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Triphenylphosphane 1, its oxide 2 and sulfide 3 undergo one-electron reduction at a
mercury cathode in DMF to yield the corresponding radical anions. ESR analysis of the
paramagnetic species is facilitated by deuteration and suggests a pyramidal geometry of
the radicals. Reduction with potassium metal in DME at low temperature yields also
radical anions for 2 and 3. The phosphane 1, however, reacts under phenyl cleavage and
potassiumphenyl-assisted ring closure to the dianion of 5H-dibenzophosphole 4. This
radical 4-°° is also obtained by alkali metal reduction of P-phenyldibenzophosphole 5,
and its spin distribution is compared to iso-z-electronic radicals containing CH, N, O, S,

or Se links instead of the phosphorus atom.

Die Beobachtung, dafi Triphenylphosphan 1 und
sein Oxid 2 mit Alkalimetallen in Ethern zu farbigen
Losungen reagieren [2, 3], hat zahlreiche Versuche
stimuliert, nach radikalischen Zwischenprodukten
zu suchen. Héaufig wurden bei derartigen Reaktio-
nen auch ESR-Signale registriert [4-10]; die Er-
gebnisse und ihre Interpretationen blieben jedoch
widerspriichlich [10, 11]. Untersuchungen an aro-
matischen Dimethylphosphan- und Dimethylphos-
phinyl-Derivaten haben nun gezeigt, dal3 diese Ver-
bindung auf unterschiedliche Weise mit Alkali-
metallen reagieren kénnen und dal} sich die ESR-
Spektren der Phosphane erheblich von denen der
Phosphanoxide unterscheiden [12, 13]. Da auch die
Reduktion von Phosphansulfiden unter Bildung
paramagnetischer Zwischenstufen verlaufen kann
[14, 15], wird im folgenden iiber das Reduktions-
verhalten von 1, 2 und Triphenylphosphansulfid (3)
unter verschiedenartigen Reaktionsbedingungen
berichtet.

Kathodische Reduktion

Die Triphenylphosphan-Derivate 1-3 lassen sich,
wie elektrochemische Untersuchungen zeigen, re-

* Sonderdruckanforderungen an Prof. Dr. H. Bock.
0340-5087/82/1100-1382/$ 01.00/0

versibel reduzieren [16-18]. Die entsprechenden
Radikalanionen konnen bei Elektrolyse ,.intra
muros‘‘ [13] durch ihre ESR-Spektren (Abb. 1: A)
nachgewiesen werden.

Unzureichende Auflésung erschwert zwar die
Interpretation der Spektren; durch vollstindige
Deuterierung 146t sich jedoch die Wasserstoff-
Hyperfeinstruktur unterdriicken (am/ap~7:1) [19].
und man beobachtet lediglich die 31P-Aufspaltung
[20] (Abb.1: C). In Kenntnis dieses Parameters
lassen sich die ESR-Spektren der nicht deuterierten
Radikalanionen 1-, 2:© und 3:© reproduzieren
(Abb. 1: B). Die so fiir 1:© und 2:© erhaltenen Er-
gebnisse (Tab. I) bestéitigen im wesentlichen friihere
Literaturangaben [20].

Bei Vergleich der drei Radikalanionen 1:© bis 3-<
fallt zunédchst die Konstanz der Wasserstoff-Kopp-
lungen auf. Es findet, wie auch bei Polyphenyl-
silanen [21], eine vollstindige Delokalisation des
ungepaarten Elektrons auf alle drei Phenylgruppen
statt; bemerkenswert ist ebenso die Ubereinstim-
mung der Ringkopplungskonstanten von 1- bis 3
mit denen von Triphenylmethylsilan-Radikalanion
PhsSiMe © (Tab. I) was auf eine isostere Anordnung
der Phenylgruppen bei all diesen Radikalanionen
schlieBen laBt [22]. Die Ringkopplungskonstanten
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dieser vermutlich pyramidalen Radikalanionen he-
ben sich dariiber hinaus charakteristisch von denen
der Radikale Ph3B-® [23] und PhsC: [24] ab, die ein
weitgehend planares C3X-Geriist aufweisen sollten
[23, 24].

Die 31P-Kopplungskonstanten der Radikalanio-
nen 1-© bis 3-© unterscheiden sich betrachtlich
voneinander: Erwartungsgemall ist die 3!P-Auf-
spaltung beim Phosphanoxid gréBer als beim ent-
sprechenden Phosphan [12]; auffallend ist insbe-
sondere der sehr geringe 3!P-Parameter des Sulfids
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Abb. 1. (A) ESR-Spektren der Radikalanionen von
Triphenylphosphan-Derivaten, erzeugt durch katho-
dische Reduktion bei 225 K. (B) Computersimulation
mit den Daten aus Tab. I. (C) ESR-Spektren der per-
deuterierten Radikalanionen.

Tab. I. ESR-Kopplungskonstanten ax (mT) der elek-
trochemisch erzeugten Radikalanionen von Triphenyl-
phosphan-Derivaten sowie Daten von Vergleichsradi-
kalen.

M - @ [Lit.] ap aH(2,6) 8H@E,5 AHO)
(HsCe)sP - © 0,33 0,13 <004 0,28
(H5Cg)3P - ©—d15 0,35 - - -
(HsCg)sPO - © 0,37 0,13 <004 0,29
(H5Cg)3PO - ©-dy5 0,39 - - -
(H5Cg)3PS - © 0,13 0,13 <0,04 0,28
(H5C6)3PS - ©—ds5 <0,15 - - -
(H5Cg)3S1Me - © [21] - 0,101 0,019 0,276
(HsCg)3B - © [23] - 0,199 0,067 0.273
(H5Cg)sC - [24] 0253 01 0277

3-©. Zwar sollte die 3!P-Kopplungskonstante von
Phosphansulfiden geringer sein als die entsprechen-
der Phosphanoxide [14], bei Radikalanionen tertii-
rer Phosphansulfide wird jedoch im allgemeinen
eine noch recht grof3e 3'P-Kopplung beobachtet [15].

Wie bereits mehrfach angemerkt [12-14, 25],
reagiert die 3!P-Kopplungskonstante selbst auf
geringe Strukturinderungen des Radikalions sehr
empfindlich. Dieses Verhalten kann auch am Bei-
spiel der Radikalanionen 1-© bis 3:© beobachtet
werden : Per-Deuterierung fiihrt zu einer merklichen
Erhohung der 31P-Aufspaltung infolge gednderter
Massenverhéltnisse [20].

Reduktion mit Alkalimetall
Triphenylphosphan (1)

Zweifach sublimiertes Triphenylphosphan wird
mit Kalium in THF bei 200 K umgesetzt. Dabei
laBt sich die durch Bildung von Ph2P® hervorge-
rufene Farbung beobachten [3]; zunéichst tritt je-
doch kein Radikal auf. Erst nach einigen Stunden
kann ein ESR-Signal registriert werden. Das so
entstandene Radikal ist auch bei Raumtemperatur
stabil und weist das in Abb. 2 (A) gezeigte Spektrum
auf. Die Identitat dieser Species wird im folgenden
diskutiert.

Bei hoherer Temperatur und lingerem Alkali-
metallkontakt wird auch das Radikalanion von
Biphenyl beobachtet [4]; andere Radikale werden
aus reinem Triphenylphosphan und Kalium nicht
gebildet.

Triphenylphosphanoxid (2)

Bei der Reaktion von sublimiertem Triphenyl-
phosphanoxid 2 mit Kalium in THF oder DME bei
200 K konnte zunichst in sehr geringer Konzen-
tration ein Radikal beobachtet werden, dessen
ESR-Spektrum durch ein Dublett von ca. 0,8 mT
gekennzeichnet ist. Dieses Spektrum wurde bereits
mehrfach beschrieben [5-10]; die gleiche parama-
gnetische Spezies 148t sich auch bei der Alkali-
metall-Reduktion von unvollstindig gereinigtem,
d.h. nichtsublimiertem Triphenylphosphan nach-
weisen. Die Reduktion des vollstindig deuterierten
Derivates d;5—Ph3sPO fiihrt zu einem Radikalanion,
dessen ESR-Spektrum nur ein breites Singulett
zeigt; somit kann die Zuordnung des 0,8 mT-
Dubletts zu einem 3'P-Kern nicht bestatigt werden
[26]. .. e B R o VR ey
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Abb. 2. (A) ESR- Spektrum des Dibenzophosphol-Ra-
dikaldianions 4 - ©© bei 253 K, erzeugt durch Reaktion
von Triphenylphosphan mit Kalium in THF. (B) ESR-
Spektrum des perdeuterierten Dibenzophosphol-Ra-
dikaldianions bei 233 K, erzeugt durch Reaktion von
perdeuteriertem Triphenylphosphan mit Kalium in
THF. (C) Computer-Simulation von (A) mit einer
Linienbreite von 0,009 mT.

Fithrt man die Alkalimetall-Reduktion von Tri-
phenylphosphanoxid unterhalb von 220 K durch,
so bildet sich nach dem Verschwinden der genann-
ten Spezies ein Radikal, dessen ESR-Spektrum
(Abb. 3: A) dem der elektrolytisch erzeugten Radi-
kalanionen (Abb. 1: A) ahnlich ist [4, 7]; es 148t sich
mit den in Tab. IT angegebenen Kopplungskonstan-
ten reproduzieren (Abb.3: B). Hingewiesen sei
darauf, dal die Koordination eines Alkalimetalls
am Chalkogen in 2:-© oder 3-© eine Verringerung der
Phosphor-Kopplungskonstanten (Tab.I und II)
bewirkt; ein entsprechender Effekt wurde beim
Radikalanion von Dimethylphenylphosphanoxid
festgestellt [27].

Triphenylphosphansulfid (3)

Bei der Reaktion von Triphenylphosphansulfid 3
mit Kalium bei 220 K in THF (Abb. 3: C, D) ent-

steht ebenfalls ein Radikalanion 3-©, jedoch laf3t
sich ESR-spektroskopisch keine Phosphorkopplung
mehr feststellen (Tab. IT).
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Abb. 3. ESR-Spektren der aus Triphenylphosphan-
oxid (A) und -sulfid (C) mit Kalium in THF bei 220 K
erzeugten Radikale mit den zugehorigen Computer-
simulationen (B) und (D).

Tab. II. ESR-Kopplungskonstanten ax(mT) der Ra-
dikalanionen von Triphenylphosphanderivaten, er-
zeugt durch Alkalimetallreduktion in THF bei 200 K.

M-© ap aH(2,6) AaHE@,5) aH(4)
(H5C)3PO - © 0,15 0,15 < 0,02 0,29
(Hs5Cg)3PS - © < 0,04 0,13 < 0,02 0,27

Langere Reaktion des Oxids 2 mit Kalium bei
Raumtemperatur fithrt unter Desoxigenierung zu
den bei Triphenylphosphan beschriebenen Produk-
ten Dibenzophosphol-Radikaldianion 4:©° und Bi-
phenyl-Radikalanion [4]; dagegen wird beim Sulfid
3 keine weitere paramagnetische Verbindung be-
obachtet. Die durch Alkalimetallreduktion erzeug-
ten Radikalanionen 2-2(K®) und 3-9(K®) sind bei
héherer Temperatur nicht bestindig; als Folge-
reaktionen konnen Entchalkogenierung [14, 15]
und, wie bei Triphenylphosphan 1 [3], Phenylab-
spaltung unter Bildung neuartiger Radikalanionen
stattfinden:

(HsCo)sP(X) + 2K — [(HsCo)eP(X A
(X == nP,O,S) (2)
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Dibenzophosphol-Radikaldianion

Durch Sublimation gereinigtes Triphenylphos-
phan 1 reagiert mit Kalium in THF zunéchst unter
Bildung des Diphenylphosphid-Anions (vgl. (2):
X =np) [3]. Eine weitere Reduktion zu einem Radi-
kal (HsCs):PK-© [8] konnte nicht nachgewiesen
werden; das dieser Spezies zugeschriebene ESR-
Spektrum [8, 10] kommt moglicherweise durch eine
oxidische Verunreinigung [26] zustande. Nach lin-
gerer Reaktion von 1 mit Kalium wird ein bislang
unbekanntes Radikal beobachtet, dessen ESR-
Spektrum Abb. 2 (A) zeigt.

Die Hyperfeinstruktur dieses Spektrums laft
sich mit einer Dublett- und 4 Triplett-Aufspaltun-
gen reproduzieren (Abb. 2: C). Vollstindige Deute-
rierung fithrt zum Verschwinden der Triplett-
Kopplungen, wobei sich die Dublett-Aufspaltung
nur wenig verdndert; diese wird daher offenbar
durch einen Phosphorkern hervorgerufen (Abb. 2:
B). Dem Radikal wird die Struktur eines Dibenzo-
phosphol-Radikaldianions 4-©° (3) zugeordnet; die
ermittelten Kopplungskonstanten ordnen sich gut
in eine Reihe analoger und zum Teil isoelek-
tronischer [2] Heteroatom-Radikale [29-31] ein
(Tab. III).

A0 e (@0

-«©
’K©1 :g} (3)
(Qz0) e+ [Q:0):e

Die Bildung von 4-© verliuft moglicherweise
itber die Zwischenstufe des P-Phenyl-dibenzophos-
phols 5 (3), welches sich bekannterweise [32] aus
Triphenylphosphan 1 und Phenylnatrium in guter
Ausbeute gewinnen laft. Erwartungsgemil fiihrt
daher die Alkalimetallreduktion von 5 ebenfalls
zum Radikaldianion 4-°. Dagegen lassen sich die
fiir diese Reaktion von Britt und Kaiser [33] ver-
offentlichten Resultate nicht bestdtigen. Das Ent-
stehen eines bestindigen Radikaldianions, postu-
liert als [(H5Ce)2P]-2©2K® [8], wird demnach erst
durch die Ringverkniipfung zu einem trizyklischen
System 4 moglich, dessen relativ starre Struktur
zugleich die hohe Auflésung des ESR-Spektrums
(Abb. 2) bewirkt. Die Identitat der 31P-Kopplungs-
konstante ist durch Deuterierung gesichert; auch
hier unterscheidet sich der Parameter as, in der
deuterierten Verbindung merklich von dem Wert
fir das nicht deuterierte Radikal.

Ein Vergleich der Kopplungskonstanten von 4-©9
mit denen iso-z-elektronischer [28] Heteroatom-
Radikale (Tab. ITI) offenbart die unterschiedlichen
Spinverteilungen infolge verschieden stark ausge-
pragter Ladungsaufnahme durch die Heteroatome.
Die charakteristische Variation der Kopplungskon-
stanten (Tab. III), die zugleich einer zunehmenden
Stabilisierung der reduzierten Spezies entspricht
[34], 1aBt sich in einer HMO-St6rungsbetrachtung
[35] durch Verianderung des Heteroatom-Coulomb-
Parameters hy nachvollziehen [35b, 36]. So fiihrt
nach einer McLachlan-Rechnung [19] die Erh6hung
des Coulomb-Potentials ax==ac+ hxf in der Tat
zu den beobachteten Trends (Tab. III), nidmlich
zur Zunahme von am,7 und amea,s und zur Ver-
ringerung von aua,sy) und ana,s) (Abb. 4). Die hier-
aus ableitbaren Parameter fiir hx, wie etwa
ho =2,0, stehen in guter Ubereinstimmung mit den

Tab. III. ESR-Kopplungskonstanten ap (mT) des Dibenzophosphol-Radikaldianions 4-°® und von Vergleichs-

systemen.
M-© X aH(1,8) aHEe,7) aH(3,6) aH4,5) ax
©CH [29] (I) 0,305 0,305 0,035 0,453 0,035 (*H)
@ @ op 0,273 0,370 0,056 0,470 0,214 (31P)a
*© eN [29] (D) 0,248 0,410 0,059 0,410 -b (14N)
X (II) 0,296 0,358 0,060 0,485 -b
0O [30] 0,195 0,474 0,093 0,490 -b
S [30] 0,141 0,494 0,091 0,443 -b
Se [31] 0,103 0,518 0,103 0,421 0,544 (77Se)

a ax = 0,24 mT im deuterierten Radikaldianion 4-° .dg;

b nicht beobachtet.



1386

W. Kaim et al. -

Reduktion von Triphenylphosphan-Derivaten

von anderen MeBmethoden bekannten Werten [37].
Der Vergleich (Tab. ITI und Abb. 4) macht dariiber
hinaus deutlich, dal sich die Spinverteilung in 4-°
relativ zu Fluorenid-Dianionradikal weniger andert
als nach dem Einbau von Stickstoff oder von

Chalkogenatomen.
apqmT] 05 af*PM{mT] 05
A B
04 0,4
03 03
02 02
01 0
—_— hx
0 1 2 3 CH® P® N® 0 S Se
Abb. 4. (A) Abhéngigkeit der nach McLachlan [19]

berechneten Kopplungskonstanten aber- = Q - of;,
(Q =2,3 mT; kex = 1,0; 2= 1,2) vom Coulomb-
Parameter hx in heterokonjugierten Fluorenradikal-
anionen und -dianionen. (B) Experimentell gefundene
Wasserstoff-Kopplungskonstanten a$f?- (Tab. I1I).

Dieses Resultat bestitigt damit auf ESR-
spektroskopischem Wege die Vergleichbarkeit der
Atom-Ionisierungen IE;(C) und IE;(P) sowie der
Molekiilionisierungen von Benzol und Phosphaben-
zol [38].

Experimenteller Teil

ESR: Varian E9 mit Tieftemperaturzubehor
E 257, MeBfrequenz ca. 9.5 GHz, 330 mT Magnet-
feldstiarke und 100 KHz Feldmodulation. Die Com-
putersimulation der ESR-Spektren wurde mit
Hilfe des Programms ESPLOT [39] durchgefiihrt.
Die Berechnungen erfolgten auf der Univac 1108
des Hochschulrechenzentrums Frankfurt, die gra-
phischen Simulationen wurden auf einem Calcomp-
Plotter 763 gezeichnet.

Kathodische Reduktion: Modifizierte Form der in
[13] beschriebenen Elektrolysezelle: die Pt-Mef3-
elektrode wird mit einem Tropfen Quecksilber be-
deckt.

Alkalimetall-Reduktion: In einer Hochvakuum-
Glasapparatur wird das Triphenylphosphanderivat
in THF oder DME gelost und bei tiefer Temperatur
mit einem Kaliumspiegel in Kontakt gebracht.

Triphenylphosphan (1): Kaiufliches (HsCg)sP
wird zweimal im Vakuum (0,1 Torr) bei 150 °C
sublimiert und unter Argon aufbewahrt.

Triphenylphosphanoxid (2): (H5Cs)3sPO wird durch
Behandeln einer methanolischen Triphenylphos-
phan-Lésung mit 30-proz. H20: hergestellt. Das
Rohprodukt wird im Vakuum (0,1 Torr) bei 230 °C
sublimiert.

Triphenylphosphansulfid (3): (HsCe)sPS (Fluka
AG) wurde aus Ethanol uml;rlstallisiert und im
Vakuum scharf getrocknet.

Triphenylphosphan-dis: Perdeuteriertes 1 wird
durch Umsetzung von PCl3 mit Phenylmagnesium-
bromid-ds in absolutem THF hergestellt [40]. Das
dabei entstehende Biphenyl-dip wird unter No-
Normaldruck bei 250 °C sublimiert. Der Riickstand
aus perdeuteriertem 1 wird im Vakuum (0.1 Torr)
bei 150 °C zweimal sublimiert.

Triphenylphosphanoxid-dys:
2 beschrieben.

Triphenylphosphansulfid-dis: Die Darstellung er-
folgt durch Erhitzen dquomolarer Mengen
(H5Ce)sP-dis und Sg in Toluol am Riickflul und
anschlieBende Umkristallisation aus Methanol.

Darstellung wie fiir

P-Phenyldibenzophosphol ( Diphenylenphenylphos-
phan) (5): Die Verbindung (Strem Chemicals)
wurde ohne weitere Reinigung eingesetzt.

Die Substanzen wurden durch Schmelzpunkte,
IR- und Massenspektren charakterisiert. Alle Ver-
bindungen zeigten die in der Literatur [41, 42] an-
gegebenen Daten.

Die Untersuchungen wurden vom Land Hessen,
der Deutschen Forschungsgemeinschaft und dem
Fonds der Chemischen Industrie gefordert.
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