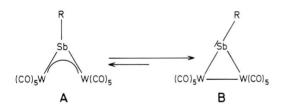
Phosphiniden-, Arsiniden- und Stibiniden-Komplexe, ihre valenztautomeren Formen und Dimerisierungsprodukte

Phosphinidene-, Arsinidene- and Stibinidene Complexes, Valence Tautomerism and Dimerisation Products

Heinrich Lang, Gottfried Huttner*, Beate Sigwarth, Ute Weber, Laszlo Zsolnai, Ibrahim Jibril und Olli Orama

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz


Z. Naturforsch. 41b, 191-206 (1986); eingegangen am 15. Oktober 1985

Phosphinidene Complexes, Arsinidene Complexes, Stibinidene Complexes, Valence Tautomerism, Dimerisation Products

Compounds RXHal₂ (X = P, As, Sb) react with Na₂[M₂(CO)₁₀] (M = Cr, Mo, W) to yield three types of products: **A**, $[(CO)_5M]_2X-R$ containing trigonally planar coordinated X; **C**, $[(CO)_5M]_3X-R$ containing coordinated metallacyclic ligands; **B**, $L_nM-L_nM-X(R)$; **D**, $[(CO)_5M]_n(R)X=X(R)$ (n=0,1,2,3). The relation between these species, especially the one based on the valence tautomerism between **A** und **B**, is experimentally verified. Preparative, spectroscopic and X-Ray-structural results reveal a consistent picture of the relevant chemistry.

Einleitung

Vor kurzem konnten wir am Beispiel von Stibinidenkomplexen zeigen, daß die offene Form **A** mit der cyclischen Form **B** in einem valenztautomeren Gleichgewicht steht [1].

Die Form **A**, in der das Antimon trigonal planar koordiniert ist, entspricht dem für Phosphiniden-, Arsiniden-, Stibiniden- und Bismutiniden-Komplexe auf breiter Basis abgesicherten Baumuster [2-5]. Die Form **B** kann durch Koordination des freien Elektronenpaares am Antimon abgefangen und stabilisiert werden [1]. Die dabei erhaltenen Komplexe $\mathbf{C} L_n \overline{\mathbf{M}} - \mathbf{L}_n \mathbf{M} - \mathbf{X}(\mathbf{R}) - \mathbf{M} \mathbf{L}_n$ entsprechen in ihrem Bau den schon früher beschriebenen metallacyclischen Phosphan-, Arsan- und Stiban-Komplexen [6].

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0340-5087/86/0200-0191/\$ 01.00/0

$$X = P$$
, As, Sb
 $L_n M = (CO)_5 Cr$, $Cp(CO)_2 Mn$

Da wir zudem zeigen konnten [1], daß die Verbindungen **A** in Verbindungen des Typs **D** wechselseitig übergeführt werden können,

X = Sb; R = einbindiger Rest; $L_n M = (CO)_5 W$, $(CO)_5 Cr$

bilden die Molekülarten A, C, D ein geschlossenes chemisches System.

Wir berichten hier über Synthese, Reaktivität und Struktur von Vertretern der Molekülarten A, C und D.

Diskussion und Ergebnisse

Arsinidenkomplexe (Typ **A**) sind auf vielfältige Weise zugänglich [3]. Besonders einfach entstehen sie bei der Umsetzung von $Na_2[M_2(CO)_{10}]$ [7] (M = Cr, Mo, W) mit RAsCl₂.

^{*} Sonderdruckanforderungen an Prof. G. Huttner.

Die Verbindungen 1 lösen sich in n-Pentan mäßig, gut in CH_2Cl_2 mit der für Arsinidenkomplexe typischen intensiv blauen Farbe [3]. Als kristalline Festkörper zeigen sie – infolge der hohen selektiven Reflektivität – grüngolden metallischen Glanz. Der in Komplexen $[L_nM]_2X-R$ (X=P, As, Sb; $ML_n=16$ -Elektronenkomplexfragment; R= einbindiger Rest) wirksame Chromophor ist das L_nM ·····X····· ML_n 3-Zentren- 4π -System [2b, 3b], das auch die trigonal planare Koordination der Hauptgruppenelemente X erklären kann.

Alle Verbindungen 1 ergeben unter EI-Bedingungen charakteristische Massenspektren (Tab. III, exp. Teil), in denen neben dem jeweiligen Molekülionenpeak M^+ intensive Fragmentserien M^+ -nCO ($n=1,2,3\cdots 10$) auftreten. Zusätzlich beobachtet man stets ein Signal für MAsR $^+$ sowie weitere Fragmentierungsserien, die der Fragmentierung der Reste R entsprechen (Tab. III, exp. Teil).

Die IR-Spektren von $\mathbf{1}$ (Tab. II, exp. Teil) weisen, wie es für Komplexe $[(CO)_5M]_2X-R$ (X=P, As, Sb; M=Cr, Mo, W) typisch ist, mehr ν_{CO} -Streckschwingungsbanden auf als für ein C_{4v} -symmetrisches $(CO)_5M$ -Fragment erwartet würden [8]: Dementsprechend liegen auch bei den Verbindungen $\mathbf{1}$ in Lösung mehrere rotamere Formen nebeneinander vor [2].

In den ¹H-NMR-Spektren von **1** (Tab. II, exp. Teil) fällt auf, daß die Signale für die zum Arsen α -ständigen CH-Gruppen stark tieffeldverschoben sind. Das Signal für das Vinylproton von **1d** liegt bei 6,25 ppm. Noch auffälliger ist die Verschiebung des Methylwasserstoffs von **1a–1c**, dessen Signal um 7,9 ppm liegt. Daß das Bindungssystem in Komplexen [(CO)₅M]₂X–R (X = P,

As, Sb; $ML_n = 16$ -Elektronenkomplexfragment) sehr starke paramagnetische Verschiebungen auslösen kann, ist am Beispiel von Phosphinidenkomplexen $[(CO)_5M]_2P-R$ nachgewiesen [2], für die ^{31}P -NMR-Verschiebungen um bis zu 1362 ppm beobachtet wurden. Als Deutung hierfür haben wir den, auch durch die intensive Farbe solcher Komplexe belegten, kleinen HOMO/LUMO-Abstand vorgeschlagen [2]. Die hier beobachteten Verschiebungen der α -CH-Gruppen von 1 könnte man dann versuchsweise mit dem gleichen Modell interpretieren. Nicht ausgeschlossen werden kann das Vorliegen einer sekundären Koordination des Methyl-Wasserstoffs mit einem der Metallzentren (vgl. [20]).

Das Ergebnis der Umsetzung von $RXCl_2$ (X = P, As, Sb) mit $Na_2[M_2(CO)_{10}]$ (M = Cr, Mo, W) hängt jeweils sehr stark von der Reaktionsführung ab. Produkte der Typen A, C und D können nebeneinander entstehen [1, 4]. Durch geeignete Wahl der Reaktionsbedingungen lassen sich die Reaktionen jedoch im Hinblick auf die Bildung von A, C oder **D** häufig selektiv gestalten. Für X = Sb wurde diese Problematik bereits eingehend diskutiert [1]. Eine Schlüsselstellung in dieser Diskussion nimmt die experimentell belegbare Stabilisierung der Komplexe des Typs A durch Adduktbildung mit polaren Lösungsmitteln wie THF zu $[L_nM]_2X-R(THF)$ ein [9]. Die Bildung von Derivaten des Typs C wird in THF als Solvens beobachtet, da nur dort die Komplexe A als Basenaddukte lange genug stabil sind, um über die Valenztautomeren B hinweg die Derivate C zu liefern. In Methylenchlorid als Solvens entstehen dagegen bevorzugt die Komplexe D, welche als Folgeprodukte der Dimerisierung von nichtsolvensstabilisiertem A verstanden werden können [1]. Diese für X = Sb durch eine Reihe von Experimenten gestützte Hypothese wird im folgenden durch ähnliche Befunde für X = As weiter untermauert. Aus Na₂[M₂(CO)₁₀] und PhAsCl₂ entsteht in THF als Komplex vom Typ C die Verbindung 2a; daneben bildet sich 3a; in CH₂Cl₂ als Solvens wird nur 3a und kein 2a erhalten.

Diese Beobachtungen stimmen vollkommen mit denen überein, die für die Umsetzungen von

$$Na_{2}[W_{2}(CO)_{10}] + PhAsCl_{2} \xrightarrow{THF} As + 3a$$

$$(CO)_{5}W \xrightarrow{W(CO)_{5}} W$$

$$Na_{2}[W_{2}(CO)_{10}] + PhAsCl_{2} \xrightarrow{CH_{2}Cl_{2}} As = As W(CO)_{5}$$

$$(CO)_{5}W \qquad W(CO)_{5}$$

$$W(CO)_{5}$$

 tBuSbCl_2 mit $Na_2[M_2(CO)_{10}]$ gemacht wurden [1]; die dort gegebene Deutung kann entsprechend übernommen werden.

Die Verbindung **2a** fällt in roten Kristallen an. Ihre Struktur ist außer durch spektroskopische Daten (Tab. VI, exp. Teil) auch durch eine Röntgenstrukturanalyse (Abb. 1; Tab. VII, exp. Teil) belegt.

Die für das Reaktionssystem

 ${}^{\prime}BuSbCl_2/Na_2[M_2(CO)_{10}]/THF$ belegte Bildung eines Derivates vom Typ **C** [1] läßt sich auf SbCl₃ und MeSbCl₂ unter Bildung der Verbindungen **2b** und **2c** übertragen.

$$Na_{2}[W_{2}(CO)_{10}] + RSbCl_{2} \xrightarrow{THF} Sb \qquad (CO)_{5}W \qquad R$$

$$(CO)_{5}W \qquad W(CO)_{5}$$

$$2b: R = Cl; 2c: R = Me$$

2b entsteht auch aus (CO)₅W-THF und SbCl₃ in guten Ausbeuten.

Mit PhSbCl₂ gelang die Bildung eines Produktes vom Typ **C** auf diese Weise nicht. Das Phenylderivat **2d** läßt sich aber aus **2b** und PhLi aufbauen:

$$(CO)_{5}W \longrightarrow CI \longrightarrow PhLi \longrightarrow Ph$$

$$(CO)_{5}W \longrightarrow W(CO)_{5} \longrightarrow Ph$$

$$(CO)_{5}W \longrightarrow W(CO)_{5} \longrightarrow Ph$$

$$(CO)_{5}W \longrightarrow W(CO)_{5} \longrightarrow Ph$$

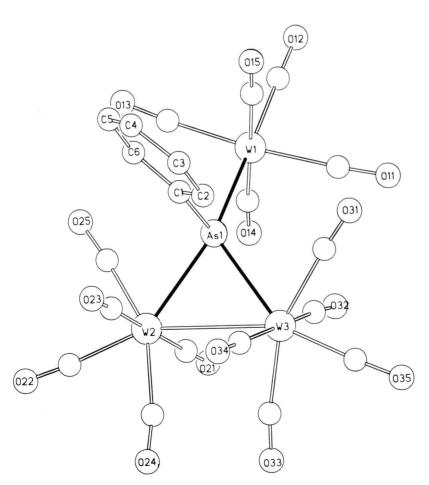


Abb. 1. Die Struktur von **2a** im Kristall [10] (Tab. VII, exp. Teil).

Daß bei der Umsetzung von $L_nM-XRCl_2$ (X = P, As, Sb) mit $Fe_2(CO)_9$ ebenfalls Komplexe vom Typ **C** gebildet werden, ist aus früheren Arbeiten bekannt [6]. So reagiert auch $(CO)_5W-SbMeCl_2$ mit $Fe_2(CO)_9$ zum Komplex **2e**.

$$(CO)_5W$$
-SbMeCl₂ + Fe₂ $(CO)_9$ $CO)_4$ Fe $Fe(CO)_4$

Überraschenderweise erhält man bei der analogen Umsetzung von $(CO)_5M-PHal_3$ (M=Cr, W; Hal=Cl, Br) mit $Fe_2(CO)_9$ als Verbindungen vom Typ C nicht die halogensubstituierten Derivate, sondern die PH-funktionellen Produkte **2f** und **2g**.

$$(CO)_5$$
M-PHal $_3$ + $Fe_2(CO)_9$

$$(CO)_4$$
Fe
$$Fe(CO)_4$$

$$2f: M = Cr$$

$$2g: M = W$$

Dieses Ergebnis wird nur erhalten, wenn man in Toluol als Lösungsmittel arbeitet. Verwendet man statt dessen Benzol, so ist die Reaktion nicht nur viel langsamer, sondern sie führt auch unter Bedingungen, die in Toluol **2f** und **2g** ergeben, letztlich nur zu Produkten, die in Benzol völlig unlöslich sind. **2f**, **g** werden nicht, auch nicht in Spuren, gebildet. Damit ist nachgewiesen, daß der phosphorständige Wasserstoff in **2f**, **g** aus dem Lösungsmittel Toluol stammt; plausibel erscheint eine radikalisch verlaufende

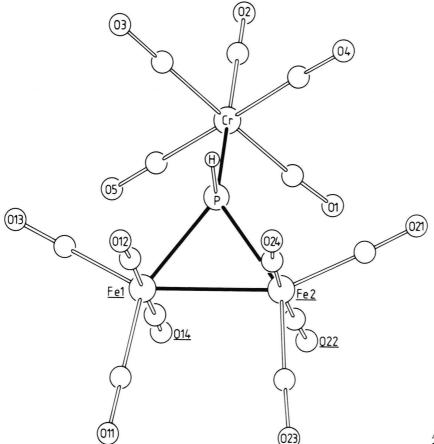
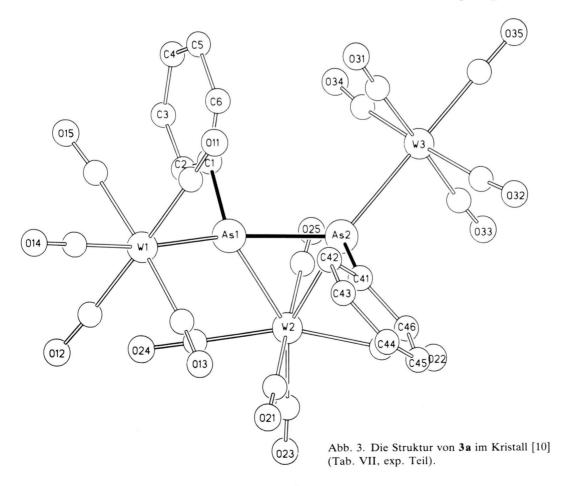


Abb. 2. Die Struktur von **2f** im Kristall [10] (Tab. VII, exp. Teil).

Reaktion, bei der der Wasserstoff auf ein phosphorzentriertes Radikal unter Bildung des vergleichsweise stabilen Benzylradikals als Kopplungsprodukt übertragen wird. Fehlt die radikalische Wasserstoffquelle, so stabilisieren sich die intermediär auftretenden Radikale offenbar unter Bildung höherkerniger und damit in Benzol unlöslicher Produkte.


Während (s.o.) aus Na₂[M₂(CO)₁₀] und PhAsCl₂ in THF **2a** neben **3a** gebildet wird, entsteht in CH₂Cl₂ als Lösungsmittel nur **3a**. Da die Umsetzung in CH₂Cl₂ nahezu heterogen verläuft, lassen sich viele Reaktionshypothesen – auch solche, die mit den vermutlichen Konzentrationsverhältnissen möglicher Intermediate auf der Oberfläche des ungelösten Na₂[W₂(CO)₁₀] zusammenhängen – aufstellen. Auf Grund von Argumenten, die wir früher gegeben haben [1], bevorzugen wir jedoch die nachfolgende Hypothese, bei der die Bildung von **3a** als Reaktion zwischen den beiden valenztautomeren Formen des

Arsinidenkomplexes [(CO)₅W]₂As-Ph aufgefaßt wird. Die primäre Bildung von [(CO)₅W]₂As-R bei solchen Reaktionen konnte durch Abfangreaktionen mit Lewis-Basen B unter Bildung von [(CO)₅W]₂As(R)(B) nachgewiesen werden [9].

$$(CO)_{5}W W(CO)_{5} (CO)_{5}W -W(CO)_{5} (CO)_{5}W W(CO)_{5}$$

$$A B D$$

Die Valenztautomerie zwischen den Formen **A** und **B** ist für X = Sb belegt [21]. **A** ist eine Lewis-Säure (siehe Bildung von Basenaddukten $[(CO)_5W]_2X(R)(B))$, **B** jedoch eine Lewis-Base (siehe Bildung der Komplexe **2** vom Typ **C**). Wenn das Valenztautomerengleichgewicht nicht durch

lewisbasische Lösungsmittel auf der Seite von A bzw. dessen Addukten festgehalten wird, so bilden die beiden Formen ein Addukt, das sich nach Abgabe von (CO)₅W zu **D** stabilisiert.

In seiner Struktur entspricht $\bf 3a$ (s.v.) den zahlreichen bekannten Komplexen mit sowohl end-on als auch side-on gebundenen E-(R)X=X(R)-Liganden (X = P, As, Sb) [11] (Abb. 3; Tab. VII, exp. Teil). (PhClC=CH)As(Cl)₂ reagiert analog unter Bildung zu $\bf 3a$.

$$RAsCl_2 + Na_2[W_2(CO)_{10}] \xrightarrow{R} As = As + \dots$$

$$(CO)_5W \xrightarrow{R} R$$

$$W(CO)_5$$

3a: R = Ph; 3b: R = HCCClPh

Ein zu 3a, b homologer heterometallischer Komplex 3c wird als Nebenprodukt bei der Umsetzung von $(CO)_5Cr-AsPhH_2$ mit $Fe_3(CO)_{12}$ erhalten.

$$(CO)Cr - AsPhH_2 + Fe_3(CO)_{12}$$

$$(CO)_5 Cr$$

$$(CO)_5 Cr$$

$$Fe(CO)_4$$

$$(CO)_5 Cr$$

Die Röntgenstrukturanalyse von **3c** belegt die angegebene Formulierung, bei der die (CO)₄Fe-Einheit side-on und die beiden (CO)₅Cr-Gruppen end-on koordiniert sind.

Für Distibenkomplexe vom Typ \mathbf{D} , d.h. Antimonhomologe von $\mathbf{3}$, hatten wir zeigen können, daß sie mit Lewis-Basen unter Spaltung der Antimon-Antimon-Bindung zu Basenaddukten von Stibiniden-Komplexen $[(CO)_5W]_2Sb(R)(B)$ reagieren [1]. Setzt

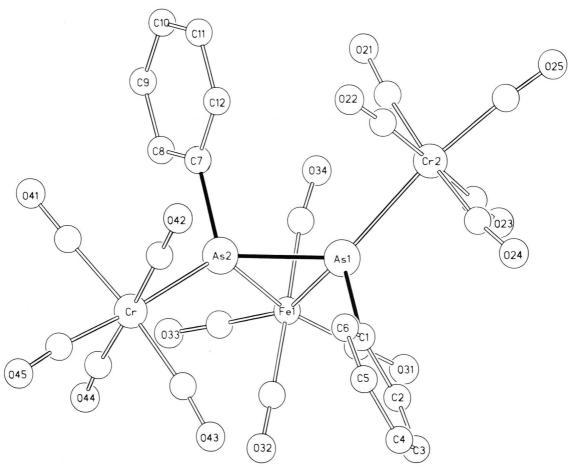
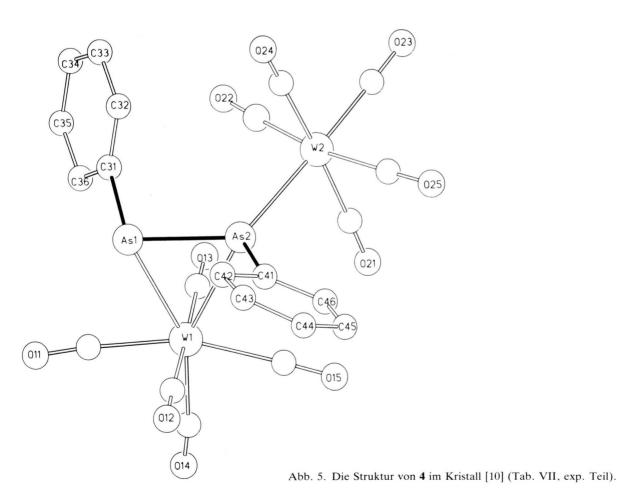


Abb. 4. Die Struktur von 3c im Kristall [10] (Tab. VII, exp. Teil).

man **3a** mit der Lewis-Base PPh₃ um, tritt dagegen keine Spaltung der Arsen-Arsen-Doppelbindung ein. Vielmehr wird eine der endständig gebundenen (CO)₅W-Gruppen als (CO)₅W-PPh₃ abgespalten.


$$(CO)_5W$$
 $AS = AS$
 $W(CO)_5$
 $W(CO)_5$
 $W(CO)_5$
 $W(CO)_5$
 $W(CO)_5$
 $W(CO)_5$
 $W(CO)_5$
 $W(CO)_5$

Die Identität von 4 ist auch durch eine Röntgenstrukturanalyse belegt (Abb. 5; Tab. VII, exp. Teil).

Dieses Ergebnis ist unter zwei Gesichtspunkten interessant:

1. Es tritt keine Spaltung der Arsen-Arsen-Bindung ein. Daß unter analogen Bedingungen aus $[(CO)_5W]_3(R)SbSb(R)$ und PPh3 unter Spaltung der SbSb-Bindung $[(CO)_5W]_2Sb(R)(PPh_3)$ entsteht, stellt einen Gegensatz zur Beobachtung der Umwandlung von $\bf 3a$ in $\bf 4$ dar. Es ist plausibel, diesen Unterschied in der Reaktivität von $[(CO)_5W]_3(R)SbSb(R)$ und $[(CO)_5W]_3(R)AsAs(R)$ wenigstens zum Teil auf die unterschiedliche Stärke von koordinierten SbSb- und AsAs-Doppelbindungen zurückzuführen.

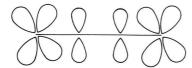
2. Daß bei der Umwandlung der Verbindung **3a** nach **4** eine end-on koordinierte (CO)₅W-Gruppe abgespalten wird, ist zunächst unerwartet: [(CO)₅Cr]₃(Ph)PP(Ph) spaltet schon beim Erwärmen (CO)₅Cr ab; hier wird jedoch nicht das end-on, sondern das side-on an die Phosphor-Phosphor-Doppelbindung koordinierte (CO)₅Cr abgespalten [11]. Dabei ist nachgewiesen (s. u.), daß die Verbindungen (R)AsAs(R) auch ohne den Schutz eines side-on

koordinierten 16-Elektronenkomplexfragmentes stabil sein können [12, 13]. Die Isolierung des Isomeren 4 zeigt an, daß unter den gegebenen sterischen und elektronischen Verhältnissen das Isomere 4 (Typ E) offenbar stabiler ist als dasjenige mit zwei end-on koordinierten (CO)₅W-Einheiten (Typ F). Wir

Ph
$$W(CO)_5$$
 Ph $W(CO)_5$

As As
 $W(CO)_5$

Ph $W(CO)_5$


Ph $W(CO)_5$

Ph $W(CO)_5$

F

glauben nicht, daß das Auftreten der Form **E** hauptsächlich durch sterische Argumente (unzureichende Abschirmung der reaktiven Arsen-Arsen-Doppelbindung in der Form **F**) erklärt werden kann. Wir nehmen vielmehr an, daß das 4-Zentren- 6π -System W=-As=-As=-W, das durch Wechselwirkung von Wolfram-d- oder Arsen-p-Orbitalen im Sinne von nachfolgendem Schema gebildet wird, zu einem so

W=----As=------W

kleinen HOMO/LUMO-Abstand führen würde, daß das Isomere F nicht gebildet werden kann. Dieses Argument wird durch die Beobachtung sehr langwelliger Elektronenübergänge in den ent-F gebauten Diphosphenkomplexen sprechend $[L_nM]_2(R)PP(R)$ ($L_nM = 16$ -Elektronenfragment) gestützt [2c, 11]. Wenn demnach für diese (R)PP(R)-Komplexe der HOMO/LUMO-Abstand kaum größer ist als 2 eV ($\nu_{\pi\pi^*}$ ca. 20000 cm⁻¹), so läßt sich mit den einfachsten MO-Argumenten vorhersagen, daß dieser Abstand für entsprechende (R)AsAs(R)-Derivate noch kleiner ist. Dies aber bedeutet, daß Komplexe der Form F mit (R)AsAs(R)-Liganden noch instabiler sind als ihre Diphosphen-Homologen. In dem Isomeren E (in seinem Bau entsprechend 4) liegt kein ausgedehntes und ungestörtes π -System vor. Der Komplex 4 ist rot, d.h. er absorbiert unterhalb 20000 cm⁻¹ nicht nennenswert.

Entsprechenddenunter 2. beschriebenen Argumenten würde man erwarten, daß $[L_nM]_2(R)$ AsAs(R)-Komplexe mit zwei end-on gebundenen ML_n -Einheiten besonders unbeständig sein sollten. Man kann jedoch auch folgern, daß die Verkürzung des π -Systems um einen ML_n -Terminus, d. h. die Bildung von $L_nM-(R)$ AsAs(R) den HOMO/LUMO-Abstand vergrößern und damit die Stabilität entsprechender Komplexe erhöhen sollte. Tatsächlich entsteht bei der Reaktion von $((Me_3Si)_2CH)$ As $(Cl)_2$ mit $Na_2[M_2(CO)_{10}]$ der Komplex $\mathbf{5}$, in dem das Diarsen (R)AsAs(R) $(R = CH(SiMe_3)_2)$ nur einfach end-on an eine $(CO)_5M$ -Gruppe koordiniert ist.

RASCI₂ + Na₂ [Mo₂(CO)₁₀]
$$\longrightarrow$$
 As=As $\xrightarrow{\text{Mo}(CO)_5}$ +

R = CH(SiMe₃)₂

In seinem durch eine Röntgenstrukturanalyse belegten Bau (Abb. 6; Tab. VII, exp. Teil) entspricht 5 den Verbindungen

$$(CO)_5Cr - (2,4,6(^{\prime}Bu)C_6H_2)As = As(CH(SiMe_3)_2) \\ [12] \ und \ (Me_3Si)_3C - As = As - C(SiMe_3)_3 \ [12,\ 13].$$

Sicher sind die unter 2. angegebenen Argumente nicht alleine für die Stabilität von 5 verantwortlich: Die sperrigen Substituenten CH(SiMe₃)₂ erschweren die Koordination weiterer (CO)₅M-Einheiten und schirmen die reaktive Arsen-Arsen-Doppelbindung ausreichend ab. Für dieses sterische Argument spricht die Beobachtung, daß mit dem noch sperrigen Substituenten C(SiMe₃)₃ bei entsprechender Umsetzung nur mehr das freie, auch auf anderem Wege [13] zugängliche Diarsen 6 gebildet wird.

$$[(Me_3Si)_3C]As(Cl)_2 + Na_2[Cr_2(CO)_{10}] \rightarrow (Me_3Si)_3C - As = As - C(SiMe_3)_3 + \cdots$$
6

Experimenteller Teil

Alle Reaktionen werden mit absoluten Lösungsmitteln unter N_2 als Schutzgas durchgeführt. Zur Chromatographie dient Kieselgur (Fa. Riedel de Häen) oder Kieselgel (Fa. Woelm-Pharma, Korngröße 0.06-0.2 mm).

IR-Spektren: Zeiss, IMR 40 (CaF₂-Küvetten, Lösungsmittel: n-Pentan bzw. CH_2Cl_2 ; vs = sehr stark, s = stark, s = schulter, s = sehr breit, s = sehr breit

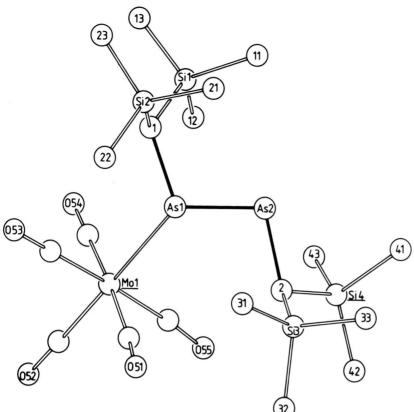


Abb. 6. Die Struktur von 5 im Kristall [10] (Tab. VII, exp. Teil).

 $^{31}\text{P-NMR-Spektren:}$ Bruker WP 80-FT; 32,38 MHz, in CH₂Cl₂ bei 273 K (Standard: P(OCH₃)₃ mit $\delta_{P(OCH_3)_3}=139$ ppm rel. 85% H₃PO₄).

¹H-NMR-Spektren: Bruker WP 80-FT (Standard: intern durch Lösungsmittel; $[D_6]$ -Aceton = 2,05 ppm, $CDCl_3 = 7,24$ ppm, $[D_2]$ -Methylenchlorid = 5,32 ppm, $[D_6]$ -Benzol = 7,27 ppm, rel. TMS (ext.)); D = Du-blett, M = Multiplett.

Für alle NMR-Spektren gilt: δ -Werte positiv = tieferes Feld, negativ = höheres Feld.

MS-Spektren: Finnigan (Varian) MAT 112 S (50°C, Einlaß Ofenschiffchen).

UV-Spektren: Philips PYE Unicam SP 8-500; in Toluol.

CHN-Elementaranalysen: CHN-Analysator der Fa. Carlo Erba.

Die Schmelz- und Zersetzungspunkte stellen unkorrigierte Werte dar.

A) Darstellung des Diarsens 5 und der Arsinidenkomplexe 1a-1c

 $1 g \text{ Na}_2[M_2(\text{CO})_{10}]$ [7] (M = Cr: 2,33 mmol, M = Mo: 1,93 mmol, M = W: 1,44 mmol) gelöst in 80 ml THF

wird mit einem Moläquivalent ((Me₃Si)₂CH)As(Cl)₂ [14] versetzt, wobei eine Farbintensivierung eintritt. Nach beendeter Reaktionszeit (Tab. I) und Entfernen des Lösungsmittels bei 10^{-2} mbar wird der Rückstand in 10 ml CH₂Cl₂ aufgenommen, auf silanisiertes Kieselgel aufgezogen und über eine mit Kieselgel gefüllte Säule (Säulendimension: $20\times2,5$ cm, n-Pentan) bei -20 °C chromatographiert. Mit n-Pentan als Eluierungsmittel erhält man bei der Umsetzung mit Na₂[Mo₂(CO)₁₀] eine langgestreckte orangefarbene Zone, aus der man nach Entfernen des Lösungsmittels und Umkristallisieren des Rückstandes aus n-Pentan bei -30 °C die Verbindung 5 in Form orangefarbiger Kristalle isolieren kann.

Mit steigender Polarität des Laufmittels (n-Pentan/CH₂Cl₂5:1) eluiert man eine langgestreckte, intensiv blaufarbene Zone. Nach Abziehen des Lösungsmittels und Umkristallisieren aus n-Pentan wird 1b in Form dunkelblauer, metallisch glänzender Kristalle erhalten.

Bei der Umsetzung von $Na_2[M_2(CO)_{10}]$ (M = Cr, W) mit ((Me₃Si)₂CH)As(Cl)₂ wird jeweils nur eine intensiv blaufarbene Zone (Laufmittel vgl. Tab. I)

Verbindung	Reaktionszeit (min)	Lauf- mittel ^a	Ausbeute mg (%) ^b	Schmp. (°C)	Summenformel (Molmasse)	Anal	yse (%) C	Н
1a	160	8:1-5:1	650 (45)	115	C ₁₇ H ₁₉ AsCr ₂ O ₁₀ Si ₂ (618,42)	Ber. Gef.	33,02 33,05	3,10 2,88
1b	70	5:1	140 (10)	68	$C_{17}H_{19}AsMo_2O_{10}Si_2$ (706,31)	Ber. Gef.	28,91 29,16	2,71 3,00
1c	180	10:1	350 (28)	88	$C_{17}H_{19}AsO_{10}Si_2W_2$ (882,13)	Ber. Gef.	23,15 23,22	2,17 1,87
5	70	n-Pentan	300 (44)	95	C10H20AS2M0O5Si4	Ber	32 39	5 44

Tab. I. Darstellung und Charakterisierung der Verbindungen 1a-1c und 5.

isoliert. Nach analoger Aufarbeitung fallen die Verbindungen **1a** und **1c** als metallisch glänzende Kristalle an.

Ausbeuten, Schmelz-, Zersetzungspunkte, Molmassen und Analysendaten der Verbindungen 1 und 5 sind der Tab. I zu entnehmen.

B) Darstellung von $[(CO)_5W]_2As(HCCPhCl)$ (1d)

1,70 g (2,45 mmol) Na₂[W₂(CO)₁₀] [7] werden bei 20 °C in 30 ml THF gelöst und mit 695 mg (2,45 mmol) (PhClCCH)As(Cl)₂ [15] versetzt. Nach Entfernen des Solvens wird der Rückstand über 10 cm Kieselgel filtriert. Nach einem braunen Vorlauf mit *n*-Pentan/Toluol 5:1 kann mit reinem Toluol eine rote Zone eluiert werden, die **3a** (vgl. C)) enthält. Mit CH₂Cl₂ folgt eine blaue Zone von **1d**, die nach Abziehen des Lösungsmittels und Umkristallisieren aus CH₂Cl₂/*n*-Pentan metallisch glänzende Kristalle von

1d ergibt. Ausbeute: 105 mg (5% bez. auf eingesetztes (PhClCCH)As(Cl)₂).

Gef.

32,70

5,42

 $C_{18}H_6AsClO_{10}W_2$ (860,3)

Ber. C 25,13 H 0,70, Gef. C 24,86 H 0,53.

Schmp.: 98°C(Zers.). – MS[*m/e*(rel. Intensitäten):

M⁺ 860(20), M⁺-CHCPh 758(80),

 M^+ -CHCPh-CO 730(15),

 M^+ -CHCPh-2CO 702(25),

 M^+ -CHCPh-3CO 674(30),

 M^+ -CHCPh-4CO 646(60),

 M^+ -CHCPh-5CO 618(100),

M⁺-CHCPh-6CO 590(100), M⁺-CHCPh-7CO 562(40),

M+-CHCPh-8CO 534(40),

 M^+ -CHCPh-9CO 506(30),

 M^+ -CHCPh-10CO 478(30),

 M^+ -CHCPh-10CO-Cl 443(40).

Tab. II. Spektroskopische Daten der Verbindungen 1a-1d.

Verbindung	IR (cm $^{-1}$) ν_{CO} -Streckschwingungen	¹H-NMR δ (ppm)	UV^{c} λ_{1}	ε_1	λ_2	ε_2
1a	2082 (w), 2033 (s), 2006 (w), 1999 (vw), 1980 (sh), 1978 (vs), 1973 (vs), 1959 (m), 1948 (m)	0,34 (S, 18H) 7,73 (S, 1H) ^a	16500	11600	24000	4500
1b	2086 (w), 2048 (s), 2008 (w), 2003 (vw), 1985 (s), 1977 (vs), 1964 (m), 1951 (m)	0,30 (S, 18 H) 7,98 (S, 1 H) ^a	17300	20800	25300	6400
1c	2089 (w), 2047 (s), 2004 (m), 1997 (w), 1983 (s), 1980 (sh), 1970 (vs), 1957 (m), 1944 (m)	0,30 (S, 18 H) 7,90 (S, 1 H) ^a	17700	22 000	25700	6900
1d	2093 (w), 2065 (w), 2047 (m), 1992 (s), 1978 (s), 1955 (m), 1942 (sh)	6,25 (S, 1H) 6,55-6,65; 6,8-6,9 (M, 5H) ^b	17300	43 000	27000	11700

^a In CD_2Cl_2 ; ^b in CCl_4 ; ^c in Toluol; da die Lösungen sich während der Messung zersetzen, stellt der angegebene ε -Wert eine untere Grenze dar; λ in cm⁻¹, ε in mol⁻¹cm⁻¹.

^a n-Pentan/CH₂Cl₂; ^b die Ausbeuten beziehen sich auf eingesetztes ((Me₃Si)₂CH)As(Cl)₂.

Ion	1a m/e	I_r	1b <i>m/e</i>	I_r	1 c m/e	I_r	5 ^a <i>m/e</i>	I_r
M ⁺	618	21	706	2	882	65	704	4
M^+ -CO	590	1	678	1	854	8	676	1
M^+ -2CO	562	11	650	4	826	22	648	1
M^+ – 3 CO	534	4	622	2	798	13	620	4
M^+ -4CO	506	5	594	2	770	10	592	2
M^+ -5CO	478	100	566	1	742	55	564	4
M^+ -6CO	450	27	538	12	714	68		
M^+-7CO	422	12	510	5	686	34		
M^+ -8CO	394	76	482	3	658	11		
M^+-9CO	366	37	454	5	630	18		
$M^{+}-10CO$	338	89	426	2	602	11		
M ₂ AsCHSiMe ₃ SiMe ₂ ⁺	323	17	411	6	587	35		
M ₂ AsCHSiMe ₃ SiMe ⁺	308	17	396	6	572	21		
M ₂ AsCHSiMe ₃ Si ⁺	293	6	381	3	557	17		
$(SiMe_3)_2^+$	146	51	146	43	146	46	146	27
SiMe ₃ ⁺	73	39	73	100	73	100	73	100
Si ₂ Me ₄ CH ⁺	129	27	129	52	129	40	129	68
M^+	52	32						

Tab. III. Massenspektren der Verbindungen 1a-1c und 5; m/e (rel. Intensität in %).

C) Darstellung der Verbindungen $[(CO)_5W]_3(R)AsAs(R)$ (R = Ph, CHCPhCl),3a und 3b

 $1.4 \text{ g} \text{ (2 mmol) } \text{Na}_2[\text{W}_2(\text{CO})_{10}] \text{ [7] werden bei}$ 25 °C in Methylenchlorid unter Rühren mit 2 mmol RAsCl₂ [15] versetzt. Nach Abziehen des Lösungsmittels wird der Rückstand in CH2Cl2 aufgenommen und über 2 cm Kieselgel filtriert. Durch Umkristallisieren aus CH₂Cl₂ erhält man die Verbindungen [(CO)₅W]₃(R)AsAs(R) (3) in Form von roten Kristallen.

3a: Ausbeute: 300 mg (24% bez. auf eingesetztes PhAsCl₂).

 $C_{27}H_{10}As_2O_{15}W_3$ (1275,8)

Ber. C 25,42 H 0,79,

Gef. C 25,13 H 0,74.

Schmp.: 165 °C (Zers.). – IR (ν_{CO} , CH₂Cl₂): 2097 (w), 2068 (m), 1995 (sb), 1945 (sb). - ¹H-NMR (in $[D_6]$ -Aceton): 7,15–7,85 (M, 10H).

3b: Ausbeute: 350 mg (25% bez. auf $(PhClCCH)As(Cl)_2).$

 $C_{31}H_{12}As_2Cl_2O_{15}W_3$ (1396,7)

Ber. C 26,66 H 0,87,

Gef. C 26,64 H 0,70.

Schmp.: 119 °C (Zers.). – IR (ν_{CO} , CH₂Cl₂): $2098 \text{ (w)}, 2070 \text{ (m)}, 1992 \text{ (sb)}, 1948 \text{ (sb)}. - {}^{1}\text{H-}$ NMR (in $[D_6]$ -Aceton): 6,9 (S, 2H), 7,3-7,7 (M, 10H).

D) Darstellung von $[(CO)_5W]_2(Ph)AsAs(Ph)$ (4)

180 mg (0,14 mmol) 3a werden in Toluol gelöst und mit 37 mg (0,14 mmol) PPh₃ 3-10 min in der Siedehitze gekocht, bis die Lösung sich im durchscheinenden Licht gelb verfärbt hat. Nach Abziehen des Lösungsmittels wird mit n-Pentan über Kieselgel filtriert und aus n-Pentan mehrmals umkristallisiert. Ausbeute: 51 mg (38% bez. auf eingesetztes 3a).

 $C_{22}H_{10}As_2O_{10}W_2$ (951,9)

Ber. C 27,76 H 1.06. Gef. C 28,02 H 0,89.

Schmp.: 126 °C (Zers.). – IR (ν_{CO} , *n*-Pentan): 2089 (m), 2067 (m), 1991 (s), 1982 (w), 1953 (m), 1941 (s). - ¹H-NMR (in [D₆]-Aceton): 7,2-8,0 (M, 10H). – MS [m/e (rel. Int.)]: M⁺ 952(1), M⁺ –8CO 728(5), M^+-10CO 672(10), $M^+-W(CO)_5$ 628(70), $M^+-W(CO)_5-CO$ 600(10), $M^+-W(CO)_5-2CO$ 572(30), $M^+-W(CO)_5-3CO$ 544(50), $M^+-W(CO)_5-4CO$ 516(5), $M^+-W(CO)_5-5CO$ $488(100), M^+-W(CO)_5-5CO-C_6H_5 411(10).$

E) Darstellung von $[(CO)_5Cr]_2(Ph)AsAs(Ph)Fe(CO)_4$ (3c)

Zu einer Lösung von $0.8 g (1.58 \text{ mmol}) \text{ Fe}_3(\text{CO})_{12} \text{ in}$ 100 ml absolutem Methanol werden 0,5 g (1,45 mmol) (CO)₅Cr-AsPhH₂ [16] gegeben und 24 h bei 20 °C gerührt. Die resultierende dunkelbraune Lösung wird über 3 cm Kieselgel filtriert. Zu dem Filtrat werden nun 5 g Kieselgel hinzugegeben und die

^a Für die Verbindung **5** wird zusätzlich ein Signal für M⁺-5CO-Mo 468 (12) gefunden.

Reaktionsprodukte bis zur Rieselfähigkeit des Silikagels aufgezogen. Anschließende Tieftemperaturchromatographie (Säulendimension: $20\times1,5$ cm, n-Pentan, -20 °C) ergibt neben mehreren anderen Zonen die Verbindung 3c, die mit n-Pentan/CH $_2$ Cl $_2$ 3:1 als rote Zone eluiert werden kann. Nach Abziehen des Lösungsmittels und Umkristallisation aus CH $_2$ Cl $_2$ /n-Pentan bei -30 °C erhält man rote Kristalle von 3c. Ausbeute: 60 mg (10% bez. auf $(CO)_5$ Cr-AsPhH $_2$).

 $\begin{array}{cccc} C_{26}H_{10}As_2Cr_2FeO_{14} \ (856,24) \\ Ber. & C\ 36,47 & H\ 1,18, \\ Gef. & C\ 36,28 & H\ 1,18. \end{array}$

Schmp.: 145–147 °C (Zers.). – IR (ν_{CO} , in CH₂Cl₂): 2106 (s), 2060 (vs), 2045 (s), 2033 (m), 1980 (sh), 1944 (vs). – ¹H-NMR (in [D₆]-Aceton): 7,3–8,1 (M, 10H). – MS [m/e (rel. Int.)]: M⁺ 856(6), M⁺–5CO 716(2), M⁺–7CO 660(2), M⁺–8CO 632(3), M⁺–9CO 604(6), M⁺–10CO 576(6), M⁺–11CO 548(9), M⁺–12CO 520(3), M⁺–13CO 492(4), Cr₂FeAs₂Ph₂⁺ 464(20), CrFeAs₂Ph₂⁺ 412(40), FeAs₂Ph₂⁺ 360(44), As₂Ph₂⁺ 304(100), AsPh⁺ 152(100).

F) Darstellung der Verbindungen 2a-2g

1. Darstellung von [(CO)₅W]₃AsPh (2a)

1,0 g (1,4 mmol) Na₂[W₂(CO)₁₀] [7] wird in 20 ml THF gelöst und unter Rühren mit 0,16 ml (1,4 mmol) PhAsCl₂ [15] versetzt. Das Lösungsmittel wird abgezogen und der Rückstand chromatographiert. Die Verbindung [(CO)₅W]₃AsPh (**2a**) wandert mit *n*-Pentan als violette Zone. Die anschließende rote Zone, die mit Toluol eluiert werden kann, enthält **3a.** Aus der violetten Zone erhält man nach Abziehen des Lösungsmittels und Umkristallisieren aus *n*-Pentan **2a** als dunkelrote Kristalle. Ausbeute: 80 mg (5% bez. auf eingesetztes PhAsCl₂).

 $C_{21}H_5AsO_{15}W_3$ (1123,7) Ber. C 22,45 H 0,45, Gef. C 22,42 H 0,41.

Schmp.: 148 °C (Zers.). Die spektroskopischen Daten der Verbindung **2a** sind in Tab. VI zusammengefaßt.

2. Darstellung der Verbindung [(CO)₅W]₃SbCl (**2b**)

3 g (8,52 mmol) W(CO)₆ und 1,7 g (7,46 mmol) SbCl₃ werden in 500 ml Toluol unter starkem Rühren 7 h bestrahlt. Das dunkelrote Reaktionsprodukt wird auf Kieselgur aufgezogen und filtriert. Mit Toluol eluiert man eine dunkelrote Zone; nach Umkristallisation aus CH₂Cl₂ erhält man **2b** in Form von

dunkelroten Kristallen. Ausbeute: 1,8 g (56% bez. auf eingesetztes $W(CO)_6$).

C₁₅ClO₁₅ SbW₃ (1128,9) Ber. C 15,96, Gef. C 16,03.

Schmp.: 135 °C. Die spektroskopischen Daten der Verbindung **2b** sind der Tab. VI zu entnehmen.

3. Darstellung der Verbindung [(CO)₅W]₃SbMe (**2c**)

1,2 g (1,73 mmol) $Na_2[W_2(CO)_{10}]$ [7] werden in 100 ml CH_2Cl_2 aufgeschlämmt und mit 0,92 g (1,73 mmol) (CO)₅W-SbMeCl₂ [17] 2 h unter Rückfluß gerührt. Das rote Reaktionsgemisch wird auf Kieselgur aufgezogen und filtriert. Mit Toluol eluiert man eine rote Zone, aus der man nach Umkristallisation bei -30 °C aus CH_2Cl_2 **2c** in Form von dunkelroten Kristallen erhält. Ausbeute: 420 mg (22% bez. auf (CO)₅W-SbMeCl₂).

C₁₆H₃O₁₅SbW₃ (1108,5) Ber. C 17,34 H 0,27, Gef. C 17,33 H 0,30.

Schmp.: 140 °C (Zers.). Die spektroskopischen Daten des Komplexes **2c** sind Tab. VI zu entnehmen.

4. Darstellung der Verbindung [(CO)₅W]₃SbPh (**2d**)

Eine Lösung von 450 mg (0,4 mmol) $\bf 2b$ in 10 ml THF wird auf -10 °C abgekühlt. Man gibt 0,15 ml einer 2,34 molaren LiPh-Lösung hinzu und läßt noch 1 h rühren; dabei ergibt sich eine Aufhellung ins Hellrote. Das Reaktionsgemisch wird auf Kieselgur aufgezogen und filtriert. Mit Toluol/CH₂Cl₂ 3:1 eluiert man eine rote Zone, aus der man nach Umkristallisieren bei -30 °C aus CH₂Cl₂ $\bf 2d$ in Form von dunkelroten Kristallen erhält. Ausbeute: 50 mg (11% bez. auf eingesetztes $\bf 2b$).

C₂₁H₅O₁₅SbW₃ (1170,6) Ber. C 21,55 H 0,43, Gef. C 21,74 H 0,59.

Schmp.: 145 °C (Zers.). Die spektroskopischen Daten der Verbindung **2d** sind in Tab. VI zusammengefaßt.

5. Darstellung der Verbindung (CO)₅W-Sb(Me)-Fe(CO)₄-Fe(CO)₄ (**2e**)

0,8 g (1,5 mmol) (CO)₅W-SbMeCl₂ [17] werden mit 2,4 g (6,6 mmol) Fe₂(CO)₉ 24 h in Toluol gerührt. Das rotbraune Reaktionsgemisch wird auf Kieselgur aufgezogen und filtriert. Mit *n*-Pentan/To-

luol 1:1 eluiert man eine rotbraune Zone, aus der man 2e nach Umkristallisieren aus CH_2Cl_2 als mikrokristallines Pulver erhält. Ausbeute: 140 mg (12% bez. auf (CO)₅W-SbMeCl₂).

C₁₄H₃Fe₂O₁₃SbW (796,47)

Ber. C 21,11 H 0,38 Fe 14,02,

Gef. C 21,13 H 0,30 Fe 14,43.

Schmp.: 112 °C (Zers.). Die spektroskopischen Daten von **2e** sind der Tab. VI zu entnehmen.

- 6. Darstellung der Komplexe $(CO)_5M P(H) Fe(CO)_4 Fe(CO)_4$ (M = Cr, W), 2f und 2g[19]
- a) Umsetzung von (CO)₅Cr-PBr₃ mit Fe₂(CO)₉

1,00 g (2,16 mmol) (CO)₅Cr-PBr₃ [18, 19] wird mit 5,00 g (13,74 mmol) Fe₂(CO)₉ bei 45 °C in Toluol zur Reaktion gebracht.

Nach wenigen Minuten färbt sich die orangefarbene Reaktionslösung rot, nach 2,5 h rotbraun. Das Lösungsmittel wird am Hochvak. entfernt und der Rückstand auf 5 g Kieselgel aufgezogen. Die Trennung der Reaktionsprodukte erfolgt durch Tieftemperaturchromatographie (Säulendimension: $40 \times 2,5$ cm, -25 °C, n-Pentan). Mit Toluol/CH₂Cl₂ 1:1 erhält man eine intensiv rote Zone, aus der die Verbindung **2f** isoliert wird. Ausbeute: 100 mg (8% bez. auf eingesetztes $(CO)_5Cr-PBr_3)$. Als weitere Produkte fallen bei dieser Umsetzung die Komplexe $[(CO)_5Cr]_2P_2Fe_2(CO)_7$ und $(CO)_5Cr(\mu^4-P)Fe_3(CO)_9(\mu^4-P)Fe(CO)_4$ an [19].

b) Umsetzung von (CO)₅Cr-PCl₃ mit Fe₂(CO)₉

Die analoge Umsetzung von 1,8 g (5,46 mmol) (CO)₅Cr-PCl₃ [18, 19] mit 9,9 g (27,20 mmol) Fe₂(CO)₉ in 200 ml Toluol ergibt nach chromatographischer Aufarbeitung neben mehreren kleinen Zonen, die noch nicht näher charakterisierte Verbindungen enthalten, als Hauptzone **2f.** Die Verbindung **2f** wird durch Umkristallisation aus *n*-Pentan/CH₂Cl₂ bei -30 °C in Form dunkelroter Nadeln erhalten. Ausbeute: 360 mg (12% bez. auf (CO)₅Cr-PCl₃).

c) Umsetzung von (CO)₅W-PCl₃ mit Fe₂(CO)₉

Analog zu a) wird 1,00 g (2,17 mmol) (CO)₅W-PCl₃ [18, 19] mit 4,1 g (11,26 mmol) Fe₂(CO)₉ in 200 ml Toluol umgesetzt. Säulenchromatographie (Säulendimension: $35 \times 2,5 \text{ cm}$, $-25 \,^{\circ}\text{C}$, n-Pentan) über Kieselgel ergibt mit Toluol/CH₂Cl₂ 10:1 eine intensiv rote Zone, aus der sich 2g abtrennen läßt. Ausbeute: 120 mg (8% bez. auf (CO)₅W-PCl₃).

Anm.: Als weitere Verbindung wird $(CO)_5W(\mu^4-P)Fe_3(CO)_9(\mu^4-P)W(CO)_5$ neben mehreren kleinen Zonen als Hauptprodukt isoliert [19].

d) Umsetzung von (CO)₅W-PBr₃ mit Fe₂(CO)₉

In Analogie zu a) werden 1,2 g (2,02 mmol) (CO)₅W-PBr₃ [18, 19] mit 5,3 g (14,56 mmol) Fe₂(CO)₉ zur Reaktion gebracht. Die Badtemperatur beträgt jedoch nur 35 °C. Nach 2,5 h Reaktionszeit arbeitet man analog a) auf. Durch Tieftemperaturchromatographie (Säulendimension: 30×2,5 cm, -20 °C, *n*-Pentan) erhält man **2g** als intensiv rote Zone mit *n*-Pentan/Toluol 1:1. – Toluol in 90 mg Ausbeute (6% bez. auf eingesetztes (CO)₅W-PBr₃).

Anm.: Als weitere Zonen werden die Komplexe $(CO)_5W(\mu^4\text{-P})\text{Fe}_3(CO)_9(\mu^4\text{-P})W(CO)_5$ und $(\mu^2\text{-Br})\text{Fe}_2(CO)_6(\mu^4\text{-P})[\text{Fe}(CO)_4][W(CO)_5]$ [19] sowie mehrere kleinere Zonen, die bisher noch nicht vollständig charakterisierte Verbindungen enthalten, eluiert.

Die spektroskopischen Daten der Verbindungen **2f** und **2g** sind der Tab. IV und der Tab. V zu entnehmen. Die analytischen Daten von **2f** und **2g** sind in Tab. VI zusammengefaßt.

G) Darstellungen der Verbindung 6

1,00 g (2,33 mmol) Na₂[Cr₂(CO)₁₀], gelöst in 80 ml THF wird mit einem Moläquivalent ((Me₃Si)₃C)As(Cl)₂ [13] versetzt, wobei eine schwache Farbintensivierung eintritt. Nach beendeter Reaktionszeit (20 h) und Entfernen des Lösungsmittels bei 10^{-2} mbar wird der Rückstand in 10 ml CH₂Cl₂ aufgenommen, auf silanisiertes Kieselgel aufgezogen und über eine mit Kieselgel gefüllte Säule (Säulendimension: $15\times1,5$ cm, n-Pentan) bei -20 °C chromatographiert. Mit n-Pentan als Eluierungsmittel erhält man die Verbindung $\bf 6$ in 150 mg (21% bez. auf eingesetztes ((Me₃Si)₃C)As(Cl)₂) Ausbeute.

Die analytischen und spektroskopischen Daten des Diarsens **6** entsprechen denen von Escudie *et al.* beschriebenen [13].

Wir danken dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft (DFG) für die finanzielle Unterstützung dieser Arbeit. Den Frauen M. Glas, R. Naserke und M. Bader sind wir für die Durchführung der Elementaranalysen zu Dank verbunden. Für die Aufnahme der Massenspektren danken wir den Herren Dr. J. Schneider, Dipl.-Chem. K. Knoll und E. Pilz.

Tab. IV. Darstellung und Charakterisierung der Komplexe ${f 2f}$ und ${f 2g}$.

Ver-	Zers.pkt.	Summenformel	Anal	Analyse (%)		
bindung	(°C)	(Molmasse)		C	H	
2f	119	C ₁₃ HCrFe ₂ O ₁₃ P (559,81)		27,89 27,98		
2 g	133	$C_{13}HFe_2O_{13}W$ (691,66)		22,57 22,25		

Tab. V. Massenspektren der Verbindungen 2f und 2g m/e (rel. Intensität in %).

Verbindung	2f m/e	\mathbf{I}_{r}	2 g <i>m/e</i>	I_r
M ⁺	560	58	692	20
M^+ -CO	532	16	664	19
M^+ – 2CO	504	5	636	5
M^+ – 3CO	476	3	608	21
M^+-4CO	448	22	580	15
M^+-5CO	420	47	552	52
M^+ -6CO	392	83	524	74
M^+-7CO	364	90	496	86
M^+-8CO	336	42	468	73
M^+-9CO	308	45	440	68
$M^{+}-10 CO$	280	52	412	64
$M^{+}-11 CO$	252	45	384	56
$M^{+}-12 CO$	224	45	356	46
$M^{+}-13 CO$	196	100	328	81
Fe ₂ PM ⁺	195	43		
FePHM ⁺	140	27		
FePM ⁺	139	28	271	36
MP^+			215	71
M^+	52	67	184	16
Fe ⁺	56	16	56	100

Tab. VI. Spektroskopische Daten der Verbindungen 2.

Ver- bindung	$_{ m CO}^{-1}$ IR (cm ⁻¹) $_{ m CO}^{-1}$ Streckschwingungen	¹H-NMR δ (ppm)	UV^e		δ^{31} P-NMR δ (ppm)
2 a	2103 (w), 2061 (m), 1997 (s), 1992 (s), 1935 (sh), 1929 (s) ^a	7,35-7,7 (M, 10 H) ^c	$\lambda_1 = 19200$ $\lambda_2 = 27400$ $\lambda_3 = 31750$	$\varepsilon_2 = 36100$	
2 b	2104 (w), 2069 (s), 2000 (bS), 1940 (bm) ^a		$\lambda_1 = 20750$ $\lambda_2 = 27400$ $\lambda_3 = 31750$	$\varepsilon_2 = 10600$	
2 c	2102 (w), 2061 (s), 1987 (bS), 1934 (bS) ^a	1,85 (S, 3H) ^c	$\lambda_1 = 21050$ $\lambda_2 = 27400$ $\lambda_3 = 32000$	$\varepsilon_2 = 10200$	
2 d	2106 (w), 2065 (s), 1989 (bS), 1936 (bS) ^a	$7,1-7,8 \text{ (M, 5H)}^{\text{c}}$	$\lambda_1 = 20700$ $\lambda_2 = 27300$ $\lambda_3 = 31300$	$\varepsilon_2 = 11300$	
2 e	2102 (m), 2076 (w), 2059 (s), 2052 (s), 2036 (m), 2024 (s), 2019 (sh), 2005 (w), 1979 (w), 1949 (sh), 1943 (s) ^b	1,87 (S, 3H) ^d			
2f	$ \nu_{\text{CO}}$: 2113 (w), 2068 (vs), 2054 (s), 2037 (vs), 2023 (sh), 2012 (sh), 1936 (bs) $ \nu_{\text{PH}}$: 2262 ^a				$J_{PH} = 235 \text{ Hz}$
2 g	ν _{CO} : 2199 (w), 2071 (vs), 2066 (s), 2050 (sh), 2040 (s), 2029 (sh), 2018 (sh), 1973 (vw), 1937 (vs) ν _{PH} : 2260 ^a	5,53 (D, 1H, $J_{PH} = 244 \text{ Hz})^{g}$	ţ		$82.9 (D, 1P, J_{PH} = 244 Hz)$

 $[^]a \, In \, CH_2Cl_2; \\ ^b \, in \, \textit{n-}Pentan; \\ ^c \, in \, [D_6] - Aceton; \\ ^d \, in \, [D_6] - Benzol; \\ ^c \, in \, Toluol; \\ \lambda \, in \, cm^{-1}, \\ \epsilon \, in \, mol^{-1} cm^{-1}; \\ ^f \, in \, CDCl_3; \\ ^g \, in \, CD_2Cl_2. \\ \\ D_6 \, [D_6] - Benzol; \\ C_{10} \, [D_6] - Benzo$

Verbindung	Abstände (in pr	m)	Winkel (in Grad)		
2 a	W(1)-As W(2)-As W(3)-As C(1)-As W(2)-W(3) W-C _{CO}	264,8(3) 265,4(3) 264,2(3) 201(2) 322,2(3) 203(2)	W(1)-As-W(2) W(2)-As-W(3) W(3)-As-C(1) W(1)-As-C(1)	132,6(1) 74,9(1) 112,8(4) 106,2(5)	
2f	Cr-P Fe(1)-P Fe(2)-P P-H Fe(1)-Fe(2) $Cr-C_{CO}$ $Fe(1)-C_{CO}$ $Fe(2)-C_{CO}$	240,1(3) 229,3(3) 229,5(4) 138(3) 274,0(3) 187(1)-190(1) 179(1)-182(1) 178,6(9)-180(1)	P-Fe(1)-Fe(2) P-Fe(2)-Fe(1) Fe(1)-P-Fe(2) Fe(1)-P-Cr Fe(2)-P-Cr Fe(1)-P-H Fe(2)-P-H Cr-P-H	53,4(1) 53,3(1) 73,3(1) 130,9(1) 131,8(1) 103(1) 101(1) 109(2)	
3a	As(1)-As(2) W(1)-As(1) W(2)-As(1) W(2)-As(2) W(3)-As(2) As(1)-C(1) As(2)-C(41) W-C _{CO}	236,5(6) 263,8(5) 269,7(5) 269,6(4) 262,6(5) 195(2) 193(2) 203(5)	$C(1)-As(1)-W(1) \\ C(1)-As(1)-W(2) \\ C(1)-As(1)-As(2) \\ W(1)-As(1)-W(2) \\ As(1)-W(2)-As(2) \\ As(1)-As(2)-W(3) \\ As(2)-As(1)-W(1)$	110(1) 109,3(8) 104(1) 129,9(1) 52,0(1) 127,4(1) 131,6(1)	
3¢	As(1)-As(2) As(1)-Fe(1) As(1)-Cr(2) As(2)-Fe(1) As(2)-Cr(1) As(1)-C(1) As(2)-C(7) Cr-C _{CO} Fe-C _{CO}	236,8(6) 246,9(6) 248,9(9) 247,2(5) 247,3(8) 196(2) 193(2) 183(3)-189(6) 171(6)-189(5)	$\begin{array}{l} As(2) - As(1) - Fe(1) \\ As(2) - As(1) - C(1) \\ As(2) - As(1) - Cr(2) \\ As(1) - As(2) - Fe(1) \\ As(1) - As(2) - Cr(1) \\ C(1) - As(1) - Cr(2) \\ C(7) - As(2) - Cr(1) \\ C(31) - Fe(1) - C(33) \\ C(32) - Fe(1) - C(34) \end{array}$	61,4(2) 104,5(7) 131,9(2) 62,3(2) 105,3(8) 130,9(2) 111,8(7) 114,0(7) 104(2) 177(1)	
4	$\begin{array}{l} As(1) - As(2) \\ As(1) - W(1) \\ As(2) - W(1) \\ As(2) - W(2) \\ As(1) - C(31) \\ As(2) - C(41) \\ W(1) - C_{CO} \\ W(2) - C_{CO} \end{array}$	234,2(4) 276,9(4) 272,8(4) 262,2(4) 196(2) 196(2) 207(4) 204(4)	W(1)-As(1)-As(2) W(1)-As(2)-As(1) As(1)-W(1)-As(2) W(2)-As(2)-C(41) As(1)-As(2)-C(41) As(2)-As(1)-C(31)	63,9(1) 65,7(1) 50,4(1) 118,1(8) 102,3(6) 99,3(6)	
5	As(1)-As(2) As(1)-Mo(1) As(1)-C(1) As(2)-C(2) C(1)-Si(1, 2) C(2)-Si(3, 4) Mo-C _{CO}	221,5(1) 256,1(1) 193,7(7) 195,3(8) 189(1); 187(1) 185(1); 187(1) 197(1)-202(1)	$\begin{array}{l} As(1) - C(1) - Si(1) \\ As(1) - C(1) - Si(2) \\ As(2) - C(2) - Si(3) \\ As(2) - C(2) - Si(4) \\ Mo(1) - As(1) - C(1) \\ Mo(1) - As(1) - As(2) \\ C(1) - As(1) - As(2) \\ C(2) - As(2) - As(1) \end{array}$	112,7(5) 112,5(4) 111,2(5) 107,3(4) 119,1(2) 134,0(0) 106,9(2) 100,0(3)	

Tab. VII. Wichtigste Abstände (in pm) und Winkel (in Grad) der Verbindungen 2a, 2f, 3a, 3c, 4 und 5.

- U. Weber, G. Huttner, O. Scheidsteger und L. Zsolnai, J. Organomet. Chem. 289, 357 (1985).
- [2] a) G. Huttner, J. Borm und L. Zsolnai, J. Organomet. Chem. 263, C 33 (1984);
 b) H. Lang, G. Mohr, O. Scheidsteger und G. Huttner, Chem. Ber. 118, 574 (1985) und dort zit. Lit.;
 c) H. Lang, O. Orama und G. Huttner, J. Organomet. Chem. 291, 293 (1985).
- [3] a) J. von Seyerl, U. Moering, A. Wagner, A. Frank und G. Huttner, Angew. Chem. 90, 912 (1978);
 Angew. Chem., Int. Ed. Engl. 17, 844 (1978);
 b) J. von Seyerl, B. Sigwarth, H. G. Schmid, G. Mohr, A. Frank, M. Marsili und G. Huttner, Chem. Ber. 114, 1392 (1981) und dort zit. Lit.
- [4] a) U. Weber, L. Zsolnai und G. Huttner, J. Organomet. Chem. 260, 281 (1984) und dort zit. Lit.;
 b) J. von Seyerl und G. Huttner, Angew. Chem. 90, 911 (1978); Angew. Chem., Int. Ed. Engl. 17, 843 (1978).
- [5] J. von Seyerl und G. Huttner, J. Organomet. Chem. 193, 207 (1980).
- [6] G. Huttner, G. Mohr, P. Friedrich und H. G. Schmid, J. Organomet. Chem. 160, 59 (1978).
- [7] E. Lindner, H. Behrens und S. Birkle, J. Organomet. Chem. 15, 165 (1968).
- [8] a) F. A. Cotton und C. S. Kraihanzel, J. Am. Chem. Soc. 84, 4432 (1962);
 b) L. E. Orgel, Inorg. Chem. 1, 25 (1962);
 c) E. O. Fischer und L. Knauß, Chem. Ber. 102, 223 (1960).
- [9] B. Sigwarth, U. Weber, L. Zsolnai und G. Huttner, Chem. Ber. 118, 3114 (1985).
- [10] Messung und Datensammlung: Syntex/Nicolet-P3-Diffraktometer, $Mo-K_a$, $\lambda=71,069$ pm, Graphitmonochromator, ω -scan, empirische Absorptionskorrektur; Strukturlösung: EXTL (G. M. Sheldrick, Göttingen, Resivion 1982).
 - Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen, unter der Hinterlegungsnummer CSD 51606, der Autoren und des Zeitschriftenzitats angefordert werden.

Strukturparameter:

2a: $C_{21}H_5AsO_{15}W_3$, Molmasse 1123,7; Raumgruppe $P2_1/c$; a=1598(2), b=1155(1), c=1596(2) pm; $\beta=111,34(8)^\circ$; $V=2743\cdot 10^6$ pm³; Z=4; $d_{ber.}=2,72$ gcm⁻³; μ -Mo- $K_a=146$ cm⁻¹; T=231 K; 2318 unabhängige Reflexe $(I>2\sigma)$; $R_1=0,035$, $R_2=0,042$.

2f: C₁₃HCrFe₂O₁₃P, Molmasse 559,81; Raumgruppe P2₁/c; a = 911,9(6), b = 1535(1), c = 1416,2(9) pm; $β = 106,59(5)^\circ$; $V = 1899 \cdot 10^6$ pm³; Z = 4; d_{ber.} = 1,95 gcm⁻³; μ-Mo-K_α = 22,8 cm⁻¹; T = 223 K; 1738 unabhängige Reflexe (I > 2σ); $R_1 = 0,049$, $R_2 = 0,058$. **3a:** C₂₇H₁₀As₂O₁₅W₃, Molmasse 1275,8; Raumgruppe P2₁/c; a = 1317(2), b = 1639(2), c = 2145(3) pm; $β = 133,55(8)^\circ$; $V = 3357 \cdot 10^6$ pm³; Z = 4; d_{ber.} = 2,52 gcm⁻³; μ-Mo-K_α = 129,8 cm⁻¹; T = 233 K; 3024 unabhängige Reflexe (I > 2σ); $R_1 = 0.053$, $R_2 = 0.062$. **3c:** C₂₆H₁₀O₁₄As₂Cr₂Fe, Molmasse 856; Raumgruppe P2₁/c; a = 1244.6(4), b = 1623,5(5), c = 2050.9(8) pm; $β = 131,06(2)^\circ$; $V = 3125 \cdot 10^6$ pm³; Z = 4.; d_{ber.} = 1,82 gcm⁻³; μ-Mo-K_α = 34,7 cm⁻¹; T = 251 K; 1964

- unabhängige Reflexe (I>2 σ); $R_1=0.092$, $R_2=0.107$. **4:** $C_{22}H_{10}As_2O_{10}W_2$, Molmasse 951,9; Raumgruppe Pī; a=951.0(9), b=1014.8(9), c=1538(1) pm; $\alpha=96.89(7)$, $\beta=79.64(7)$, $\gamma=115.63(7)^\circ$; V=1314·10⁶ pm³; Z=4; $d_{ber}=2.40$ gcm $^{-3}$; μ -Mo- $K_\alpha=119.4$ cm $^{-1}$; T=243 K; 1961 unabhängige Reflexe (I>2 σ); $R_1=0.051$, $R_2=0.061$. **5:** $C_{19}H_{38}As_2MoO_5Si_4$, Molmasse 704,61; Raumgruppe Pī; $\alpha=899.2(5)$, b=1085.8(6), c=1805(2) pm; $\alpha=76.13(6)$, $\beta=100.19(6)$, $\gamma=113.79(4)^\circ$; V=1559·10⁶ pm³; Z=2; $d_{ber}=1.37$ gcm $^{-3}$; μ -Mo- $K_\alpha=28.0$ cm $^{-1}$; T=233 K; 3224 unabhängige Reflexe (I>2 σ); $R_1=0.044$, $R_2=0.056$.
- [11] J. Borm, L. Zsolnai und G. Huttner, Angew. Chem. 95, 1018 (1983); Angew. Chem., Int. Ed. Engl. 22, 977 (1983); Angew. Chem. Suppl. 1983, 1477 und dort zit. Lit.
- [12] a) A. H. Cowley, Polyhedron 4, 389 (1984) und dort zit. Lit.;
 b) A. H. Cowley, J. G. Lasch, N. C. Norman und M. Pakulski, J. Am. Chem. Soc. 105, 5506 (1983);
 c) A. H. Cowley, J. G. Lasch, N. C. Norman und M. Pakulski, Angew. Chem. 95, 1019 (1983); Angew. Chem., Int. Ed. Engl. 22, 978 (1983); Angew. Chem. Suppl. 1983, 1493.
- [13] C. Couret, J. Escudie, Y. Madaule, H. Ranaivonjatovo und J. G. Wolf, Tetrahedron Lett. 24, 2769 (1983).
- [14] M. J. S. Gynane, A. Hudson, M. F. Lappert und P. P. Power, J. Chem. Soc. Dalton 1980, 2428.
- [15] Methoden der organischen Chemie, Houben-Weyl, Thieme Verlag, Bd. 13/8, Stuttgart 1978.
- [16] a) G. Huttner und H. G. Schmid, Angew. Chem. 87, 454 (1975); Angew. Chem., Int. Ed. Engl. 14, 433 (1975);
 - b) G. Huttner, H. G. Schmid und H. Lorenz, Chem. Ber. **109**, 3741 (1976).
- [17] Darstellung der Verbindung (CO)₅W-Sb(CH₃)(Cl)₂: 3 g (8,52 mmol) W(CO)₆ und 1,77 g (8,52 mmol) MeSbCl₂ werden zusammen 7 h in 500 ml Toluol bestrahlt. Die dunkelrote Lösung wird auf Kieselgur aufgezogen und filtriert. Mit Toluol eluiert man eine dunkelrote Zone, aus der man (CO)₅W-Sb(CH₃)(Cl)₂ als dunkelrote Kristalle durch Umkristallisation bei -30 °C aus CH₂Cl₂ erhält. Ausbeute: 2,3 g (51% bez. auf eingesetztes W(CO)₆).

C₆H₃Cl₂SbO₅W (531,6) Ber. C 13,56 H 0,56,

Gef. C 13,71 H 0,49.

Schmp.: 78 °C. IR (ν_{CO} , *n*-Pentan): 2085 (m), 2002 (m), 1975 (s), 1965 (s), 1951 (sh). ¹H-NMR ([D]₆-Benzol): 1,35 (S, 3H).

- [18] A. Hinke und W. Kuchen, Z. Naturforsch. 37b, 1543 (1982) und dort zit. Lit.
- [19] H. Lang, G. Huttner, L. Zsolnai, G. Mohr, B. Sigwarth, U. Weber, O. Orama und I. Jibril, J. Organomet. Chem., im Druck.
- [20] W. A. Herrmann, B. Koumbouris, A. Schäfer, T. Zahn und M. C. Ziegler, Chem. Ber. 118, 2472 (1985).
- [21] Inzwischen wurde dieses Phänomen auch von anderer Seite beschrieben: A. M. Arif, A. H. Cowley, N. C. Norman, A. G. Orpen und M. Pabulski, J. Chem. Soc. Chem. Commun. 1985, 1267.