Metallacycloalkane, VIII [1]

η^5 -Cyclopentadienyl- η^2 -methylencyclopropan-Cobaltkomplexe und deren Umwandlung in η^4 -Butadien-Cobaltkomplexe über Cobaltacyclopentane

Metallacycloalkanes, VIII [1]

 η^5 -Cyclopentadienyl- η^2 -Methylenecyclopropane Complexes of Cobalt and their Transformation into η^4 -Butadiene Complexes via Cobaltacyclopentanes

Paul Binger*, Tony Ronald Martin, Reinhard Benn**, Anna Rufińska** und Gerhard Schroth** Max-Planck-Institut für Kohlenforschung, Lembkestraße 4, D-4330 Mülheim a.d. Ruhr

Herrn Prof. Dr. Roland Köster zum 60. Geburtstag gewidmet

Z. Naturforsch. 39b, 993-1000 (1984); eingegangen am 12. März 1984

 η^5 -Cyclopentadienyl- η^2 -methylenecyclopropanecobalt Complexes, Isomerisation,

 η^4 -Butadiene Cobalt Complexes, NMR Spectra

The η^5 -cyclopentadienyl-bis(η^2 -methylenecyclopropane)cobalt complexes **5** and **6** were prepared by reaction of CpCo-bis(ethylene) (**4**) with methylenecyclopropane (**1**) and 2,2,3,3-tetramethylenecyclopropane (**2**), which on heating isomerise *via* non-isolable cobaltacyclopentanes and 4-methylene-cobaltacyclohexanes to give the CpCo-1,3-butadiene derivatives **10**, **11** and **12**. The same type of isomerisation can be observed by reacting CpCo(triphenylphosphane)(acrylonitrile) with **1** leading to the CpCo-1,3-butadiene derivative (**15**). With diphenylmethylenecyclopropane (**3**) only a CpCo-monomethylenecyclopropane complex is formed, which isomerises immediately to give CpCo(1,1-diphenyl-1,3-butadiene) (**13**) and in minor amounts the fluxional binuclear cobalt complex **14**. All new cobalt complexes were fully characterised by means of high resolution NMR spectroscopy.

Methylencyclopropane lassen sich an Nickel(0)-Katalysatoren leicht zu Dispiro[2.1.2.1]octanen und 5-Methylenspiro[2.4]heptanen cyclodimerisieren [2]. Diese Cycloadditionen verlaufen offensichtlich über Nickel(0)-Komplexe mit zwei η²-gebundenen Methylencyclopropanen, aus denen im Verlauf einer oxidativen Kupplung Nickelacyclopentane als Schlüsselintermediate entstehen. Im Fall der Methylencyclopentanbildung ist der reduktiven Eliminierung eine Cyclopropylmethyl/3-Butenylumlagerung vorgelagert (Gl. 1)) [2].

In stöchiometrischen Modellreaktionen konnten bisher nach Gl. (1) Nickel(0)-Komplexe vom Typ A und C mit L,L = 2,2'-Bipyridin [3], Ethylenbis(dicyclohexylphosphan) [4] oder L = Triphenylphosphan [5], nicht jedoch B und D dargestellt und charakterisiert werden. Nachdem η^5 -Cyclopentadienyl-

^{*} Sonderdruckanforderungen an Privatdozent Dr. P. Binger.

^{**} NMR-Spektroskopie. 0340-5087/84/0800-0993/\$ 01.00/0

bis(ethylen)cobalt (4) gut zugänglich geworden ist [6a], haben wir versucht, durch Verdrängung der beiden Ethylene zu B analoge Bis(methylencyclopropan)cobaltkomplexe darzustellen und diese in die Cobaltverbindungen vom Typ C und D umzuwandeln, zumal die Darstellung von η^5 -Cyclopentadienylcobaltacyclopentanen durch oxidative Kupplung von Acrylnitril an Cobalt bekannt war [7].

Über die Ergebnisse dieser Versuche wird hier berichtet.

4 reagiert mit den Methylencyclopropanen 1 und 2 glatt unter Verdrängung der beiden Ethylenmoleküle. Man erhält die neuen Bisolefinkomplexe 5 und 6 in 70% (5) bzw. 34% (6) Ausbeute. 5 und 6 sind bei Raumtemperatur stabile orange Verbindungen. Dagegen liefert Diphenylmethylencyclopropan (3) mit 4, wahrscheinlich aus sterischen Gründen, nur einen Monodiphenylmethylencyclopropan-cobaltkomplex, der bei Raumtemperatur instabil ist und unter Umlagerung weiterreagiert (siehe Gl. (5)).

In Analogie zu 4 ist auch für die beiden neuen π -Methylencyclopropan-cobaltverbindungen 5 und 6 eine idealisierte trigonal planare Struktur anzunehmen. Die Achsen verlaufen durch den Mittelpunkt des Cyclopentadienylrings bzw. durch die beiden C=C-Doppelbindungen. Der Cyclopentadienylring und die beiden Olefine stehen senkrecht zur Koordinationsebene. Bei 300 K sind im 400 MHz ¹H-NMR-Spektrum von 5 die beiden Exomethylencyclopropane äquivalent. Neben den Hauptsignalen tritt ein zweiter Signalsatz für ein Nebenisomer (<10%) auf. Aufgrund des bei 300 K langsamen Austauschs der beiden Isomere $(k \sim 1 \cdot s^{-1})$ sowie einer eher hohen Barriere für die Olefinrotation am Cp-Co-Rumpf [6b] und den ¹H-NMR-Spektren bei 230 K nehmen wir an, daß die C2-Symmetrie von 5 nicht durch strukturdynamische Prozesse vorgetäuscht wird. Aus Kern-Overhauser-Differenzspektren [8] [räumliche Wechselwirkung von H¹ mit Cp und H², jedoch nicht mit H³ und H⁵, sowie räumlicher Nachbarschaft der Protonen H⁴ und H² (zwischen den beiden Liganden, s. S. 997)] läßt sich für das Hauptisomer diese C₂-Symmetrie (antiparallele Anordnung der Liganden 1) ableiten. Diese für 5 angenommene Struktur wurde auf den Komplex 6 ohne weitere Experimente übertragen.

In 5 läßt sich ein Olefin durch Triphenylphosphan bzw. Triphenylphosphit substituieren, wobei die neuen Cobaltkomplexe 7 und 8 entstehen (Gl. (3a)). Beim Erwärmen von 5 auf oberhalb 50 °C treten zwei Reaktionen ein: 5 verliert ein Methylencyclopropan, der entstehende Monoolefinkomplex lagert sich in das bekannte η^5 -Cyclopentadienyl- η^4 -1,3butadiencobalt (9) [9] um; zum anderen tritt oxidative Kupplung zu einem Cobaltacyclopentadienderivat ein, das sich über eine Cyclopropylmethyl/3-Butenylumlagerung in ein Cobaltamethylencyclohexanderivat umwandelt. Gewonnen werden nach β -H-Eliminierung und H-Übertragung die beiden 1,3-Butadiencobaltkomplexe 10 und 11, die allerdings nicht in reiner Form isoliert werden konnten und daher nur im Gemisch, zusammen mit 9 NMR-spektroskopisch nachgewiesen wurden. Neben den Verschiebungen und Kopplungskonstanten sind für 10 und 11 im ¹H-NMR-Spektrum die diastereotopen Methylenprotonen (vgl. Exp. Teil) besonders charakteristisch.

Die Bildung von 9 kann weitgehend vermieden werden, wenn man 5 zusammen mit einem größeren Überschuß an 1 im geschlossenen Gefäß erwärmt.

Analog zu 5 wandelt sich auch 6 in Anwesenheit von überschüssigem 2 über fünf- und sechsgliedrige

Metallacyclen in den 1,3-Butadiencobaltkomplex 12 um, der als orange Kristalle in 42-proz. Ausbeute isoliert werden konnte. Der Strukturvorschlag für 12 basiert auf dem 400 MHz ¹H-NMR-Spektrum (vgl. Exp. Teil).

Umlagerungen von CpCobaltacycloheptanen in 1,3-Butadiencobaltverbindungen wurden schon früher beschrieben [10]. Der aus Diphenylmethylencyclopropan (3) und 4 vermutlich erhaltene Monoolefinkomplex lagert sich schon unter den Bedingungen seiner Bildung unter Öffnung der C^1/C^2 -Dreiringbindung hauptsächlich zum η^5 -Cyclopentadienyl η^4 -diphenyl-1,3-butadiencobalt 13 um. Daneben entsteht durch o-Metallierung eines Phenylrestes zu ca. 6% die zweikernige Cobaltverbindung 14 der Zusammensetzung (C_5H_5) $_2Co_2(C_{16}H_{14})$ (Gl. (5)).

14 ist formal ein Analogon des Reppeschen Eisenkomplexes [11], der als erster Metallacyclus überhaupt bekannt wurde. Auch im Falle von Co sind binucleare Komplexe mit einem η^4 -gebundenen CpCo^(I)-Rest und einem bis- σ -gebundenen CpCo^(III)-Rest bekannt geworden [12]. Neu an 14 ist, daß eine Doppelbindung des Phenylrestes in das π -gebundene Cobaltacyclopentadiensystem einbezogen ist. Ana-

log den früher beschriebenen Vertretern ist auch **14** strukturdynamisch (temperaturabhängige ¹H- und ¹³C-NMR-Spektren). Bei –50 °C beobachtet man im 400 MHz ¹H-NMR-Spektrum von **14** neun getrennte Signale für die Aromatenprotonen (davon sind zwei Resonanzen entartet). Aufgrund ihrer Lage sind die dazugehörigen C-Atome als unkomplexiert anzunehmen. Dies wird auch durch die ¹³C-Verschiebung be-

stätigt (vgl. Exp. Teil). Bei 300 K beginnen die beiden *ortho-* und *meta-*Protonen des Phenylrings paarweise auszutauschen, in Übereinstimmung mit einer zunehmend freien Rotation des Phenylrings um die σ -Bindung. Zusätzlich beginnen die CpCo-Reste äquivalent zu werden, wie sich durch einen Austausch der beiden Cp-Signale mit Hilfe von Magnetisierungstransfer-Experimenten [8] nachweisen läßt (vgl. Gl. (6)).

Ausgehend von η^5 -Cyclopentadienyl-triphenyl-phosphan- η^2 -acrylnitrilcobalt gelang es auch erstmals die Nickel(0)-katalysierte Codimerisierung von **1** mit elektronenarmen Olefinen [13] an einem Metall nachzuvollziehen.

Bei 80 °C reagiert 1 unter Verdrängung des Triphenylphosphans über die nicht isolierten, in Gl. (7) aufgezeigten Cobaltkomplexe zu der η^5 -Cyclopentadienyl- η^4 -1,3-butadiencobaltverbindung 15. 15 konnte in 54proz. Ausbeute gewonnen werden. Der ebenfalls denkbare 1,3-Butadiencobaltkomplex 16 konnte nicht nachgewiesen werden. Typisch für 15 sind im 1 H-NMR-Spektrum wiederum die {AB}Aufspaltungsmuster für die diastereotopen Methylenprotonen (vgl. Exp. Teil).

Der in den Gleichungen (3) und (7) formulierte Reaktionsmechanismus, der zu den 1,3-Butadiencobaltkomplexen **10**, **11**, **12** und **15** führt, ist nicht unumstritten. So formuliert R. Noyori eine direkte Öffnung des Dreirings in Nachbarschaft zur Doppelbindung [14]. In eine der hierbei gebildeten Metall-

C-σ-Bindungen soll sich das Zweitolefin im Sinn einer 1,2-Addition einschieben. Entsprechend der Polarisation der Doppelbindung von 1 sollte diese Einschiebung jedoch bei 10–12 zu anderen Cobaltkomplexen führen (siehe Gl. (8)).

Mit den hier vorgestellten Reaktionen der η^5 -Cyclopentadienyl-bisolefincobaltkomplexe, die minde-

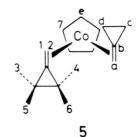
stens ein Methylencyclopropan enthalten (z. B. **5** und **6**) ist damit auch gezeigt worden, daß an bestimmten

Metallen eine Reaktionsfolge Bisolefinkomplex→ Metallacyclopentan→4-Methylenmetallacyclohexan→Produkt, wie in Gln. (1), (3) und (7) formuliert, ablaufen kann.

Experimenteller Teil

Alle Arbeiten wurden unter Argon in sauerstoffund wasserfreien Lösungsmitteln durchgeführt. – MS [15]: Varian CH-5 bei 70 eV. – Die NMR-Spektren wurden mit den Bruker-Fourier-Transform-Spektrometern WP 80 und WH 400 aufgenommen. Experimentelle Einzelheiten spezieller NMR-Techniken wie Kern-Overhauser-Differenzspektroskopie sind in den Referenzen [6b] und [8] beschrieben. Zusätzlich wurden die Metallkomplexe über ⁵⁹Co-Resonanz charakterisiert. Über eine zusammenfassende Darstellung der ⁵⁹Co-Resonanz in Co^(III)-, Co^(I)- und Co⁽⁰⁾-Komplexen wird demnächst berichtet [16].

Die Elementaranalysen wurden von der Firma Dornis und Kolbe, Mülheim a.d. Ruhr, durchgeführt.


Chemikalien: η^5 -Cyclopentadienyl-bis(ethylen)-cobalt [6], Methylencyclopropan [17], 2,2,3,3-Tetra-methylmethylencyclopropan [18] und Diphenylmethylencyclopropan analog [18] wurden nach Literaturvorschriften dargestellt.

1. η^{5} -Cyclopentadienyl-bis(methylencyclopropan)-cobalt (5)

Bei -78 °C wurden 4,1 g (22,8 mmol) 4 und 12 g (260 mmol) 1 in 80 ml Pentan aufgenommen und im Verlauf von 2 h auf Raumtemperatur gebracht (−40 °C Rückflußkühler). Die nunmehr braunrote Lösung wird weitere 2 h bei dieser Temperatur gerührt, dann auf -60 °C gekühlt, wobei wenig Cobaltocen auskristallisiert. Von diesem wird bei −60 °C abfiltriert: 0,49 g Cobaltocen nach Trocknen im Vakuum [MS: m/e = 189; $C_{10}H_{10}Co$ (189,1), ber. C 63,51, H 5,33, Co 31,16; gef. C 63,71, H 5,05, Co 31,12]. Das orange Filtrat wird auf 20 ml eingeengt und auf -78 °C gestellt, wobei 5 auskristallisiert. 5 wird bei -110 °C abfiltriert, mit wenig -110 °C kaltem Pentan gewaschen und bei −25 °C/ 0,001 Torr getrocknet: 3,7 g (70%) orange Kristalle, Schmp. 21 °C.

$$C_{I3}H_{I7}Co~(232,2)$$

Ber. C 67,24 H 7,38,
Gef. C 67,00 H 7,62.

MS (70 eV): m/e = 232 (M⁺ für ⁵⁹Co; rel. Int. ca. 2%); 178 (46%); 124 (100%).

¹H-NMR (400 MHz; C₆D₆; 300 K; TMS intern) H-2 H-3 H-4 H-5 H-6 H-7 2.74 0.66 1.24 1.15 0.83 0.65 4,31 $J_{34} = J_{56}$: 9,1 $J_{35} = J_{46}$: -4,6 $J_{36} = J_{45}$: 4,7

¹³C-NMR (100.6 MHz; C₆D₆; 310K; TMS intern) C-b C-c C-d С-е C-a 34,36 50,9 13,94 10,63 88,82 t t d $^1\!J_{
m CH}$ 156 160 160 176

2. η^5 -Cyclopentadienyl-bis(methylen-2,2,3,3-tetramethylcyclopropan)cobalt (**6**)

Analog 1. erhält man aus 3,2 g (17,8 mmol) **1** und 16,5 g (150 mmol) **2** in 50 ml Pentan 2,1 g (34%) **6** als orange Kristalle.

C₂₁H₃₃Co (344,4) Ber. C 73,23 H 9,66 Co 17,11, Gef. C 73,23 H 9,63 Co 17,08.

¹H-NMR (80 MHz; C_6D_6 ; 300 K; TMS intern): δ = 4,69 (s, 5H); 2,30 (s, 1H); 1,61 (s, 3H); 1,47 (s, 3H); 0,92 (s, 3H); 0,88 (s, 3H); 0,40 (s, 1H).

3. η^5 -Cyclopentadienyl-(1,1-diphenyl-1,3-butadien)-cobalt (13) und η^5 -Cyclopentadienyl-(η^5 -cyclopentadienyl-2-ethyl-3-phenyl-1-cobaltainden)cobalt (14)

Zu einer Lösung von 0.85 g (4.72 mmol) 4 in 20 ml Ether werden bei -20 °C 0.71 g (3.44 mmol) 3 portionsweise gegeben. Unter Rühren läßt man die Lösung langsam auf Raumtemperatur erwärmen. Nach 2 h Rühren zieht man bei 12 Torr von der nunmehr dunkelbraunen Lösung den Ether ab. Der dunkelbraune ölige Rückstand wird in 15 ml Hexan aufgenommen und zwecks Trennung des Reaktionsgemisches auf eine 20×3 cm Florisilsäule gegeben, wobei sich drei gut getrennte Zonen (orange, rotbraun und grün) ausbilden. Diese werden durch Zugabe von Ether eluiert und getrennt aufgefangen. Aus der orangen Zone gewinnt man nach Abziehen des Lösungsmittels 0.36 g (42%) 4 zurück. Die zweite

Schicht ergibt nach Abziehen des Lösungsmittels und einmaligem Umkristallisieren aus Diethylether/Pentan (1:1) bei –35 °C 337 mg (35%) **13** als dunkelrote Kristalle vom Schmp. 87 °C.

 $C_{21}H_{21}Co~(332,3)$

Ber. C 75,90 H 6,37 Co 17,73, Gef. C 75,86 H 6,68 Co 17,64.

MS (70 eV) *m/e*: 330 (M⁺ für ⁵⁹Co, rel. Int. 100%); 265 (29%); 124 (35%).

¹H-NMR (400 MHz; d₈-THF; 300 K; δ H_α = 3,60) H₁ = 5,34; H₂ = 1,99; H₃ = -0,22; H₄ = 5,63; H₁₁ = 7,97; H₁₂ = 7,27; H₁₃ = 7,1; H₁₄ = 6,82; H₁₅ = 6,24; H₂₁ und H₂₅ = 7,3; sowie H₂₂-H₂₄ = 7,1; H_{Cp} = 4,62.

Die grüne Zone liefert nach Abziehen des Lösungsmittels, Lösen in siedendem Diethylether, Abfiltrieren von Verunreinigungen bei –35 °C 65 mg (*ca.* 6%) **14** als dunkelgrüne Mikrokristalle vom Schmp. 216 °C.

 $C_{26}H_{26}Co_2$ (456,4)

Ber. C 68,43 H 5,74 Co 25,83, Gef. C 68,80 H 5,58 Co 25,71.

MS (70 eV) *m/e*: 454 (M⁺ f ⁵⁹Co, rel. Int. 100%); 329 (21%); 265 (31%); 189 (88%); 124 (21%).

¹H-NMR (400 MHz; 223 K; d₈-THF; $\delta H_{\alpha} = 3,60$)

14

 $\begin{array}{l} H_1=0.97;\, H_{2a}=3.19;\, H_{2b}=2.49;\, H_3=8.46;\, H_4=6.77;\, H_5=6.80;\, H_6=6.97;\, H_7=7.18;\, H_8, H_9=7.33;\, H_{10}=7.49;\, H_{11}=7.86;\, H_{Cp}=4.84;\, H_{Cp}=4.72. \end{array}$

¹³C-NMR (100,6 MHz); 213 K; d_8 -THF; $\delta C_\beta = 25,00$)

Singuletts bei 180,86; 149,46; 137,70; 114,44; 113,89. – Dubletts bei 152,41; 132,34; 131,40; 129,37; 128,71; 128,18; 128,00; 127,06 und 121,41 sowie zwei Cp-Signale bei 81,38 und 80,58. – Triplett bei 37,87. – Quartett bei 15,70.

Reaktionen des η^5 -Cyclopentadienyl-bis-(methylencyclopropan)cobalts (5)

1. Mit Triphenylphosphan: Zu 0,67 g (2,9 mmol) 4 in 20 ml Toluol wird bei Raumtemperatur in 1 h eine Lösung von 0,79 g (3,0 mmol) Triphenylphosphan getropft. Die nunmehr dunkelrote Lösung wird bis zur Trockene eingeengt, das zurückbleibende Öl in 10 ml Diethylether aufgenommen, von Verunreinigungen abfiltriert und mit 20 ml Pentan versetzt. Bei -35 °C fallen rote Kristalle aus, die abfiltriert, mit wenig kaltem Pentan gewaschen und bei 0,1 Torr getrocknet werden: 1,02 g (80%) 7; ab 100 °C Zersetzung.

 $C_{27}H_{26}CoP$ (440,4)

Ber. C 73,64 H 5,95 Co 13,38, Gef. C 73,80 H 5,51 Co 13,30.

¹H-NMR (400 MHz; C_6D_6 ; 300 K; TMS intern): δ = 7,71 (m, 6H); 7,1 (m, 9H); 4,46 (s, 5H); 2,46 (d, J_P = 3,8 Hz, 1H); 1,03 (d, J_P = 9,0 Hz, 1H); sowie Dreiringprotonen bei 1,10 (m, 1H); 0,81 und 0,77 (m, 2H); 0,37 (m, 1H).

2. Mit Triphenylphosphit: Analog 1. erhält man aus 1,19 g (5,13 mmol) 4 und 1,6 g (5,16 mmol) Triphenylphosphit in 20 ml Toluol nach Umkristallisieren des Rohprodukts aus Diethylether bei -35 °C 1,93 g (78%) gelbes, kristallines 8; Zersetzungsp. 113 °C.

 $C_{27}H_{26}CoO_3$ (488,4)

Ber. C 66,40 H 5,37 Co 12,07, Gef. C 66,41 H 5,29 Co 11,97.

¹H-NMR (80 MHz; CDCl₃): δ = 7,3-6,9 (m, 15H); 4,15 (s, 5H); 2,46 (d, J_P = 3,5 Hz, 1H); 1,95 (d, J_P = 9,0 Hz, 1H); 1,48 (m, 1H); 1,1 (br. m, 3H).

3. Umlagerung von **5** in der Wärme: 0,31 g (1,32 mmol) **5** werden in Anwesenheit von 0,29 g (6,6 mmol) **1** in 50 ml Toluol gelöst und 2 h auf 100–110 °C erhitzt. Nach Abdestillieren des Lösungsmittels erhält man 0,25 g eines roten Öls, das in verschiedenen Lösungsmitteln nicht kristallisiert. Es enthält laut MS und ¹H-NMR 32% **9**, 52% **10** und 16% **11**.

MS (70 eV); Massenchromatogramm): Verdampfungstemp. $10 \,^{\circ}\text{C M}^{+} = 178 \, (\text{für}^{59}\text{Co})$; Verdampfungstemp. $40 \,^{\circ}\text{C M}^{+} = 232 \, (\text{für}^{59}\text{Co})$.

Vollständige NMR-Analyse von 9 vgl. Referenz [19]. Charakterisierung von 10 und 11 in der Mischung mit 9.

¹H-NMR (400 MHz; C₆D₆; 300 K; TMS intern)

 $\begin{array}{l} H_1=4,96;\, H_3=1,73;\, H_4=1,83;\, H_5=-0,40;\, H_6=\\ -0,37;\, H_{7a}=2,29;\, H_{7b}=2,01;\, H_8=0,91;\, H_9=0,45;\\ H_{10}=0,18;\, H_{Cp}=4,58. \end{array}$

 $H_1 = 4,96$; $H_3 = 2,08$; $H_5 = 0,56$; $H_{7a} = 2,32$; $H_{7b} = 2,20$; $H_8 = 1,16$; Dreiringprotonen von 0,55 bis 0,35; $H_{Cp} = 4,48$.

Umlagerung von 6 in der Wärme

0,6 g (1,75 mmol) **6** und 0,26 g (2,36 mmol) **2** in 20 ml Toluol werden 6 h auf 50 °C erwärmt, wobei sich die Farbe der Lösung von orange nach rot verändert. Man destilliert das Toluol ab und nimmt den öligen, teilweise kristallinen Rückstand in 15 ml Pentan auf. Bei -78 °C fallen orangerote Kristalle aus, die abfiltriert, bei -110 °C mit wenig Pentan gewaschen und bei 10^{-3} Torr getrocknet werden. Ausbeute: 0,25 g (42%) **12** vom Schmp. 63 °C.

 $C_{21}H_{33}Co~(344,4)$

Ber. C 73,23 H 9,66 Co 17,11, Gef. C 73,63 H 9,88 Co 17,11. ¹H-NMR (400 MHz); C_6D_6 ; 300 K; $\delta \equiv 7,27$): $H_{Cp} = 4,83$ (s, 5 H); Dienprotonen bei 4,79 (s, 1H); 2,05 (s, 1H) und -0,06 (s, 1H); Isopropylgruppe bei 1,70 (m, 1H); 1,05 (d, 3H); 1,04 (d, 3H); sechs weitere Methylgruppen bei 1,53; 1,46; 1,34; 1,20; 1,05 und 0,86 (jeweils s, 3 H).

 η^5 -Cyclopentadienyl- η^4 -2-(2-cyanoethyl)-1,4-butadien-cobalt (**15**)

778 mg (1,77 mmol) η^5 -Cyclopentadienyl-triphenylphosphan- η^2 -acrylnitril-cobalt (dargestellt aus äquimolaren Mengen η^5 -Cyclopentadienyl-bis(h^2 acrylnitrilcobalt und Triphenylphosphan in Diethylether bei 20 °C [7]) und 4,8 g (89 mmol) 1 werden in 40 ml Diethylether gelöst und in einem 200-ml-V4A-Stahlautoklaven 10 h auf 80 °C erhitzt. Die ausgefüllte Reaktionslösung wird auf 10 ml eingeengt und mit 20 ml Pentan versetzt. Bei −35 °C fällt zunächst Ausgangsverbindung aus [155 mg (20%) nach Abfiltrieren und Trocknen bei 0,001 Torr; MS, ¹H-NMR]; längeres Kühlen der Mutterlauge bei -35 °C liefert Triphenylphosphan [210 mg (45%) nach Abfiltrieren und Trocknen bei 0,001 Torr; Schmp. 78 °C, ³¹P-NMR]. Aus der Mutterlauge erhält man nach Abdestillieren des Lösungsmittels und Aufnahme des öligen Rückstands in 20 ml Hexan bei −20 °C rötliche Kristalle, die bei dieser Temperatur abfiltriert werden: 230 mg (54%) 15.

 $C_{12}H_{14}CoN$ (231,2)

Ber. C 62,35 H 6,10 Co 25,49, Gef. C 62,28 H 6,08 Co 25,39.

15

¹H-NMR (400 MHz; C₆D₆; 300 K; TMS intern $\delta = 0$) H₁ = 4,59 (³J_{1,3} = 6,6; ³J_{1,5} = 9,1; ⁴J_{1,4} = 1,7; ⁴J_{1,6} = 0,8); H₃ = 1,62 (²J_{3,5} = 1,7); H₄ = 1,48 (²J_{4,6} = 1,7); H₅ = -0,53; H₆ = -0,60; H_{7a} = 2,20; H_{7b} = 1,85; H_{8a}~H_{8b}~1,76; H₉ = 4,45.

- VII. Mitteilung: H. M. Büch, P. Binger, R. Benn, C. Krüger und A. Rufińska, Angew. Chem. 95, 814 (1983); Angew. Chem. Int. Ed. Engl. 22, 774 (1983).
- [2] P. Binger, B. Cetinkaya, M. J. Doyle, A. Germer und U. Schuchardt, Fundamental Research in Homogenous Catalysis Vol. 3, 271; Plenum Press, New York 1979.
- [3] P. Binger, M. J. Doyle und R. Benn, Chem. Ber. 116, 1 (1983).
- [4] H. M. Büch, Doktorarbeit Universität Kaiserslautern 1982.
- [5] L. S. Iseva, T. A. Peganova, P. V. Petrovskii, D. B. Fuhrmann, S. V. Zotova, A. v. Kudzyashev und O. V. Bragin, J. Organomet. Chem. 258, 367 (1983).

- [6] a) K. Jonas, E. Defense und D. Habermann, Angew. Chem. 95, 729 (1983); Angew. Chem. Int. Ed. Engl. 22, 716 (1983); Suppl. 1983, 1005;
 b) R. Benn, Org. Magn. Reson. 21, 723 (1983).
- [7] Y. Wakatsuki, T. Sakurai und H. Yamazaki, J. Chem. Soc. Dalton Trans. 1982, 1923.
- [8] R. Benn, A. Rufińska und G. Schroth, J. Organomet. Chem. 217, 91 (1981).
- [9] R. L. Pruett und W. R. Myres, US-Pat. 3,159,-659 (appl. 31. 8. 62); C. A. 62, 7800 (1965).
- [10] Y. Wakatsuki, K. Aoki und H. Yamazaki, J. Am. Chem. Soc. 101, 1123 (1979).
- [11] a) W. Reppe und M. Vetter, Ann. Chem. **582**, 133 (1953);
 - b) P. Hübner und E. Weiss, J. Organomet. Chem. **129**, 105 (1977).
- [12] a) M. Rosenblum, W. P. Giesing, B. North und D. Wells, J. Organomet. Chem. 28, C17 (1971);

- b) Wai-Sun Lee und H. H. Brintzinger, J. Organomet. Chem. **127**, 93 (1977).
- [13] P. Binger, A. Brinkmann und P. Wedemann, Chem. Ber. 116, 2920 (1983).
- [14] a) R. Noyori, T. Odagi und H. Takaya, J. Am. Chem. Soc. 92, 5780 (1970);
 b) R. Noyori und M. Yamakawa, Tetrahedron Lett.
- 1978, 4823.[15] D. Henneberg und H. Schmöller, Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr.
- [16] R. Benn und A. Rufińska, unveröffentlichte Ergebnisse
- [17] R. Köster, S. Arora und P. Binger, Liebigs Ann. Chem. 1973, 1219.
- [18] S. Arora und P. Binger, Synthesis 1974, 801.
- [19] R. Benn und G. Schroth, J. Organomet. Chem. 228, 71 (1982).