Oligophosphan-Liganden, XX [1]

Reduktion von CO₂ am Trisphosphanrhodium(I)-Komplex RhCl[t-BuP(CH₂CH₂CH₂PMe₂)₂]

Oligophosphine Ligands, XX [1]

Reduction of Carbon Dioxide by the Trisphosphinerhodium(I) Complex RhCl[t-BuP(CH₂CH₂CH₂PMe₂)₂]

Lutz Dahlenburg*, Constanze Prengel und Nils Höck

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13

Z. Naturforsch. 41b, 718-721 (1986); eingegangen am 28. Februar 1986

Carbon Dioxide, Bis(3-dimethylphosphinopropyl) tert-butylphosphine, Rhodium Complexes, NMR Spectra, X-Ray

The reaction of Rh₂Cl₂(*cyclo*-C₈H₁₂)₂ with *t*-BuP(CH₂CH₂CH₂PMe₂)₂ gave RhCl[*t*-BuP(CH₂CH₂PMe₂)₂] (1) which was characterized by its ¹H and ³¹P NMR spectra. 1 interacted with carbon dioxide to produce Rh(O₂CO)Cl[*t*-BuP(CH₂CH₂CH₂PMe₂)₂] (2) and CO. 2 was studied by IR and ¹³C and ³¹P NMR spectroscopy as well as by an X-ray structure analysis. There is no evidence for any production of carbon dioxide derivatives containing C- or C- and O-bound integer CO₂ ligands.

Frühere Arbeiten unserer Gruppe [1, 2] hatten für die von den Chelatphosphanen

 $RP(CH_2CH_2PPh_2)_2$ (R = Ph, t-Bu) gestützten Organorhodium(I)-Verbindungen

Rh(4-MeC₆H₄)[RP(CH₂CH₂CH₂PPh₂)₂] eine gegenüber Kohlendioxid deutlich abgestufte Reaktivität erkennen lassen. So lieferte der Komplex des an seinen Donatorstellen durchgehend phenylierten Liganden mit CO2 unter Druck lediglich ein äußerst labiles und analytisch daher nicht zu sicherndes Addukt $Rh(4-MeC_6H_4)[PhP(CH_2CH_2CH_2PPh_2)_2] \cdot xCO_2$ " [2]; bei Koordination des partiell P-alkylierten basischeren Stützliganden t-BuP(CH₂CH₂CH₂PPh₂)₂ entstanden hingegen sowohl das Insertionsprodukt $Rh[OC(O)C_6H_4Me-4][t-BuP(CH_2CH_2CH_2PPh_2)_2]$ als auch eine Verbindung der Zusammensetzung $Rh(C_2O_4)(4-MeC_6H_4)[t-BuP(CH_2CH_2CH_2PPh_2)_2],$ welche wir in Analogie zu $Ir(C_2O_4)Cl(PMe_3)_3$ [3] als Derivat mit C-O-verknüpftem RhOC(O)-OC(O)-Ringsystem formulierten [2]. Um zu prüfen, wie sich die Einführung eines an allen drei Phosphanfunktionen alkylierten und damit in seiner Basizität weiter gesteigerten Chelatliganden auf die Reaktivität des zentralen Rhodiumatoms gegenüber der am Kohlenstoff schwach elektrophilen CO₂-

Molekel auswirkt, haben wir nunmehr den Komplex RhCl[t-BuP(CH₂CH₂CH₂PMe₂)₂] (1) dargestellt und diesen mit Kohendioxid umgesetzt.

Ergebnisse

1 wurde aus Rh₂Cl₂(*cyclo*-C₈H₁₂)₂ und *t*-BuP(CH₂CH₂PMe₂)₂ als braunes Pulver erhalten. Das in C₆D₆ aufgenommene ¹H-NMR-Spektrum der Verbindung ergab die für die diastereotopen Methylgruppen der *trans*-ständigen Me₂P-Substituenten des Chelatphosphans zu fordernden virtuellen Tripletts bei $\delta = 1,55$ ($|^2J(PH)| + |^4J(PH)| = 6,8$ Hz) und $\delta = 1,27$ ($|^2J(PH)| + |^4J(PH)| = 4,8$ Hz); die *tert*-Butyl-Resonanz erschien als Dublett bei $\delta = 1,05$ ($|^2J(PH)| = 12,9$ Hz). Folgende ³¹P-NMR-Parameter wurden gefunden: $\delta(PBu') = 43,0$, $\delta(PMe_2) = -8,8$; $|^4J(Rh-PBu') = 168$, $|^4J(Rh-PMe_2) = 127$, $|^2J(PP) = 48$ Hz (Toluol-Lösung).

Beim Einleiten von Kohlendioxid in eine mit Trockeneis/Ethanol gekühlte Lösung von 1 in Toluol bildete sich ein gelbbrauner Niederschlag, der analytisch und spektroskopisch sowie durch Strukturanalyse eines aus der Mutterlauge eines Reaktionsansatzes erhaltenen Einkristalls als Carbonatoderivat Rh(O₂CO)Cl[*t*-BuP(CH₂CH₂CH₂PMe₂)₂] (2) identifiziert wurde.

Das IR-Spektrum einer Nujol-Verreibung von **2** ließ für das RhO₂CO-Fragment des Moleküls fol-

^{*} Sonderdruckanforderungen an Prof. Dr. L. Dahlenburg. Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0340–5087/86/0600–0718/\$ 01.00/0

gende intensitätsstarke C:--O-Absorptionen erkennen: 1655 (vs), 1622 (s), 1243 (s) cm⁻¹. Die ¹³C-Resonanz des Carbonat-Kohlenstoffatoms wurde an einer Lösung des Komplexes in Pyridin- d_5 als Dublett bei $\delta=166,5$ (J=4 Hz) beobachtet. Die Lage dieses Signals entspricht weitgehend den wenigen bekannten Verschiebungswerten $\delta(C_3)$ anderer Carbonate, welche z.B. für Na₂CO₃ und NaHCO₃ mit 169,1 bzw. 161,3 ppm [4] und für Na[Co(O₂C-C₄H₇N-CH₂-)₂(O₂CO)]·3H₂O mit 168,7 ppm [5] angegeben werden. Dem ³¹P-NMR-Spektrum von **2**, gelöst in Pyridin, waren folgende Daten zu entnehmen: $\delta(P_3$ Bu') = 25,2, $\delta(P_3$ Me) = -6,0; $^1J(Rh-P_3)$ Bu') = 110, $^1J(Rh-P_3)$ Bu' = 88, $^2J(P_3)$ Bu' = 34 Hz.

Die Strukturanalyse wurde an einem ungefähr $0.1\times0.2\times0.3$ mm messenden Bruchstück eines aus einer Toluol/Hexan-Mischung gewachsenen Kristalls durchgeführt (Tab. I). Abb. 1 gibt eine Ansicht des Moleküls und verdeutlicht das für die Zusammenstellung der Atomparameter (Tab. II) sowie der Abstände und Winkel (Tab. III) gewählten Bezifferungsschema*.

2 enthält den *t*-BuP(CH₂CH₂CH₂PMe₂)₂-Liganden in meridionaler Koordination. Der sperrige *tert*-Bu-

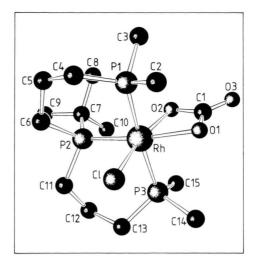


Abb. 1. Molekülansicht von Rh(O₂CO)Cl[t-BuP(CH₂CH₂CH₂PMe₂)₂].

tylrest orientiert sich erwartungsgemäß in Richtung auf den sterisch am geringsten erfüllten Ausschnitt der Koordinationshülle, welcher durch den mit etwa 105° weit geöffneten O(2)–Rh–P(2)-cis-Bindungswinkel vorgegeben ist. Die Rh–O-Bindungslängen, 202,7 und 204,3 pm, können gut mit denen der Tetrakis(μ -carbonato)dirhodat(II)-Anionen [Rh₂(O₂CO)₄(OH₂)₂]⁴⁻ und [Rh₂(O₂CO)₄Cl₂]⁶⁻, ca. 203–205 pm [6], verglichen werden. Der Rhodium(III)-Komplex H₂Rh(O₂COH)(i-Pr₃P)₂ enthält

Summenformel $C_{15}H_{33}ClO_3P_3Rh$ (492,72) Raumgruppe monoklin $P2_1/n$ Zellparameter^b = 905,3(6) pma = 982,7(6) pm= 2780(1) pm $91,73(7)^{\circ}$ V $= 2472 \times 10^6 \text{ pm}^3$ Formeleinheiten je Zelle Z 4 berechnete Dichte $1,32 \text{ g/cm}^3$ Anzahl der Reflexe 4972 ($2\theta_{\text{max}} = 50^{\circ}$; $\theta/2\theta$ -Abtastung) - gesammelt - systematisch abwesend 301 (h0l für $h + l \neq 2n$, 0k0 für $k \neq 2n$) symmetrieunabhängig 4372 - beobachtet 2726 mit $|F_0| > 4\sigma(F_0)$ 2724 (LP-korrigiert, keine Absorptionskorrekturc; - verwendet 101 und 011 wegen $|F_o| \ll |F_c|$ unterdrückt) Lösungsmethode Patterson-Synthese Verfeinerung volle Matrix, anisotrope Temperaturfaktoren, H-Atome unberücksichtigt: 220 Parameter R-Werte R, $R_{\rm w}$ 0,083; 0,076 Gewichtssetzung $w = 1/\sigma^2(F_0)$

Tab. I. Kristallstrukturdaten^a.

^{*} Der vollständige Datensatz kann beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 51780, der Autoren und des Zeitschriftenzitats angefordert werden.

^a Vierkreis-Diffraktometer, Mo−Kα-Strahlung (λ = 71,069 pm), T = 293 K; ^b diffraktometrisch anhand von 16 Reflexen mit 12°<2θ<25°; ^c μ (Mo−K α) = 9,06 cm⁻¹.

Tab. II. Lageparameter und äquivalente isotrope Temperaturfaktoren U_{aq} ($U_{aq} = (U_{11} + U_{22} + U_{33})/3$).

Atom	x/a	y/b	z/c	$U_{\bar{a}q}$
Rh	0,16930(15)	0,50869(13)	0,13453(4)	0,042(1)
Cl	0,1036(6)	0,6425(4)	0,0661(2)	0,074(6)
P(1)	0,2673(5)	0.3498(4)	0.0817(2)	0.054(5)
P(2)	-0.0592(5)	0,4153(4)	0,1310(2)	0.050(5)
P(3)	0,0950(6)	0,6890(4)	0.1820(2)	0.055(5)
O(1)	0,3847(13)	0,5626(10)	0,1477(4)	0.07(1)
O(2)	0,2702(12)	0,4224(9)	0,1930(3)	0.05(1)
O(3)	0,5027(12)	0,4761(12)	0,2155(4)	0.07(1)
C(1)	0,3976(16)	0,4932(20)	0,1867(6)	0.06(2)
C(2)	0,4159(20)	0,4220(17)	0,0504(6)	0.08(2)
C(3)	0,3547(21)	0,1966(16)	0,1085(6)	0.09(2)
C(4)	0,1421(19)	0,2832(16)	0.0344(5)	0.06(2)
C(5)	-0.0080(21)	0,2308(16)	0.0512(5)	0.06(2)
C(6)	-0.1119(18)	0,3352(16)	0.0713(5)	0.06(2)
C(7)	-0.0997(23)	0,2807(17)	0,1757(6)	0.06(2)
C(8)	0.0214(22)	0.1692(16)	0,1737(6)	0.08(2)
C(9)	-0.2551(20)	0,2185(18)	0,1678(7)	0.08(2)
C(10)	-0.0852(23)	0,3483(16)	0,2276(5)	0.09(2)
C(11)	-0.2191(15)	0,5350(15)	0.1332(4)	0.05(2)
C(12)	-0.2164(21)	0.6466(17)	0.1728(6)	0.07(2)
C(13)	-0.0867(20)	0,7516(16)	0,1700(7)	0.07(2)
	0,2176(20)	0,8343(15)	0,1747(6)	0.08(2)
	0,1075(21)	0,6591(16)	0,2478(5)	0.08(2)

Tab. III. Metall-Ligand-Bindungslängen (pm) und -winkel (°).

Bindung	Länge	Atome	Winkel
Cl-Rh	237,4(4)	P(1)-Rh-Cl	87,5(2)
P(1)-Rh	233,7(5)	P(2)-Rh-Cl	89,1(2)
P(2)-Rh	226,3(5)	P(2)-Rh-P(1)	93,8(2)
P(3)-Rh	232,1(4)	P(3)-Rh-Cl	87,9(2)
O(1)-Rh	204,3(12)	P(3) - Rh - P(1)	171,7(2)
O(2)-Rh	202,7(9)	P(3) - Rh - P(2)	93,1(2)
		O(1)-Rh-Cl	102,4(3)
		O(1) - Rh - P(1)	84,7(3)
		O(1)-Rh-P(2)	168,4(3)
		O(1) - Rh - P(3)	89,5(3)
		O(2)-Rh-Cl	166,1(3)
		O(2) - Rh - P(1)	93,1(3)
		O(2) - Rh - P(2)	104,7(3)
		O(2) - Rh - P(3)	89,7(3)
		O(2)-Rh-O(1)	63,9(4)

hingegen zwei durch die *trans*-Hydridoliganden auf 227,9 und 230,6 pm gedehnte Metall-Sauerstoff-Bindungen [7]. Auch in der Zweikern-Verbindung (Ph₃P)₃Rh-OCO₂-Rh(PPh₃)₂·C₆H₆ [8] fallen die Rhodium-Carbonat-Abstände mit etwa 211–214 pm deutlich länger aus als in **2**, was in diesem Fall eine Folge der vergrößerten Kovalenzradien der Rh(I)-

Zentren sein mag. Der für **2** gemessene Carbonat-Griffwinkel O(2)-Rh-O(1) bewegt sich mit 63,9° innerhalb des für Carbonatoübergangsmetallkomplexe typischen Bereichs [9].

Diskussion

Die Bildung eines CO₃²⁻-Derivats bei der Einwirkung von Kohlendioxid auf einen Phosphanrhodium(I)-Komplex wurde bereits früher am System RhH(PPh₃)₄/CO₂ beobachtet, welches als Umsetzungsprodukt die carbonato-verbrückte Dimetall-Verbindung $Rh_2(CO_3)(PPh_3)_5 \cdot C_6H_6$ (s. o.) erbrachte [8]. Zwischen den denkbaren Reaktionsalternativen - Reduktion von CO₂ zu CO oder Carbonatbildung unter der Mithilfe eingeschleppter Sauerstoff- und/ oder Feuchtigkeitsspuren - konnte in diesem Fall allerdings nicht unterschieden werden. Demgegenüber entsteht 2 eindeutig gemäß $1 + 2 CO_2 = 2 + CO$, denn das für einen solchen Redoxvorgang zu fordernde Kohlenmonoxid ließ sich in dem aus der Reaktionsapparatur austretenden Gasstrom durch positive I₂O₅/CO-Reaktion nachweisen.

Trotz vielfältiger Abwandlungen der Versuchsbedingungen gelang es nicht, das CO2-Molekül als solches an das zentrale Rhodiumatom von 1 zu binden und einen z. B. mit Rh(η^{1} -CO₂)I[1,2-(Me₂As)₂C₆H₄]₂ [10] vergleichbaren Komplex zu synthetisieren. Dieser Befund widerspricht Angaben anderer Autoren, nach denen sich die aus Rh₂Cl₂(C₂H₄)₄ und einzähnigen Alkyl- oder Arylphosphanen PR3 in situ erzeugbaren Spezies (R₃P)₃RhCl und (R₃P)₂RhCl mit Kohlendioxid zu wirklichen CO2-Komplexen, nämlich $(R_3P)_3ClRh(\eta^1-CO_2)$ und $(R_3P)_2ClRh(\eta^2-CO_2)$, umsetzen sollen [11]. Wir haben uns daher bemüht, die letztgenannten Befunde zu reproduzieren. Dabei fanden wir jedoch, ebenso wie es James et al. vor geraumer Zeit mitteilten [12], keinerlei Anhaltspunkte, welche auch nur auf das Einsetzen einer wie auch immer gearteten Reaktion zwischen Kohlendioxid und den in Lösung befindlichen Rh(I)-Verbindungen hätten schließen lassen.

Experimentelles

Arbeitstechnik: [1]. – IR-Spektren: Perkin-Elmer 325. ¹H-NMR-Spektren: Bruker WP 80 (80,13 MHz; SiMe₄ als äußerer Standard). – ¹³C-NMR-Spektren: Bruker AM 360 (90,56 MHz; SiMe₄ als äußere Referenz). – ³¹P-NMR-Spektren: Bruker WH 90 (36,44 MHz; H₃PO₄ ext. als Bezugssubstanz, Hoch-

feldverschiebungen mit negativem Vorzeichen; nichtdeuterierte Lösemittel, äußerer Aceton-d₆-Lock). – Strukturanalyse: Syntex P2₁. – Computerprogramme: SHELX [13] und SCHAKAL [14].

[Bis(3-dimethylphosphanopropyl)tert-butylphosphan]chlororhodium(I) (1)

Die Lösung von 1,81 g (3,67 mmol) Rh₂Cl₂(*cyclo*-C₈H₁₂)₂ [15] in 30 ml Toluol wurde mit 2,16 g (7,34 mmol) *t*-BuP[(CH₂)₃PMe₂]₂ [16] versetzt. Nach 1 h Rühren bei R.T. wurde auf etwa die Hälfte eingeengt und **1** durch Zugabe von 15 ml *n*-Hexan als brauner feinpulvriger Niederschlag gefällt. Ausbeute (nach Waschen mit Hexan und Trocknen im Vakuum): 1,80 g (57%).

 $C_{14}H_{33}ClP_3Rh$ (432,70)

Ber. C 38,86 H 7,69, Gef. C 39,60 H 7,85.

[Bis(3-dimethylphosphanopropyl)tert-butylphosphan]carbonatochlororhodium(III) (2)

Durch die mit Trockeneis/Ethanol gekühlte dunkelbraune Lösung von 1,27 g (2,94 mmol) **1** in 110 ml Toluol wurde 6 h Kohlendioxid ("Testkohlensäure" der Fa. Linde; 99,995% CO₂) geleitet. Die

durch teilweise Kondensation des Kohlendioxids dickflüssig werdende Reaktionsmischung hellte sich dabei auf, und der gelbbraune Komplex 2 begann sich langsam abzuscheiden. Zur Vervollständigung der Kristallisation wurden 40 ml Hexan zugefügt und über Nacht unter externer Trockeneis-Kühlung stehengelassen. Anderntags wurde filtriert, mit Hexan gewaschen und im Ölpumpenvakuum getrocknet: 700 mg (48%).

 $C_{15}H_{33}ClO_3P_3Rh$ (492,72)

Ber. C36,57 H6,75 Cl7,20 O 9,74 P18,86, Gef. C36,17 H7,15 Cl7,15 O10,0 P18,6.

Das bei der Bildung von 2 freigesetzte Kohlenmonoxid wurde qualitativ dadurch erfaßt, daß der Gasstrom nach Passieren der Lösung zunächst über aufgeheiztes Diodpentoxid und dann durch KI/Stärke-Lösung geleitet wurde. Letztere ergab entsprechend der am I_2O_5 -Kontakt abgelaufenen Reaktion I_2O_5 + 5 CO = I_2 + 5 CO $_2$ eine positive Iod/Stärke-Reaktion.

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Firma Degussa für die großzügige Förderung dieser Untersuchungen durch Sach- und Personalmittel sowie durch Chemikalienspenden.

^{[1] 19.} Mitteilung: L. Dahlenburg und C. Prengel, J. Organomet. Chem., im Druck.

^[2] L. Dahlenburg und C. Prengel, Organometallics 3, 934 (1984).

^[3] T. Herskovitz und L. J. Guggenberger, J. Am. Chem. Soc. **98**, 1615 (1976).

^[4] E. Breitmaier, G. Haas und W. Voelter: Atlas of Carbon-13 NMR Data, Vol. 1, Compds. 408/409, Heyden & Son GmbH, Rheine 1979.

^[5] T.-C. Woon und M. J. O'Connor, Aust. J. Chem. 32, 1661 (1979).

^[6] F. A. Cotton und T. R. Felthouse, Inorg. Chem. 19, 320 (1980).

^[7] T. Yoshida, D. L. Thorn, T. Okano, J. A. Ibers und S. Otsuka, J. Am. Chem. Soc. 101, 4212 (1979).

^[8] S. Krogsrud, S. Komiya, T. Ito, J. A. Ibers und A. Yamamoto, Inorg. Chem. 15, 2798 (1976).

^[9] D. A. Palmer und R. v. Eldik, Chem. Rev. 83, 651 (1983).

^[10] J. C. Calabrese, T. Herskovitz und J. B. Kinney, J. Am. Chem. Soc. 105, 5914 (1983).

^[11] M. Aresta und C. F. Nobile, Inorg. Chim. Acta 24, L 49 (1977).

^[12] B. R. James, M. Preece und S. D. Robinson, in E. C. Alyea und D. W. Meek (Herausg.): Catalytic Aspects of Metal Phosphine Complexes (Adv. Chem. Ser. 196), S. 145, American Chemical Society, Washington D.C. 1982.

^[13] G. Sheldrick, SHELX 76, Program for Crystal Structure Determination, Cambridge, England, 1976.

^[14] E. Keller, SCHAKAL – ein FORTRAN-Programm für die graphische Darstellung von Molekülmodellen, Freiburg, Deutschland, 1981.

^[15] G. Giordano und R. H. Crabtree, Inorg. Synth. 19, 218 (1979).

^[16] M. Antberg, C. Prengel und L. Dahlenburg, Inorg. Chem. 23, 4170 (1984).