Über die Kristallstruktur von KSc₂F₇

The Crystal Structure of KSc₂F₇

Klaus Güde und Christoph Hebecker*

Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität in Gießen, Heinrich-Buff-Ring 58, D-6300 Gießen

Z. Naturforsch. **40b**, 726–729 (1985); eingegangen am 19. November 1984/11. Februar 1985 Crystal Structure, X-Ray

Single crystals of KSc_2F_7 have been prepared from a mixture of KF and ScF_3 . The samples were investigated by X-ray methods. KSc_2F_7 crystallizes orthorhombically with a=10.643(2), b=6.540(1), c=4.030(1) Å. These data indicate a close crystallographic connection to the monoclinic unit cell of KIn_2F_7 [1]. But in contrast to KIn_2F_7 , KSc_2F_7 crystallizes in space group No. 65, Cmmm $-D_{20}^{19}$. The *R*-value for 341 observed independent reflections is 0.060.

In der Reihe der Alkalitetrafluoroscandate konnten bisher nur die Verbindungen NaScF₄ [2] und CsScF₄ [3] einem Kristallstrukturtyp zugeordnet werden. KScF₄ wurde bisher nur durch Röntgenpulveraufnahmen nach der Simon-Guinier-Methode charakterisiert [4]. Die Reflexe von Pulveraufnahmen konnten mit orthorhombischer Metrik indiziert werden. Gesicherte Isotypiebeziehungen zu den bereits bekannten Verbindungen vom Strukturtyp M¹M^{1II}F₄ konnten nicht gefunden werden, außer einer metrischen Beziehung zum KFeF₄ [5]. Deshalb haben wir erneut versucht, die Kristallstruktur von KScF₄, falls dieses überhaupt darzustellen ist, durch Untersuchungen an Einkristallen zu klären.

Experimenteller Teil

Nach fünfwöchigem Tempern eines äquimolaren Gemenges von KF und ScF3 in einer Goldampulle bei etwa 680-700 °C wurden nadelförmige, farblose Kristalle von KSc₂F₇ anstelle von KScF₄ erhalten. Die Simon-Guinier-Aufnahmen dieser einkristallinen Probe unterschieden sich nicht von denen, die bisher für KScF₄ erhalten wurden. Mit Hilfe des Polarisationsmikroskops wurde aus der Probe ein unverzwillingter Einkristall isoliert und in ein Markröhrchen eingeschmolzen. Lediglich der nadelige Habitus der Einkristalle war problematisch, weil er eine Verzwilligung längs der Nadelachse begünstigt: die Kristalle waren zu Bündeln zusammengewachsen. Diese Kristalle wurden auf dem Weißenberg-Goniometer entlang der Nadelachse Schwenkaufnahmen nachjustiert. Aus den Weißenbergaufnahmen der 0. und 1. Schichtlinie lassen sich

die Auslöschungsbedingungen h+k=2n+1 ableiten. Da spezielle Auslöschungsbedingungen fehlen, bieten sich als mögliche Raumgruppen Cmmm, Cmm2 und C222 an.

Ergebnisse und Diskussion

Bestimmung der Struktur

Mit einem automatischen Vierkreisdiffraktometer (Philips PW 1100, Ag_{Ka1}-Strahlung, Graphitmonochromator) wurden die Intensitäten von 1259 Reflexen gemessen ($|h| \le 16$, $|k| \le 8$, $|l| \le 6$). Nach Lound Polarisationskorrektur wurden die Reflexintensitäten zu einem Datensatz von 354 symmetrieunabhängigen Werten umgerechnet (Mittelung über symmetrieabhängige Reflexe mit einem Konsistenzfaktor von 4%). Der niedrige Wert des linearen Absorptionskoeffizienten (14,46 cm⁻¹) ließ eine Absorptionskorrektur nicht notwendig erscheinen. Die zur Berechnung der Atomformfaktoren notwendigen Koeffizienten wurden den Internationalen Tabellen entnommen. Zur Strukturbestimmung wurde das Programmsystem SHELX-76 benutzt [6]. Alle Berechnungen wurden am Computer des HRZ (Cyber 174, Control Data) der JL-Universität Gießen durchgeführt.

Die Lösung der Kristallstruktur von KSc_2F_7 gelang mit direkten Bestimmungsmethoden. Die Phasenbestimmung der Intensitäten ($E \ge 1,2$) wurde in der zentrosymmetrischen Raumgruppe Cmmm durchgeführt, obwohl die E-Wertstatistik eher eine azentrische Raumgruppe nahelegte. Einer der so erhaltenen Strukturvorschläge bestand aus einem kristallchemisch plausiblen Modell für die Lagen der Kationen K^+ und Sc^{3+} . Danach liegen die K^+ -Ionen auf der speziellen Lage (2 a), die Sc^{3+} -Ionen auf der Lage

^{*} Sonderdruckanforderungen an Prof. Dr. Chr. Hebecker. Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0340–5087/85/0600–0726/\$ 01.00/0

(4h). Daraus ergibt sich ein Sc/K-Atomverhältnis von 2:1. Nach Kenntnis dieser Kationenlagen wurden Differenzfouriersynthesen durchgeführt, durch die insgesamt $14 \, \mathrm{F}^-$ -Ionen lokalisiert werden konnten. In der Elementarzelle sind Z=2 Formeleinheiten der Verbindung enthalten. Nach Verfeinerung der Atomlagenparameter und der isotropen Temperaturfaktoren der Kationen konvergierte der R-Wert gegen 8%, mit anisotropen Temperaturfaktoren gegen 6,24%. Die zusätzliche Einbeziehung anisotroper Temperaturfaktoren für die F^- -Ionen trug zur weiteren Senkung des R-Wertes kaum bei (0,2%).

Bei der Verfeinerung der insgesamt 21 freien Parameter wurden nur Reflexintensitäten benutzt, deren F_o -Werte mindestens doppelt so groß wie ihre Standardabweichungen waren (355 Reflexintensitäten). Auch die Anwendung eines Wichtungsschemas ($\omega = 2.9 \ (\sigma^2(F_o) + 0.002 \cdot (F_o^2)^{-1})$), das auf der Zählstatistik der Intensitätsmessung beruht, konnte den R-Wert nicht unter 6.04% senken. Die kristallographischen Daten für KSc_2F_7 sind in Tab. I zusammengestellt. Die Ortsparameter der Atomlagen sowie die B-Werte aller Atome zeigt Tab. II.

Beschreibung des Strukturmodells

Die Sc³⁺-Ionen einer Strukturschicht liegen auf den Knotenpunkten eines pseudohexagonalen Netzwerks, von dem ein Drittel unbesetzt bleibt. Der dadurch vorhandene freie Raum wird von den K⁺-Ionen eingenommen, die auf die Hälfte zwischen 2 Sc³⁺-Schichten abgedrängt werden (Abb. 1). 7 F⁻-Ionen bilden jeweils um 1 Sc³⁺-Ion mit Abständen von 2,024–2,221 Å eine pentagonale Bipyramide (Abb. 2). Diese Polyeder schließen sich durch Verknüpfung über gemeinsame Kanten zu Ketten parallel [010] zusammen. Der Mittelwert der Sc–F-Ab-

Tab. I. KSc₂F₇: kristallographische und analytische Daten.

1 ab. 1. KSc ₂ F ₇ : kristallographische u	nd analytische Daten.
Kristallsystem	orthorhombisch
Raumgruppe	$Cmmm-D_{2h}^{19}$
Gitterkonstanten	a = 10,643(2)
(Guinier-Simon-Daten, Å)	b = 6,540(1)
(Guiner Simon Buten, 11)	c = 4,030(1)
Dichte	1,000(1)
(pyknometrisch bestimmt, g⋅cm ⁻³) 2,88
(röntgenograph. bestimmt, g⋅cm ⁻³	2,85
Zahl der Formeleinheiten	, =,00
pro Elementarzelle	2
Zellvolumen (Å ²)	278,96
F(000)	234,0
Molvolumen	,•
(röntgenographisch, cm ³)	90,97
Molvolumen	70,77
(Summe d. Ausgangsfluoride, cm ³)	86,5
Kristallform, -farbe	farblose Nadeln
Linearer Absorptionskoeffizient	idiologe i iddelli
$(Mo-K_{\bar{a}}, cm^{-1})$	14,46
Diffraktometer	Philips PW 1100
Strahlung, Monochromator	$Ag_{K\alpha_1}$, Graphit-
Stramang, Woncemoniator	Monochromator
Korrekturen	Lorentz- und Polari-
Romentaren	sationskorrektur
Meßbereich, -temperatur	4°-26°, 25 °C
Abtastung	ω -scan,
Notastang	scan-Weite: 1,8°,
	scan-Geschwindigk.:
	0.06°/s
Anzahl der	0,0075
symmetrieunabhängigen Reflexe	354
Lösungsverfahren	direkte Methoden,
Zooungoverrumen	Differenzfourier-
	synthesen
Parameterverfeinerung	"full-matrix"
i arameter rerremerang	least-square,
	anisotrope
	Temperaturfaktoren
Restelektronendichte	$E_{\text{max}}: 1.5 \cdot 10^{-3} \text{e Å}^{-3};$
	$E_{\text{min.}}$: 3,8 · 10 ⁻³ eÅ ⁻³
nicht berücksichtigte Reflexe	$13, F_0 < 2\sigma$
Anzahl der freien Parameter	21
$R = \sum F_0 - F_c / \sum F_0$	6,04%
$R_{\rm w} = \Sigma \sqrt{\rm w} \cdot F_{\rm o} - F_{\rm c} / \Sigma \sqrt{\rm w} F_{\rm o} $	6,19%
Tw = 2 v w 1 o 11 c /2 v w 1 o	0,1770

Tab. II. Kristallographische Daten, Ortsparameter und U_{ij} -Werte der anisotropen Temperaturfaktoren (in $10^4 \, \mathring{A}^2$) für alle Atomlagen in der Elementarzelle von KSc_2F_7 (mit Standardabweichungen in den letzten Stellen).

Kristallsystem: orthorhombisch, Raumgruppe Nr. 65, Cmmm $-D_{2h}^{19}$, Z=2

Gitterkonstanten: a = 10,64(2), b = 6,504(1), c = 4,030(1) Å

Dichtewerte: $d_{ro} = 2,85, d_{pyk} = 2,88 \text{ g/cm}^3$

Atomsorte	Punktlage	x/a	y/b	z/c	U ₁₁	U ₂₂	U_{33}	U_{12}	U_{13}	U ₂₃
K	2a	0,0	0,0	0,0	199(15)	368(20)	197(15)	0	0	0
Sc F ₁	4 h 4 g	0,6925(2) 0,7014(8)	$0,0 \\ 0,0$	$0,5 \\ 0,0$	54(6) 314(34)	67(6) 225(29)	74(7) 145(26)	0	0	0
\mathbf{F}_{2}^{1}	8q	0,3549(4)	0,6898(7)	0,5	103(17)	84(17)	353(24)	3(12)	0	0
F_3	2c	0,5	0,0	0,5	152(35)	73(32)	667(53)	0	0	0

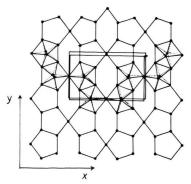


Abb. 1. Darstellung der [ScF₇]-Bipyramiden in [001]-Projektion. Eingezeichnet sind die Kanten einer Elementarzelle

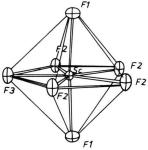


Abb. 2. Koordinationspolyeder des Sc³⁺-Ions.

stände beträgt 2,077 Å und ist nur wenig größer als die Summe der Ionenradien von F^- (1,31 Å, KZ=4) und Sc^{3+} (0,75 Å, KZ=6, Summe: 2,055 Å). Auch in Richtung der kurzen c-Achse sind die [ScF₇]-Polyeder über gemeinsame axiale F^- -Ionen verbunden, die einen geringeren Beitrag zur Gitterenergie bzw. zu deren Madelunganteil leisten, als die äquatorialen F^- -Ionen.

Das Koordinationspolyeder um das K⁺-Ion bilden 10 F⁻-Ionen im Abstand von 2,829-3,178 Å (Abb. 3). Der Mittelwert dieser Bindungsabstände beträgt 2,899 Å und ist gleich der Summe der Ionen-

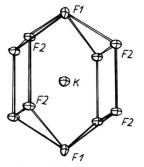


Abb. 3. Koordinationspolyeder des K⁺-Ions.

radien von K⁺ (1,59 Å, KZ=10) und F⁻ (1,31 Å, KZ=4). 8 F⁻-Ionen umgeben das K⁺-Ion in Form eines Quaders. Den beiden zur *b/c*-Ebene parallelen Quaderflächen ist jeweils ein weiteres F⁻-Ion vorgelagert (K-F-Abstand: 3,178 Å). Der Madelunganteil der Gitterenergie [7] für KSc₂F₇ weicht gegenüber der Summe für die binären Komponenten KF und ScF₃ nur um 0,5 ab (KSc₂F₇: 3144 kcal/mol, KF: 216,9, 2 ScF₃: 2940,0 kcal/mol). Die entsprechenden Atomabstände und Bindungswinkel sind in Tab. III wiedergegeben.

Tab. III. Kürzeste interatomare Abstände [Å] und Winkel [°] in der KSc₂F₇-Struktur.

Abstände			
$K-8\times F_2$	2,826(3)	$F_1-4\times F_2$	2,876(6)
$K-2\times F_1$	3,178(9)	$F_1-4\times F_2$	2,922(4)
$Sc-2\times F_1$	2,017(1)	$F_1-2\times F_3$	2,942(6)
$Sc-1\times F_3$	2,049(2)	F_2-F_2	2,368(9)
$Sc-2\times F_2$	2,091(5)	F_2-F_2	2,484(9)
$Sc-2\times F_2$	2,128(5)	F_2-F_3	2,550(5)
2	2,120(3)	$F_2-2\times F_1$	2,876(6)
Winkel		$F_2-2\times F_1$	2,922(4)
F_1 -Sc- F_1	174,62(50)	F_2-F_2	3,089(9)
F_1-Sc-F_2	87,81(20)	$F_3-4\times F_1$	2,942(6)
F_1-Sc-F_2	90,65(6)		
F_1 -Sc- F_3	92,69(20)		
F_2-Sc-F_2	71,39(25)		
F_2 -Sc- F_2	68,26(20)		
F_2 -Sc- F_3	76,04(13)		
$F_2 - F_1 - F_2$	107,44(10)		
$F_2 - F_1 - F_2$	110,77(32)		
$F_2 - F_3 - F_2$	105,47(20)		
$F_2 - F_2 - F_3$	107,85(27)		
$F_2 - F_2 - F_2$	109,43(22)		

Auswertung der Röntgenpulveraufnahmen

Ein Vergleich der Simon-Guinier-Aufnahmen von KSc_2F_7 und der bislang als $KScF_4$ bezeichneten Verbindung zeigt eine weitgehende Übereinstimmung der Röntgenreflexmuster. Die Meßwerte sind in Tab. IV angegeben. Eine Ausgleichsrechnung nach der Methode der kleinsten Fehlerquadrate (Programm SOS) ergab die Gitterkonstanten: $a=10,643(2),\ b=6,540(1),\ c=4,030(1)$ Å. Für die Verbindung $KScF_4$ wurden die Gitterkonstanten: $a=10,64,\ b/2=6,51$ und c/2=4,03 Å [4] erhalten.

Vergleich von KSc₂F₇ mit der Zusammensetzung KScF₄

Die Zusammensetzung der untersuchten Einkristalle von KSc₂F₇ wurde durch die Strukturuntersu-

Tab. IV. Auswertung einer Simon-Guinieraufnahme von KSc_2F_7 ($Cu_{K\alpha_1}$ -Strahlung, Flächenpräparat, Eichung mit Tief-Quarz), Vergleich der berechneten und beobachteten Intensitäten.

h k l	$\sin^2\theta \cdot 10^3$ calc.	$\sin^2\theta \cdot 10^3$ obs.	$I_{calc.}$	$I_{obs.}$
2 0 0	20,98	21,04	47	40
0 0 1	36,44	36,93	36	45
0 2 0	55,50	55,53	100	100
1 1 1	55,56	55,57	28	100
2 0 1	57,42	57,71	60	50
3 1 0	61,09	61,43	75	60
2 2 0	76,49	76,67	3	5
0 2 1	91,94	91,93	17	5
3 1 1	97,53	97,29	20	20
2 2 1	112,92	112,53	37	20
4 0 1	120,38	120,36	42	35
4 2 0	139,44	139,12	34	25
5 1 0	145,03	144,75	21	5
0 0 2	145,75	145,09	63	80
1 3 1	166,56	165,82	25	40
3 3 0	172,09	171,97	41	40
5 1 1	181,47	181,46	15	20
6 0 0	188,86	188,91	17	15
0 2 2	201,25	201,47	18	15
3 1 2	206,84	207,34	22	25
3 3 1	208,53	208,83	15	10
0 4 0	222,01	222,29	15	15
5 3 0	256,01	256,18	5	10

chung eindeutig belegt. Dafür, daß diese Verbindung stets aus äquimolaren Gemengen von KF und ScF₃ gebildet wurde, bieten sich die folgenden alternativen Erklärungen an:

- Es gibt keine Verbindung der Zusammensetzung KScF₄. Bisher als KScF₄ bezeichnete Pulverproben waren offensichtlich Gemenge aus KSc₂F₇ und anderen Verbindungen, z. B. KF und K₃ScF₆.
- 2. Eventuell zersetzt sich die Verbindung KScF₄ bei den für die Kristallzüchtung notwendigen Temperaturen (680-700 °C) in KSc₂F₇, welches sich von Proben der Zusammensetzung KScF₄ nach Auswertung von Röntgenpulveraufnahmen nur schwierig unterscheiden läßt. Zudem werden beide Phasen in engem strukturellem Zusammenhang stehen, der sich mit dem Konzept des chemical twinning [8] beschreiben läßt.

Wenn man für beide Zusammensetzungen eine vergleichbare Anordnung der Kationen annimmt und in der Elementarzelle von KSc₂F₇ ein Sc³⁺-Ion durch ein K⁺-Ion ersetzt, aber gleichzeitig zwei F⁻-Ionen wegläßt, gelangt man zu einer Struktur, die man mit TlAlF₄ [9] vergleichen kann. In dieser Struktur sind [AlF₆]-Oktaeder über gemeinsame Ecken zu Flächen verknüpft, zwischen denen die Tl⁺-Ionen liegen. Danach wird KScF₄ wie KFeF₄ eine Überstrukturvariante des TlAlF₄-Typs sein.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 51270, des Autors und des Zeitschriftenzitats angefordert werden.

^[1] J.-C. Champarnaud-Mesjard und B. Frit, Acta Crystallogr. **B 33**, 3722 (1977).

^[2] R. E. Thoma und R. H. Karraker, Inorg. Chem. 5, 1933 (1966).

^[3] Ch. Hebecker und R. Lösch, Diplomarbeit R. Lösch, Gießen 1975.

^[4] J. Zimmermann, Staatsexamensarbeit, Gießen 1977; J. Horn, Staatsexamensarbeit, Gießen 1979; R. Lösch, Dissertation, Gießen 1979.

^[5] G. Heger, R. Geller und D. Babel, Solid State Commun. 9, 335 (1971).

^[6] G. M. Sheldrick, SHELX-76. Program for Crystal Structure, Determination, Univ. Cambridge, England 1976.

^[7] R. Hoppe, Angew. Chem. 78, 52 (1966); Angew. Chem. 82, 7 (1970).

^[8] S. Andersson und B. G. Hyde, J. Solid State Chem. 9, 92 (1974).

^[9] C. Brosset, Z. Anorg. Allg. Chem. 235, 139 (1937); 239, 301 (1938).