Notizen

NOTIZEN

The Crystal Structure of TlBrI₂(4-methylpyridine-N-oxide)₂

W. Hiller*, A. Castiñeiras, and M. E. García-Fernandez

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen

M. R. Bermejo, J. Bravo, and A. Sanchez

Departamento de Química Inorganíca, Facultad de Química, Universidad, Santiago de Compostela (Spain)

Z. Naturforsch. **43b**, 132–133 (1988); received August 22/September 7, 1987

Bromo-diiodo-bis(4-methylpyridine-N-oxide)thallium(III), Crystal Structure, Thallium(III) Halide Compounds

The unit cell of TlBrI₂(4-methylpyridine-N-oxide)₂ is orthorhombic, space group Pnna, with a=1126.9(3), b=919.8(2), c=1210.4(3) pm, and Z=4. The structure consists of discrete TlBrI₂(4-methylpyridine-N-oxide)₂ molecules which have a distorted trigonal-bipyramidal geometry. The thallium atom is coordinated to two iodine atoms and a bromine atom in equatorial positions, and by two 4-methylpyridine-N-oxide ligands in the axial positions.

Introduction

Our research on coordination of thallium trihalides with different ligands [1, 2] has lately concentrated on the study of the interhalocompounds of thallium(III) of the type $TlXX_2 \cdot nL$ (X = halide, L = ligand).

Recently we described the crystal structures of $TlBr_2I(OPPh_3)_2$ [3] and $TlBrI_2(OPPh_3)_2$ [4]. Here, as a continuation of our studies on stabilization of thallium(III) in the complexes indicated above, we report the molecular structure of $TlBrI_2(4\text{-picO})_2$ (4-picO = 4-methylpyridine-N-oxide).

Structure Determination

TlBrI₂(4-picO)₂ was prepared by oxidation of TlBr with iodine in acetonitrile in the presence of 4-methylpyridine-N-oxid by the method described by Bermejo *et al.* [2]. For the structure determination, the data were collected at room temperature using the automated four-circle diffractometer CAD4 (ENRAF-

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/88/0100-0132/\$ 01.00/0

NONIUS, Delft) with graphite-monochromated MoK_{α} radiation. The cell constants were determined from the setting angles of 25 reflections (Table I) and

Table I. Crystal data for TlBrI₂(4-PicO)₂*.

Molecular formula	$C_{12}H_{14}BrI_2N_2O_2Tl$
Molecular weight	756.34
Crystal class	Orthorhombic
Space group	Pnna (N° 52)
Lattice constants	a = 1126.9(3) pm
	b = 919.8(2) pm
	c = 1210.4(3) pm
Cell volume	$V = 1254.6 \cdot 10^6 \text{ pm}^3$
Formula units	Z = 4
Density	$\varrho_x = 3.426 \text{ g} \cdot \text{cm}^{-3}$

^{*} Further details of the structure determination have been deposited as Supplementary Publication No. CSD 52808. Copies may be obtained through the Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen.

from the systematic absences observed, the space group Pnna was determined. With ω/θ scan mode, 4539 reflections were collected in the range of $\theta=3-32^\circ$. Corrections for Lorentz and polarization effects and an empirical absorption correction (ψ -scan) [5] were applied. From 2084 independent reflections ($R_{int}=0.032$), 1108 with I > $3\cdot\sigma$ (I) were considered as observed and used for refinement. The structure was solved using the Patterson heavy-atom method, which revealed the positions of the Tl, I and Br atoms. The remaining atoms were located in suc-

Table II. Atomic positional parameters and isotropic thermal parameters $|pm^2 \cdot 10^4|$ for $TlBrI_2(4-PicO)_2$.

Atom	X	y	z	\mathbf{B}_{eq}
Tl	0.23597(9)	0.250	0.250	2.40(2)
I	0.1050(2)	0.3492(2)	0.0781(1)	3.49(3)
Br	0.4735(2)	0.250	0.250	2.21(4)
O	0.250	0.500	0.344(2)	2.7(4)
N	0.250	0.500	0.453(2)	2.2(4)
C(1)	0.343(2)	0.440(3)	0.510(2)	3.2(4)
C(2)	0.347(2)	0.443(3)	0.624(2)	3.4(5)
C(3)	0.250	0.500	0.683(3)	3.7(7)
C(4)	0.250	0.500	0.809(3)	6(1)

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter, defined as:

$$B_{eq} = (4/3)|a^2B_{11} + ... + abB_{12}\cos\gamma + ...|$$

Estimated standard deviations for the least significant figure are in parentheses. Parameters with no standard deviations were fixed by symmetry.

^{*} Reprint requests to Dr. W. Hiller.

Notizen 133

ceeding difference Fourier syntheses [6]. Hydrogen atoms were not included. In the last refinement all atoms (non-H) were assigned anisotropic temperature parameters. Final refinement converged at R = 0.053, $R_w = 0.063$ for 83 variables. Positional and thermal parameters are given in Table II*.

Discussion

The structure of bromo-diiodo-bis(4-methyl-pyridine-N-oxide)thallium(III) consists of discrete monomeric molecules in which the Tl atom is penta-coordinated. The molecule has a trigonal-bipyramidal structure with the halide atoms occupying equatorial positions, and the 4-picoline N-oxide ligands in the axial positions (Fig. 1). The bond an-

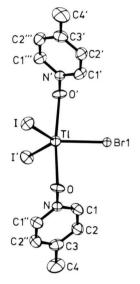


Fig. 1. The structure of TlBrI₂(4-PicO)₂.

Table III. Bond lengths (pm) and angles (deg) for TlBrI₂(4-PicO)₂.

Bond length	ıs	Bond angles	
Tl-O	257.0(3)	I-Tl-I'	113.97(3)
Tl-Br	267.6(1)	I-Tl-Br	123.02(2)
Tl-I	271.0(1)	I'-Tl-Br	123.02(2)
O-N	133(1)	I-Tl-O	94.1(1)
N-C(1)	137(1)	I-Tl-O'	89.7(1)
C(1) - C(2)	138(1)	Br-Tl-O	86.47(1)
C(2) - C(3)	140(1)	Br-Tl-O'	86.47(1)
C(3) - C(4)	152(2)	O-Tl-O'	172.95(2)
		Tl-O-N	116.3(1)
		O-N-C(1)	120.1(5)
		O-N-C(1'')	120.1(5)
		C(1)-N-C(1'')	119.8(9)
		N-C(1)-C(2)	121.1(9)
		C(2)-C(3)-C(2'')	119(1)
		C(2)-C(3)-C(4)	120.3(6)
		C(2'') - C(3) - C(4)	120.3(6)

gles in the equatorial plane are $113.97(3)^\circ$ and $123.02(2)^\circ$, the bond angles to the axial positions are between $86.47(1)^\circ$ and $94.1(1)^\circ$ which indicates a distorted geometry (Table III). The thallium-iodine distance is similar to those reported for triiodobis(3-methylpyridine-N-oxide)thallium [1], and the thallium bromide distance is greater than found in $TlBrI_2(OPPh_3)_2$ (258.0(1) pm) [4], but similar as in $TlBr_3(C_3H_5N)_3$ [7]. The Tl-O bond lengths (257 pm) are longer than the expected value of 221 pm derived from Paulings covalent radii [8].

We like to acknowledge the receipt of a research grant from DAAD (A. C. and M. E. G.-F.) and Prof. Dr. J. Strähle for providing us with facilities and his support.

^[1] M. R. Bermejo, A. Castiñeiras, M. Gayoso, W. Hiller, U. Englert, and J. Strähle, Z. Naturforsch. 39b, 861 (1984).

^[2] M. R. Bermejo, J. Irisarri, and M. Gayoso, Synth. React. Inorg. Met-Org. Chem., 15, 197 (1985).

^[3] A. Castiñeiras, W. Hiller, M. R. Bermejo, and M. Gayoso, Acta Crystallogr. C 42, 1289 (1986).

^[4] A. Castiñeiras, W. Hiller, J. Strähle, M. R. Bermejo, and M. Gayoso, An. Quím. Ser. B 82, 282 (1986).

^[5] A. C. T. North, D. L. Phillips, and F. S. Mathews, Acta Crystallogr. A24, 351 (1968).

^[6] Structure Determination Package (SDP-Plus), Version 1.1 (1984) of B. A. Frenz & Associates, Inc., College Station, Texas 77840, USA and ENRAF-NONIUS, Delft, Holland.

^[7] S. E. Jeffs, R. W. H. Small and I. J. Worrall, Acta Crystallogr. C40, 1827 (1984).

^[8] L. Pauling: The Nature of the Chemical Bond, 3rd Edit., p. 224, University Press, Ithaca (1960).