(4) K'-Au1 268,8(4) K-Au2 K'-Au2 381,0(6)

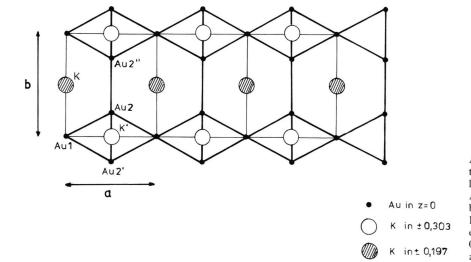


Abb. 1. Darstellung der Struktur von K_2Au_3 in Projektion längs [001]. Dargestellt ist die Au-Schicht in z=0 mit den benachbarten K^+ -Ionen. Durch die Innenzentrierung entsteht in z=0.5 eine um x=0.5 und y=0.5 verschobene, analoge Schicht.

^{*} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 53406, der Autoren und des Zeitschriftenzitats angefordert werden.

Notizen 239

und entsprechen starken Bindungen. Die K-Atome sind zwischen die Goldschichten in der Höhe z=0,197 und z=0,303 eingelagert. Sie haben 10 Au-Atome als nächste Nachbarn im Abstand von 334 bis 389 pm (Tab. III). Das Koordinationspolyeder mit der Symmetrie C_{2v} wird von einem Au_6 -Sechseck und einer dazu parallelen Au_4 -Raute gebildet. Obwohl die K-K- und K-Au-Abstände im Bereich metallischer Wechselwirkungen liegen, kann man aufgrund

des großen Elektronegativitätsunterschiedes zwischen K und Au annehmen, daß die Struktur aus K⁺-Kationen und $(Au_3^{2-})_n$ -Polyanionen aufgebaut ist. Der kürzeste K-K-Abstand ist mit 381 pm noch etwas größer als im KF (378,1 pm [10]).

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung.

- [1] A. D. Pelton, Bull. Alloy Phase Diagr. 7, 23 (1986).
- [2] W. Haucke, Z. Anorg. Allg. Chem. **244**, 17 (1940).
- [3] P. Krieger, Diplomarbeit, Tübingen (1987).

- [5] A. Brodbeck und J. Strähle, unveröffentlicht.
- [6] Einkristalldiffraktometer CAD4, Fa. Enraf-Nonius, Delft.
- [7] The Enraf-Nonius CAD4-SDP, a Realtime System for Concurrent X-Ray Data Collection and Crystal
- Structure Determination, in: Computing in Crystallography, 64–71 (1978), Delft University Press. VAXSDP, Version 3.0 (1986).
- [8] N. Walker und D. Stuart, Acta Crystallogr. A39, 158 (1983).
- [9] U. Quadt, F. Weibke und W. Biltz, Z. Anorg. Allg. Chem. 232, 297 (1937).
- [10] W. G. Wyckoff, Crystal Structures, Vol. I, Interscience Publishers, New York (1963).

^[4] K.-J. Range, F. Rau und U. Klement, Acta Crystallogr. C44, 1485 (1988).