Zur Stereochemie von Iodoarsenaten(III). Darstellung und Kristallstrukturen von [nBu₄N]₂[As₂I₈], [pyH][AsI₄] und [Et₃NH]₄[As₈I₂₈]

Concerning the Stereochemistry of Iodoarsenates(III). Preparation and Crystal Structures of [nBu₄N]₂[As₂I₈], [pyH][AsI₄] and [Et₃NH]₄[As₈I₂₈]

W. S. Sheldrick*, H.-J. Häusler und J. Kaub

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-6750 Kaiserslautern

Z. Naturforsch. 43b, 789-794 (1988); eingegangen am 22. Februar 1988

Iodoarsenates(III), Preparation, Crystal Structure

 $[nBu_4N]_2[As_2I_8]$ (1), $[pyH][AsI_4]$ (2) and $[Et_3NH]_4[As_8I_{28}]$ (3) have been prepared by reaction of AsI_3 with the iodide of the respective nitrogen base (present in a 1:1 molecular ratio) in acetonitrile and their structures determined by X-ray structural analysis. 1 contains discrete $[As_2I_8]^{2-}$ anions with C_i symmetry; the As atoms display a pseudo-octahedral $AX_4Y'E$ geometry with bridging As-I distances of 2.931(1) and 3.289(1) Å. The iodoarsenate(III) anions in 2 form infinite $[AsI_4^{-}]_{\infty}$ chains, in which the individual units are edge-bridged distorted AsI_6 -octahedra with $AX_4Y'_2E$ geometry. In contrast, 3 contains discrete centrosymmetric anions $[As_8I_{28}]^{4-}$, in which the individual As atoms all display a distorted octahedral AX_3Y_3E geometry. The lone pairs are stereochemically inert in 2 and 3. The structures of 1-3 are compared with those of analogous chloro- and bromoarsenate(III) anions.

Einleitung

Trihalogenide EX₃ von Elementen der 5. Hauptgruppe (mit Ausnahme von Stickstoff) können weitere Halogenidanionen X- zu einer Vielfalt von Halogenoanionen EX_{3+n}^{n-} anlagern (in einkernigen Anionen mit n = 1, 2, 3, in mehrkernigen Anionen mit n = 1/4, 1/2, 2/3, 3/2 u.a.). Obwohl W. Petzold vor mehr als 50 Jahren eine Reihe von Chloro- und Bromoarsenaten(III) organischer Stickstoffbasen darstellte [1], ist die Stereochemie solcher Anionen im Gegensatz zu den Halogenoantimonaten(III) [2] bisher nur wenig untersucht worden. Deshalb haben wir vor kurzem über die Darstellung und Strukturaufklärung von den Choroarsenaten(III) $[MeanH]_2[As_2Cl_8]$ (Mean =N-methylanilin), [pyH]₃[As₂Cl₉] und [pyH]₂[As₂Cl₆O] [3] sowie den Bromoarsenaten(III) [MeanH]₂[As₂Br₈],

[pyH][AsBr₄] und [pyH]₃[As₂Br₉] [4] berichtet. Inzwischen wurden im Arbeitskreis von U. Müller weitere Chloroarsenate(III) strukturell charakterisiert [5–7].

Die Trihalogenide der 5. Hauptgruppe gelten im allgemeinen als weiche Akzeptoren [8]. Für Phos-

phor wird diese Annahme durch unsere vergleichenden strukturellen Untersuchungen an Halogeno- und Cyanohalogenophosphaten(III) bestätigt [8, 9]. Während das Anion [PCl₄] im Salz [Et₄N][PCl₄] diskret vorliegt, wird für $[PBr_4]^-$ in $[(nPr)_4N][PBr_4]$ eine angehende Dimerisierung mit $d(P \cdots Br) = 3.46 \text{ Å}$ Anion gefunden. Das dimere im Salz $[Na(C_{12}H_{24}O_6)(thf)_2]_2[P_2(CN)_6Br_2],$ C12H24O6 [18]Krone-6, weist sogar kristallographische C_{2h}-Symmetrie mit symmetrieäquivalenten verbrückenden P-Br-Abständen von 3,06 Å auf. In dieser Arbeit berichten wir über die Stereochemie von drei Iodoarsenaten(III), $[nBu_4N]_2[As_2I_8]$ 1, $[pyH][AsI_4]$ 2 sowie [Et₃NH]₄[As₈I₂₈] 3, die im Zusammenhang mit unseren vorangegangenen Untersuchungen an Chloro- und Bromoarsenaten(III) nun einen Vergleich der Akzeptoreigenschaften von AsX₃ gegenüber Halogenidanionen X^- (X = Cl, Br, I) erlauben soll. Über die Struktur von 3 ist eine Kurzmitteilung schon erschienen [10].

Experimenteller Teil

Alle Versuche wurden unter einer Schutzgasatmosphäre durchgeführt.

Darstellung von 1-3

Zu 1,82 g (10 mmol) AsI₃ in 10 ml absolutem CH₃CN gibt man langsam unter Rühren 10 mmol

^{*} Sonderdruckanforderungen an Prof. Dr. W. S. Sheldrick. Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/88/0700–0789/\$ 01.00/0

des Hydroiodids der entsprechenden Base in 10 ml $\mathrm{CH_3CN}$. Danach wird das Reaktionsgemisch für 1 und 3 24 h bei R.T. gerührt. Zur Darstellung von 2 muß 24 h am Rückfluß erhitzt werden. Anschließend werden die Reaktionslösungen filtriert und auf $-20\,^{\circ}\mathrm{C}$ abgekühlt. Es entstehen kristalline Niederschläge (orange-rot) von 1-3 in Ausbeuten von 82% (1), 74% (2) sowie 82% (3).

 $[nBu_4N]_2[As_2I_8] \ (\textbf{1}), \ M = 1650,0 \\ Ber. \ C \ 23,29 \ H \ 4,40 \ N \ 1,70, \\ Gef. \ C \ 22,9 \ H \ 4,33 \ N \ 1,6. \\ [pyH][AsI_4] \ (\textbf{2}), \ M = 662,6 \\ Ber. \ C \ 9,06 \ H \ 0,91 \ N \ 2,11, \\ Gef. \ C \ 9,0 \ H \ 0,83 \ N \ 2,1. \\ [Et_3NH]_4[As_8I_{28}] \ (\textbf{3}), \ M = 4561,5 \\ Ber. \ C \ 6,32 \ H \ 1,41 \ N \ 1,23, \\ Gef. \ C \ 6,6 \ H \ 1,3 \ N \ 1,5. \\$

Kristallstrukturanalysen von 1-3

Kristall- und Verfeinerungsdaten werden in Tab. I zusammengefaßt. Die Röntgenintensitäten wurden auf einem Enraf-Nonius-CAD4-Diffraktometer in ω -Betrieb unter Verwendung von monochromatischer MoK α -Strahlung gesammelt. Bei den Daten wurden empirische Absorptionskorrekturen angebracht. Die Strukturen wurden mit Hilfe von direkten Methoden (MULTAN-82) gelöst. Bei 1 konnten alle Nichtwasserstoffatome anisotrop verfeinert

werden; für **2** und **3** erhielten lediglich die As- und I-Atome anisotrope Temperaturfaktoren. Den C-Atomen der beiden unabhängigen Kationen von **3** wurden gemeinsame isotrope Temperaturfaktoren zugeordnet. Die Gewichtung erfolgte durch die Gleichung $\omega = k(\sigma^2(F_o) + p^2F_o^2)^{-1}$; Werte für p befinden sich in Tab. I. Lageparameter der Atome werden in Tab. II aufgelistet*.

Diskussion

Die Stereochemie von Halogenoantimonaten(III) wurde ausführlich in einem neueren Übersichtsartikel von Gillespie erläutert [2]. Durch Anlagerung von Halogenidanionen an ein Antimontrihalogenid können Halogenoanionen mit den Grundgeometrien ψ -Tetraeder AX_3E , ψ -trigonaler Bipyramide AX_4E , ψ -Oktaeder AX_5E sowie ψ -pentagonaler Bipyramide AX_6E entstehen. Charakteristisch für die Strukturchemie von Sb(III)-Verbindungen im festen Zustand ist allerdings die Bildung von zusätzlichen schwachen sekundären Bindungen, die kürzer als die Summe der van der Waals-Radien der beteiligten

^{*} Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 52939, des Autors und des Zeitschriftenzitats angefordert werden.

Verbindung	1	2	3
Kristallsystem	orthorhombisch	orthorhombisch	triklin
Raumgruppe	Pbca	Pbca	ΡĪ
a (Å)	19,179(3)	13,867(5)	14,648(3)
b (Å)	18,312(4)	7,583(4)	15,072(8)
c (Å)	14,583(3)	24,596(4)	11,606(3)
a (°)	90	90	110,49(2)
β (°)	90	90	91,14(2)
γ (°)	90	90	104,49(3)
Z	8	8	1
M	825,0	662,7	4561,5
$D_{ber} (g \cdot cm^{-3})$	2,14	3,40	3,28
Strahlung	$MoK\alpha$	$MoK\alpha$	$MoK\alpha$
Kristallgröße (mm)	$0.38 \times 0.41 \times 0.21$	$0,20 \times 0,15 \times 0,32$	$0.19 \times 0.28 \times 0.32$
$\mu(\text{MoK}\alpha) \text{ (cm}^{-1})$	61,0	120,3	121,5
Meßbereich	2 <i>θ</i> ≤45°	2 <i>θ</i> ≤50°	2 <i>θ</i> ≤45°
Abtastung	ω -Scan	ω -Scan	ω -Scan
gemessene Reflexe	3351	2147	5968
beobachtete Reflexe	2367	1791	5047
Ablehnungskriterium	$F_{o}^{2} < \sigma(F_{o}^{2})$	$F_{0}^{2} < 3\sigma(F_{0}^{2})$	$F_0^2 < 2\sigma(F_0^2)$
R	0,047	0,061	0,055
$R_{ m w}$	0,035	0,060	0,055
p	0,009	0,010	0.010

Tab. I. Kristall- und Verfeinerungsdaten für 1-3.

Tab. II. Lageparameter der Atome mit äquivalenten isotropen Temperaturfaktoren.

Atom	x/a	y/b	z/c	$U(Å^2.10^3)$	
Verbindung 1					
I 1	0,0625(1)	0,1639(1)	0,3656(1)	58(1)	
12	-0.0814(1)	0,0693(1)	0,5298(1)	58(1)	
13	0.2122(1)	0,1050(1)	0,5337(1)	67(1)	
I 4	0,0539(1)	0,2237(1)	0,6288(1)	79(1)	
As1	0.0677(1)	0,1041(1)	0.5260(1)	45(1)	
N1	0,6864(4)	0,6865(4)	0,2609(5)	37(2)	
C11	0,7530(5)	0,6434(6)	0,2711(7)	44(3)	
C12	0,7542(6)	0,5859(6)	0,3467(7)	56(4)	
C13	0,8237(6)	0,5474(6)	0,3462(8)	61(4)	
C14	0,8328(7)	0,4953(7)	0,2667(10)	85(5)	
C21	0,6936(5)	0,7336(6)	0,1765(7)	46(3)	
C22	0,7511(6)	0,7915(6)	0,1703(7) $0,1834(7)$	57(4)	
C23		0,7915(6)	0.0923(8)	63(4)	
C24	0,7665(6) 0,8216(7)				
	0,6210(7)	0,8797(7)	0,0948(9)	88(5)	
C31	0,6748(5)	0,7316(6)	0,3482(7)	44(3)	
C32	0,6159(6)	0,7869(6)	0,3412(7)	48(4)	
C33	0,5948(6)	0,8113(6)	0,4364(7)	54(4)	
C34	0,5376(6)	0,8676(7)	0,4345(9)	72(4)	
C41	0,6246(5)	0,6359(6)	0,2480(7)	45(3)	
C42	0,6310(6)	0,5793(6)	0,1719(7)	51(4)	
C43	0,5638(6)	0,5334(6)	0,1709(7)	53(3)	
C44	0,5550(6)	0,4845(6)	0,2552(8)	59(4)	
Verbin	ndung 2				
I 1	0,8257(1)	0,5236(2)	0,6953(1)	41(1)	
12	0,8344(1)	-0.1049(1)	0,5624(1)	38(1)	
13	0,9726(1)	0,0880(2)	0,6981(1)	50(1)	
I4	0,9665(1)	0,3558(2)	0.5599(1)	51(1)	
As1	0,8416(1)	0,2118(2)	0,6298(1)	35(1)	
N1	0,4234(8)	0,2691(22)	0,6014(6)	97(6)*	
C1	0,3993(8)	0,2054(22)	0,6528(6)	95(8)*	
C2	0,3027(8)	0,2034(22)	0,6684(6)	103(8)*	
C3	0,2303(8)	0,1941(22)	0,6325(6)	92(8)*	
C4	0,2544(8)				
		0,3102(22)	0,5810(6)	106(8)*	
C5	0,3510(8)	0,3215(22)	0,5655(6)	106(9)*	
	ndung 3				
I 1	0,0999(1)	0,4263(1) -		35(1)	
12	0,1890(1)	0,7201(1)	0,2072(1)	37(1)	
13	0,0469(1)	0,8016(1) -		45(1)	
I4	-0.0250(1)	0,5326(1) -	-0,2871(1)	42(1)	
15	0,2443(1)	0,6593(1) -	-0,1590(1)	52(1)	
16	0,3109(1)	0,5920(1)	0,4241(1)	66(1)	
17	0,2441(1)	0,3320(1)	0,1573(1)	55(1)	
18	0,3915(1)	0,5586(1)	0.0889(1)	56(1)	
19	0,5358(1)	0,7858(1) -	-0.0137(1)	80(1)	
I 10	0,4790(1)	0,8645(1)	0,3349(1)	67(1)	
I11	0,3594(1)	0,9500(1)	0.0997(1)	57(1)	
I12	0,1242(1)	1,0866(1)	0,2085(1)	75(1)	
I13	0,2685(1)	1,0333(1)	0,4526(1)	73(1)	
I14	-0.0013(1)	0,8847(1)	0,3417(1)	78(1)	
As 1	0,0763(1)	0,6244(1) -	-0.0618(1)	36(1)	
	0,2360(1)	0.5098(1)	0.1897(1)		
As2				37(1)	
As3	0,3871(1)	0,7884(1)	0.1121(2)	46(1)	
As4	0,1517(1)	0,9325(1)	0,2455(1)	44(1)	
N1	0,3367(23)	0,3758(24)	0,5935(28)	248(16)*	
C11	0,2967(29)	0,3856(24)	0,7131(29)	214(7)*	
C111	0,3003(30)	0,2996(27)	0,7552(31)	214(7)*	

Tab. II. (Fortsetzung)

Atom	x/a	y/b	z/c	$U(\mathring{A}^2.10^3)$
C12	0,2416(28)	0,3195(20)	0,5218(31)	214(7)*
C121	0,1661(22)	0,3753(28)	0,5554(36)	214(7)*
C13	0,4109(25)	0,3226(29)	0,5528(28)	214(7)*
C131	0,4218(28)	0.2980(29)	0,4134(30)	214(7)*
N2	0,7754(13)	0.1142(12)	0,2756(16)	107(6)*
C21	0,8418(17)	0,0505(19)	0,2567(26)	171(6)*
C211	0,8026(24)	-0.0478(17)	0.1469(28)	171(6)*
C22	0,6737(16)	0,0659(15)	0,2756(30)	171(6)*
C221	0,6121(16)	0.1378(23)	0,3042(31)	171(6)*
C23	0,8026(19)	0,1778(21)	0,4107(17)	171(6)*
C231	0,9019(19)	0,2514(19)	0,4303(24)	171(6)*

^{*} Diese Atome wurden isotrop verfeinert.

Atome sind. So nehmen Halogenatome wie F oder Cl aus benachbarten Anionen in der Regel eine Position als Spitze einer X_2E -Fläche ("face-capping" = Y) oder als Brücke einer XE-Kante ("edge-bridging" = Y') ein. Gewöhnlich entstehen somit Koordinationspolyeder mit 7–10 Ecken (einschließlich des Elektronenpaares E) für die einzelnen Sb(III)-Atome, z.B. eine $AX_3Y_3Y_3E$ -Umgebung in KSb_4F_{13} [11].

Für die As1-Atome in dem zentrosymmetrischen dimeren Anion $[As_2I_8]^{2-}$ 1 wird eine $AX_4Y'E$ -Geometrie (Abb. 1) gefunden. Die Kristallstruktur weist

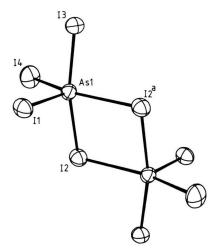


Abb. 1. ORTEP-Zeichnung (Schwingungsellipsoide mit einer 50-proz. Aufenthaltswahrscheinlichkeit) des Anions $\left[As_2I_8\right]^{2-}$ in **1.**

keine weiteren As…I-Wechselwirkungen kürzer als die Summe der van der Waals-Radien von As und I (3,83 Å [12]) auf. Wie bei den analogen dimeren Anionen in [MeanH]₂[As₂Cl₈] und [MeanH]₂[As₂Br₈] [4] sind die trans-ständigen As-I-Abstände im Anion [As₂I₈]²⁻ miteinander korreliert. So ist As 1-I4 mit 2,667(1) Å wesentlich kürzer als As-I3 2,773(1) Å, was die sehr unterschiedlichen transständigen As-I2-Brückenabstände von 3,289(1) bzw. 2,931(1) Å widerspiegelt. Anhand der ermittelten As-I-Bindungslängen in 1-3 kann die Konstante k in der Paulingschen Gleichung $d_n = d_0 - k \cdot \log n$ (n = Bindungsordnung [13]) empirisch ermittelt werden. Für do wurde die Summe der kovalenten Radien von As und I von 2,54 Å [13] eingesetzt; k wurde zu 1,12 errechnet. Nach dieser Gleichung werden Bindungsordnungen von 0,45 und 0,21 für die Brükkenbindungen As1-I2 und As1-I2a ermittelt. Im Gegensatz zum Anion [As₂I₈]²⁻ sind die Brückenabstände in den Anionen [As₂Br₈]²⁻ und [As₂Cl₈]²⁻ fast gleich lang: 3,152(1) bzw. 3,203(1) Å in $[As_2Br_8]^{2-}$ sowie 3,035(1) bzw. 3,063(1) Å in $[As_2Cl_8]^{2-}$. Diese Werte entsprechen durchschnittlichen Bindungsordnungen von lediglich 0,14 bzw. 0,11, so daß die Stereochemie der As-Atome in diesen Anionen als AX₃Y₂E zu bezeichnen ist. Die sehr deutliche Zunahme der Stärke der Brückenbindungen im $[As_2I_8]^{2-}$ im Vergleich zu $[As_2Br_8]^{2-}$ und $[As_2Cl_8]^{2-}$ ist im Einklang mit einer Einstufung der Arsentrihalogenide als weichen Lewis-Säuren.

Im Gegensatz zu 1 wird die Koordinationszahl 6 am Arsen für die Anionen in 2 und 3 erreicht. In 2 wird eine Zweier-Einfachkette [AsI₄⁻]_∞ aus kantenverknüpften verzerrten AsI6-Oktaedern gebildet (Abb. 2). Die Kette wird durch die b-Gleitspiegelebene der Raumgruppe Pbca in Richtung [010] aufgebaut. Es werden drei unterschiedliche Bereiche für die As-I-Abstände beobachtet: (a) terminale Bindung As1-I3 und As1-I4 mit den Abständen 2,645(2) bzw. 2,674(2) Å, (b) trans-ständige verbrückende Bindungen As1-I1 und As1-I2 2,869(2) bzw. 2,920(2) Å sowie (c) schwache verbrückende Bindungen As1-I1^a und As1-I2^b 3,165(2) bzw. 3,261(2) Å, die trans zu den terminalen Bindungen As1-I4 bzw. As1-I3 stehen. As1 weist somit eine AX₄Y'₂E-Geometrie auf. Für As 1-I1^a und As 1-I2^b werden Bindungsordnungen von 0,28 bzw. 0,23 ermittelt. Eine Zweier-Einfachkette bestehend aus verzerrten AsBr6-Oktaedern wird ebenfalls im Salz [pyH][AsBr₄] beobachtet [4]. Allerdings enthalten in diesem Fall die As_2Br_2 -Vierringe der Kette kristallographische Inversionszentren. Die As-Atome im Anion $[AsBr_4^-]_\infty$ weisen auch eine $AX_4Y'_2E$ -Geometrie auf, wobei den *trans* zu den terminalen As-Br-Bindungen stehenden As-Br-Brückenbindungen [3,130(1)] bzw. 3,129(1) Å] lediglich eine Bindungsordnung von 0,16 zugeordnet werden kann, d.h. um 0,07 bzw. 0,12 geringer als für die analogen As-I-Brückenbindungen im Anion $[AsI_4^-]_\infty$.

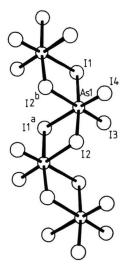


Abb. 2. Die Kettenstruktur des Anions [AsI₄⁻]_∞ in 2.

Mit dem Triethylammoniumkation wird das überraschend große zentrosymmetrische Anion [As₈I₂₈]⁴⁻ isoliert, das aus acht kantenverbrückten verzerrten AsI₆-Oktaedern besteht (Abb. 3). Die einzelnen As-Atome besitzen jeweils eine AX₃Y₃E-Geometrie, wobei die kürzeren As-I-Abstände zwischen 2,578(2) und 2,736(2) Å, die längeren As-I-Abstände zwischen 3,068(2) und 3,507(2) Å liegen. Das diskrete Anion [As₈I₂₈]⁴⁻ weist eine enge Verwandtschaft zu den vor kurzem charakterisierten Kettenanionen [Sb₃I₁₀⁻]_∞ auf [14]. Dagegen besitzt das Anion [As₈Cl₂₈]⁴⁻ eine völlig andere Struktur [7] – einer zentralen [As₄Cl₁₆]⁴⁻-Einheit mit cubanartiger Struktur sind vier AsCl3-Moleküle sehr locker angelagert. Wie in 2, scheinen die freien Elektronenpaare für die AsI₆-Oktaeder in 3 nicht stereochemisch wirksam zu sein.

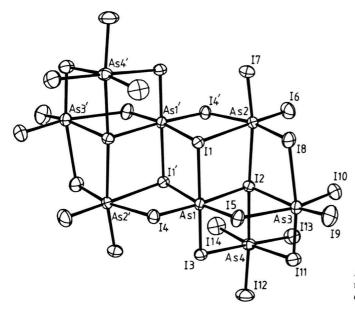


Abb. 3. ORTEP-Zeichnung (Schwingungsellipsoide mit einer 50-proz. Aufenthaltswahrscheinlichkeit) des Anions $\left[As_8I_{28}\right]^{4-}$ in $\boldsymbol{3.}$

Tab. III. Bindungslängen und -winkel im Anion $[As_2I_8]^{2-}\, {\bf 1}.$

As 1-I1 As 1-I2 ^a As 1-I4	2,585(1) 3,289(1) 2,667(1)	As1-I2 As1-I3	2,931(1) 2,773(1)
I1-As1-I2 I1-As1-I3 I2-As1-I2 ^a I2-As1-I4 I2 ^a -As1-I4 As1-I2-As1 ^a	94,1(1) 94,1(1) 82,7(1) 94,1(1) 160,0(1) 97,3(1)	I1-As1-I2 ^a I1-As1-I4 I2-As1-I3 I2 ^a -As1-I3 I3-As1-I4	100,9(1) 99,0(1) 167,3(1) 86,3(1) 94,1(1)

Symmetrie position: a - x, -y, 1-z.

Tab. IV. Bindungslängen und -winkel im Anion $[AsI_4^{-}]_{\infty}$ 2.

As1-I1 As1-I2 As1-I3	2,869(2) 2,920(2) 2,645(2)	As 1-I1 ^a As 1-I2 ^b As 1-I4	3,165(2) 3,261(2) 2,674(2)
I1-As1-I1 ^a I1-As1-I2 ^b I1-As1-I4 I1 ^a -As1-I2 ^b I1 ^a -As1-I4 I2-As1-I3 I2 ^b -As1-I3 I3-As1-I4 As1-I2 ^b -As1	91,7(1) 82,9(1) 94,3(1) 84,4(1) 170,6(1) 95,3(1) 170,9(1) 96,2(1) 95,0(1)	$\begin{array}{c} I1-As1-I2\\ I1-As1-I3\\ I1^a-As1-I2\\ I1^a-As1-I3\\ I2-As1-I2^b\\ I2-As1-I4\\ I2^b-As1-I4\\ As1-I1-As1^b \end{array}$	173,6(1) 89,4(1) 83,9(1) 91,1(1) 92,1(1) 89,6(1) 89,1(1) 98,2(1)

Symmetrie position: ${}^{a}_{b}$ 1,5-x, -0,5+y, z; ${}^{b}_{b}$ 1,5-x, 0,5+y, z.

Tab. V. Bindungslängen und ausgewählte Bindungswinkel im Anion $\left[As_8I_{28}\right]^{4-}.$

As1-I1	3,074(2)	As 1-I1 ^a	3,068(2)
As1-I2	3,163(2)	As1-I3	2,723(2)
As1-I4	2,690(2)	As1-I5	2,736(2)
As2-I1	3,204(2)	As2-I2	3,349(2)
$As2-I4^a$	3,301(2)	As2-I6	2,642(2)
As2-I7	2,606(2)	As2-I8	2,640(2)
As3-I2	3,182(2)	As3-I5	3,388(2)
As3-I8	3,396(2)	As3-I9	2,648(2)
As3-I10	2,613(2)	As3-I11	2,619(2)
As4-I2	3,260(2)	As4-I3	3,264(2)
As4-I11	3,507(2)	As4-I12	2,627(2)
As4-I13	2,644(2)	As4-I14	2,578(2)
I3-As1-I4	93,4(1)	I3-As1-I5	94,7(1)
I4-As1-I5	92,7(1)	I6-As2-I7	96,7(1)
I6-As2-I8	98,0(1)	I7-As2-I8	96,1(1)
I9-As3-I10	97,9(1)	I9-As3-I11	97,1(1)
I10-As3-I11		I12-As4-I13	96,0(1)
I12-As4-I14		I13-As4-I14	98,4(1)

Symmetrie position: a - x, 1 - y, -z.

- [1] W. Petzold, Z. Anorg. Allg. Chem. 214, 355 (1933).
- [2] J. F. Sawyer und R. J. Gillespie, Prog. Inorg. Chem. **34**, 65 (1986).
- [3] J. Kaub und W. S. Sheldrick, Z. Naturforsch. 39b, 1252 (1984).
- [4] J. Kaub und W. S. Sheldrick, Z. Naturforsch. 39b, 1257 (1984).
- [5] A. T. Mohammed und U. Müller, Acta Crystallogr. C41, 329 (1985).
- [6] A. T. Mohammed und U. Müller, Z. Anorg. Allg. Chem. 523, 45 (1985).
- [7] W. Willing, U. Müller, J. Eicher und K. Dehnicke, Z. Anorg. Allg. Chem. **537**, 145 (1986).
- [8] K. B. Dillon, A. W. G. Platt, A. Schmidpeter, F. Zwaschka und W. S. Sheldrick, Z. Anorg. Allg. Chem. 488, 7 (1982).

- [9] W. S. Sheldrick, A. Schmidpeter, F. Zwaschka, K. B. Dillon und A. W. G. Platt, J. Chem. Soc. Dalton Trans. 1981, 413.
- [10] W. S. Sheldrick und H.-J. Häusler, Angew. Chem. 99, 1184 (1987).
- [11] B. Ducourant, R. Fourcade, E. Philipot und G. Mascherpa, Rev. Chim. Mineral. 12, 553 (1975).
- [12] A. Bondi, J. Phys. Chem. 68, 441 (1964).
- [13] L. Pauling, The Nature of the Chemical Bond, Cornell University Press, New York (1960).
- [14] S. Pohl, W. Saak, P. Mayer und A. Schmidpeter, Angew. Chem. 98, 813 (1986).