Synthesis of 2-Acetoacetyl- and 2-Oxaloacetyl-1,3-indandiones and Related Compounds

W. S. Hamama*, M. Hammouda, and E. M. Afsah

Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, A.R. Egypt

Z. Naturforsch. 43b, 897-900 (1988); received November 4, 1987/February 24, 1988

2-Acetoacetyl- and 2-Oxaloacetyl-1,3-indandiones,

1,6-Bis(1,3-dioxo-2-indanyl)hexane-1,2,3,4,5,6-hexone, Synthesis

Claisen condensation of 2-acetyl-1,3-indandione (1) with ethyl acetate afforded the 2-acetoacetyl-1,3-indandione (2) which upon treatment with benzylamine and paraformaldehyde in a molar ratio of (1:1:2) and (1:2:4) afforded the piperidinone and the diazabicyclic derivative (4) and (5) respectively. On the other hand, Claisen condensation of 1 with diethyl oxalate yielded two products (6) and (9). The behaviour of 6 towards phenyl hydrazine, and of 9 towards selenium dioxide and double Mannich reaction were also investigated.

Introduction

The interesting biological activity of 1,3-indandiones having a ketonic side chain in position 2 as blood anticoagulants and effective rodenticides [1, 2], has led to intense interest in the synthesis of 2-acyl-1,3-indandiones. In particular, much interest has centered around 2-acetyl- and 2-diarylacetyl-1,3-indandiones [2]. However, there appears to be no record of any 1,3-indandiones having a side chain at the 2-position related to β -diketones.

One of the specific objectives of this study was to synthesize 2-acetoacetyl-1,3-indandione (2), which, pharmacologically, is interesting in its own right. Therefore, 2-acetyl-1,3-indandione (1) was subjected to Claisen condensation with ethyl acetate to afford 2 in good yield. The reaction of 2 with ammonium acetate led to the formation of 2-methyl-1 \underline{H} -indeno-[1,2- \underline{b}]pyridine-4,5-dione (3). The IR spectrum of 2 showed bands at 3500 (OH, enolic) and 1690 cm⁻¹ (CO, β -diketone). Its NMR spectrum indicated the presence of singlet absorption at δ 3.4 corresponding to (CH₂) of CO·CH₂·CO.

In connection with our studies on ketonic Mannich bases related to 1,3-indandione [3, 4], and related compounds [5, 6] it appeared to us, that compound 2 may function as an intermediate in synthetic routes based on the Mannich reaction, and directed towards 1,3-indandiones incorporated with other ring systems. Therefore, compound 2 was treated with benzylamine and paraformaldehyde in a molar ratio of

That the acetonyl fragment of the acetoacetyl group is involved in the formation of

Scheme 1.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/88/0700–0897/\$ 01.00/0

^(1:1:2) in acetic acid to give 1-benzyl-3-[(1,3-dioxo-2-indanyl)carbonyl]piperidin-4-one (4). On the other hand, the same reactants in a molar ratio of (1:2:4) afforded 3,7-dibenzyl-1-[(1,3-dioxo-2-indanyl)carbonyl]-9-oxo-3,7-diazabicyclo[3.3.1]nonane (5). The IR spectrum of 4 and 5 showed bands at 1725 cm⁻¹ characteristic of $\nu_{\rm CO}$ piperidone and $\nu_{\rm CO}$ bispidinone, respectively. The NMR spectrum of 4 showed a multiplet at δ 3.5 corresponding to three methylene protons of the piperidone ring. On the other hand, the NMR spectrum of 5 showed a singlet at δ 1.8 corresponding to 1-H of the diazabicyclic ring.

^{*} Reprint requests to Dr. W. S. Hamama.

the γ -piperidone or bispidinone ring systems in the course of a double Mannich reaction, is in line with many reported cases which have been reviewed by Blicke [7] and Tramontini [8], and with our recent studies on double Mannich reaction [9, 10].

Claisen condensation of 1 with diethyl oxalate in presence of sodium methoxide led to the formation of ethyl(2-oxaloacetyl)-1,3-indandione (6), the structure of which was supported by the IR spectrum which showed a band at 1755 cm⁻¹ assigned to $\nu_{\rm CO}$ (α -keto ester). Reaction of **6** with phenylhydrazine gave 3-ethoxycarbonyl-1-phenyl-4,5-dihydroindeno-[1,2-c][1,2]diazepin-5,6-dione (7), instead of the pyrazole 8. The formation of 7 is in analogy with the reported formation of indeno[1,2-c][1,2]-diazepinones from hydrazines and 2-(α -phenacyl)-1,3-indandione [11] and related compounds [3]. The IR spectrum of 7 showed a band at 1690 cm⁻¹ ($\nu_{\rm CO}$, indenone) and lacked absorption bands typical for indandione; its NMR spectrum showed a singlet corresponding to two protons (4-H).

Condensation of 1 with diethyl oxalate in a molar ratio of 2:1 in presence of sodium methoxide afforded 1,6-bis(1,3-dioxo-2-indanyl)-1,3,4,6-hexanetetrone (9). The formation of 9 is in line with the work of Finar [12] on the condensation of diethyl oxalate with acetophenone. Oxidation of compound 9 with selenium dioxide took place smoothly and afforded 1,6-bis(1,3-dioxo-2-indanyl)hexane-

1,2,3,4,5,6-hexone (10). A double Mannich reaction on 9 with methylamine hydrochloride and formalin in a molar ratio of 1:1:2 led to the formation of hexahydro-1-methyl-3,6-bis[(1,3-dioxo-2-indanyl)carbonyl]-2H-azepin-4,5-dione (11). Its IR spectrum

Scheme 2.

showed absorptions at 2915 cm⁻¹, characteristics of (CH₃-N), and 1415 cm⁻¹ (C-N, stretch).

Experimental

All melting points (°C) are uncorrected and were taken in a Gallenkamp electric melting point apparatus. IR spectra were performed on a Unicam SP 2000 Infrared Spectrophotometer using KBr. ¹H NMR spectra were obtained in CDCl₃ solutions with a Varian model "A-60".

2-Acetoacetyl-1,3-indandione (2)

A suspension of **1** (1.9 g, 0.01 mole) in ethylacetate (50 ml, 0.57 mole) was slowly added to sodium sand (4 g, 0.17 g atom). The reaction mixture was refluxed for 5 h, the excess ethylacetate was distilled. The reaction mixture was poured onto icecold water, acidified with diluted hydrochloric acid and the resulting solid product was recrystallized from ethanol to give 1.27 g (55%), m.p. 125 °C. IR: 3550–3300 (OH, enolic), 1720 ($\nu_{\rm CO}$, indandione), 1690 cm⁻¹ (CO, β -diketone); ¹H NMR (CDCl₃): δ = 2.2 (s, 3H, CO·CH₃), 2.5 (s, 1H, H-2 of indandione), 3.4 (s, 2H, CO-CH₂-CO), 7.3 (m, 4H, aromatic protons).

C₁₃H₁₀O₄ (230.2) Calcd C 67.82 H 4.38, Found C 67.64 H 4.35.

2-Methyl-1 H-indenol[1,2-b]pyridine-4,5-dione (3)

A mixture of **2** (0.5 g, 0.0022 mole) and ammonium acetate (1 g, 0.012 mole) in glacial acetic acid (15 ml) was refluxed for 4 h. After cooling the reaction mixture was poured onto water (30 ml). The solid which separated was recrystallized from benzene to give 0.37 g of a brown powder (80%), m.p. 260 °C (decomp). IR: A very weak broad band at 3350–3120 (N–H, stretch), 1690 ($\nu_{\rm CO}$ of α,β -unsaturated ketone) and 1320 cm⁻¹ ($\nu_{\rm C-N}$).

C₁₃H₉NO₂ (211.2) Calcd C 73.92 H 4.30 N 6.63, Found C 73.79 H 4.23 N 6.57.

1-Benzyl-3-[(1,3-dioxo-2-indanyl)-carbonyl]piperidine-4-one (4)

A mixture of **2** (2.3 g, 0.01 mole), benzylamine (1.1 g, 0.01 mole) and paraformaldehyde (0.6 g, 0.02 mole) in acetic acid (80 ml) was heated to boiling, then left overnight at room temperature. The reaction mixture was basified (pH 7.5) using sodium hydroxide solution (20%) and the solid that obtained

was recrystallized from ethanol to give 1.19 g (33%), m.p. 170 °C. IR: 3550–3300 (OH, enolic), 1725 (ν_{CO} , piperidone), 1720 (CO, indandione), 1690 cm⁻¹ (CO, β -diketone); ¹H NMR (CDCl₃): δ = 1.35 (s, 2H, C $\underline{\text{H}}_2$ -C₆H₅), 1.90 (s, 1H, methine of piperidone), 2.5 (s, 1H, 2-H of indandione), 3.5 (m, 6H, C $\underline{\text{H}}_2$ -3 of piperidone), 7.3 (m, 9H, aromatic protons).

C₂₂H₁₉NO₄ (361.4) Calcd C 73.11 H 5.30 N 3.88, Found C 73.02 H 5.19 N 3.77.

3,7-Dibenzyl-1-[(1,3-dioxo-2-indanyl)carbonyl]-9-oxo-3,7-diazabicyclo[3.3.1]nonane (5)

A mixture of **2** (2.3 g, 0.01 mole), benzylamine (2.2 g, 0.02 mole) and paraformaldehyde (1.2 g, 0.04 mole) in acetic acid (80 ml) was heated to boiling, then left overnight at room temperature. The reaction mixture was worked up as above. The precipitated product was filtered off and recrystallized from ethanol to give 1.48 g (30%), m.p. 142 °C. IR: 3550–3300 (OH, enolic), 1725 (ν_{CO} , bispidinone), 1720 (ν_{CO} , indandione) and 1650–1540 cm⁻¹ (ν_{CO} , β -diketone); ¹H NMR (CDCl₃): δ = 1.35 (s, 4H, 2CH₂-C₆H₅), 1.8 (s, 1H, 1-H, methine of diazabicyclic ring), 2.5 (s, 1H, 2-H of indandione), 3.5 (m, 8H, CH₂-4 of diazabicyclic ring system) and 7.3 (m, 14H, aromatic protons).

C₃₁H₂₈N₂O₄ (492.6) Calcd C 75.58 H 5.73 N 5.69, Found C 75.46 H 5.66 N 5.58.

Ethyl(2-oxaloacetyl)-1,3-indandione (6)

To a stirred solution of **1** (7.5 g, 0.04 mole) and diethyl oxalate (excess; 0.1 mole) there was added dropwise a solution of sodium methoxide (4 g, 0.074 mole). The mixture was refluxed for4 h, cooled and then acidified with acetic acid (3%) to give a yellow solid which was recrystallized from benzene to give 9.92 g (86%), m.p. 153 °C (decomp.). IR: 3550–3300 (OH, enolic), 1755–1740 ($\nu_{\rm CO}$, α -keto ester), 1720 ($\nu_{\rm CO}$, indandione) and 1650–1540 cm⁻¹ ($\nu_{\rm CO}$, β -diketone).

C₁₅H₁₂O₆ (288.3) Calcd C 62.50 H 4.20, Found C 62.38 H 4.14.

3-Ethoxycarbonyl-1-phenyl-4,5-dihydroindeno [1,2-c][1,2]-diazepin-5,6-dione (7)

A mixture of **6** (2.9 g, 0.01 mole) and phenylhydrazine (1.08 g, 0.01 mole) in glacial acetic acid

(40 ml) was refluxed for 5 h. After cooling, the reaction mixture was poured onto water (80 ml). The solid which separated was recrystallized from ethanol to give 3.10 g orange crystals (86%), m.p. 131 °C. IR: 1740 ($\nu_{\rm CO}$, α,β -unsaturated ester), 1690 (CO, indenone), 1620 ($\nu_{\rm CO}$, α,β -unsaturated ketone), 1260 cm⁻¹ ($\nu_{\rm CN}$); ¹H NMR (CDCl₃): δ = 2.45 (s, 2H, 4-H), 3.9 (q, 4H, C $\underline{\rm H}_2$ -CH₃), 7.3 (m, 9H, aromatic protons).

C₂₁H₁₆N₂O₄ (360.4) Calcd C 69.98 H 4.48 N 7.78, Found C 69.77 H 4.36 N 7.69.

1,6-Bis(*1,3-dioxo-2-indanyl*)-*1,3,4,6-hexantetrone* (9)

To a stirred solution of **1** (7.5 g, 0.04 mole) and diethyl oxalate (2.9 g, 0.02 mole) there was added dropwise a solution of sodium methoxide (4 g, 0.074 mole). The reaction mixture was refluxed for 4 h, then worked up as described for compound **6** to give a yellow solid which was recrystallized from benzene to give 14.46 g (84%), m.p. 175 °C. IR: 3550-3300 (OH, enolic), 1730 ($\nu_{\rm CO}$, α -diketone), 1710 (CO, indandione), 1690-1590 cm⁻¹ ($\nu_{\rm CO}$, β -diketone).

C₂₄H₁₄O₈ (430.4) Calcd C 66.48 H 3.28, Found C 66.77 H 3.19.

1,6-Bis(1,3-dioxo-2-indanyl)hexane-1,2,3,4,5,6-hexone (**10**)

A mixture of dioxane (3.2 ml) water (0.1 ml) and powdered selenium dioxide (1.1 g, 0.01 mole) was heated with stirring at 55 °C untill solution was complete. Compound **9** (1.7 g, 0.005 mole) was added, the mixture maintained at reflux with stirring for 4 h. It was filtered hot, the solvent removed under vacuo, and the residue recrystallized from diluted ethanol (1:1) to give 1.31 g (57%), m.p. 117 °C. IR: 3550-3300 (OH, enolic), 1800 ($\nu_{\rm CO}$, α -diketone), 1720 ($\nu_{\rm CO}$, indandione), 1620-1580 cm⁻¹ ($\nu_{\rm CO}$, β -diketone).

C₂₄H₁₀O₁₀ (458.3) Calcd C 62.89 H 2.10, Found C 62.72 H 2.08.

Hexahydro-1-methyl-3,6-bis[(1,3-dioxo-2-indanyl)-carbonyl]-2H-azepin-4,5-dione (11)

A mixture of **7** (1.7 g, 0.005 mole) and methylamine hydrochloride (0.3 g, 0.005 mole) and paraformaldehyde (0.3 g, 0.01 mole) in ethanol (40 ml)

was refluxed for 4 h, left overnight at room temperature. The precipitated product was filtered off, purified through boiling several times with ethanol followed by filtration to give a pure analytical sample; 1.57 g (60%), m.p. >300 °C. IR: 2915 (CH₃-N), a broad band 1730–1650 cm⁻¹

characteristic of (ν_{CO} , α -diketone, indandione and β -diketone) and 1415 cm⁻¹ (ν_{C-N}).

C₂₇H₂₀NO₈Cl (521.9) Calcd C 62.13 H 3.86 N 2.68, Found C 62.04 H 3.78 N 2.59.

^[1] T. Tikhvinska, V. Zelmene, R. Dubure, N. Poplavska, and Ya. Egerts, Kim. Ser. 2, 227 (1976); C. A. 85, 32670 q (1976).

⁽²⁾ The Merk Index of Chemicals and Drugs, 9th ed. item no. 2131, 3311; Merk and Co. Inc. Rahway, N. J., USA (1976).

^[3] E. M. Afsah, H. H. Hassan, S. A. Elagizy, and M. T. Zimaity, J. Prakt. Chem. 326, 841 (1984).

^[4] M. Hammouda, W. S. Hamama, and E. M. Afsah, Z. Naturforsch. **42b**, 94 (1987).

^[5] E. M. Afsah, A. A. Sarhan, and M. R. Ibraham, J. Prakt. Chem. 326, 683 (1984).

^[6] F. Amer, E. Afsah, and H. Etman, Z. Naturforsch. 34b, 867 (1979).

^[7] F. F. Blike, Org. Reactions 1, 303 (1942).

^[8] M. Tramontini, Synthesis **1973**, 703.

^[9] E. M. Afsah, M. A. Metwally, and M. M. Khalifa, Monatsh. Chem. 115, 303 (1984).

^[10] E. M. Afsah, M. Hammouda, and M. M. Abou-Elzahab, Monatsh. Chem. 115, 581 (1984).

^[11] W. Mosher and J. Innes, J. Heterocycl. Chem. 7, 1083 (1970).

^[12] I. L. Finar, J. Chem. Soc. 1958, 4094.