

NOTIZEN

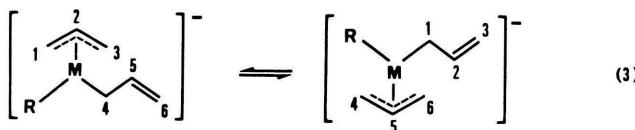
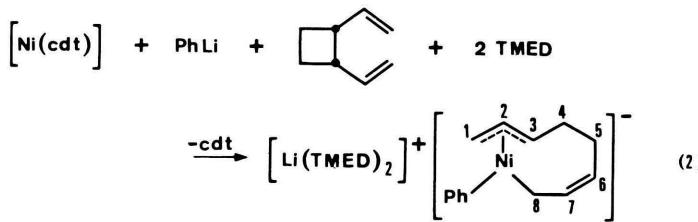
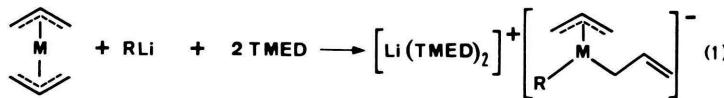
 η^3 -Allyl-Stabilized 'Ate Complexes of Nickel, Palladium and Platinum

S. Holle, P. W. Jolly*, R. Mynott, and R. Salz
Max-Planck-Institut für Kohlenforschung,
D-4330 Mülheim-Ruhr

Z. Naturforsch. **37b**, 675–676 (1982);
received November 16, 1981

 η^3 -Allyl Complexes, Nickelate, Palladate, Platinate Complexes

Organolithium compounds react with the bis(η^3 -allyl)metal complexes of nickel, palladium and platinum by addition to give ionic 'ate' complexes in which one allyl group has been converted into the η^1 -allyl form.




The ability of carbanions to act as donor ligands to metals to give the family of what is known as the 'ate' complexes, *e.g.* $\text{Na}[\text{AlEt}_4]$, $\text{K}_4[\text{Ni}(\text{C}\equiv\text{CR})_4]$, is well documented [1]. It is, however, only comparatively recently that K. Jonas *et al.* have isolated complexes of this type in which η^2 -organic ligands interact simultaneously with the metal, *e.g.* $\text{Li}[\text{NiMe}(\text{CH}_2:\text{CH}_2)_2]$ [2]. As part of our investigations of the chemistry of the bis(η^3 -allyl)metal

complexes of nickel, palladium and platinum, we have studied their reactions with organolithium reagents: addition of a carbanion occurs and is accompanied by conversion of one of the allyl groups into the η^1 -form (eq. (1)) in a manner analogous to that observed with P-donor ligands [3].

As far as we are aware these are among the first examples of 'ate' complexes which also contain η^3 -allyl groups. Successful reactions have been carried out with methyl-, ethyl-, vinyl- and phenyllithium while THF (or perdeutero-THF) may be used instead of tetramethylethylenediamine (TMED) as a complex partner for the lithium.

The reaction is not confined to simple bis(η^3 -allyl) metal complexes and we have isolated a related species by reacting *cis*-1,2-divinylcyclobutane with zerovalent nickel in the presence of phenyllithium (eq. (2)) [4].

The structure of these 'ate' complexes have been determined by NMR spectroscopy. Variable temperature ^{13}C NMR investigations on selected examples show that the η^1 - and η^3 -allyl groups undergo facile exchange (eq. (3)) in a manner similar to that observed for the $[\text{M}(\eta^1,\eta^3\text{-C}_3\text{H}_5)_2\text{PR}_3]$ complexes [3]. For example, the ^{13}C NMR spectrum of $\text{Li}[\text{NiMe}(\eta^1,\eta^3\text{-C}_3\text{H}_5)_2]$ in perdeutero-THF at

* Reprint requests to Dr. P. W. Jolly.

0340-5087/82/0500-0675/\$ 01.00/0

25.2 MHz consists of the expected seven signals at temperatures up to -80°C ($\delta\text{C}_{1/3}$ 49.6, $^1J_{\text{CH}}$ 154 ± 3 ; δC_2 102.3, $^1J_{\text{CH}}$ 148 ± 1 ; $\delta\text{C}_{3/1}$ 45.1, $^1J_{\text{CH}}$ 152 ± 3 ; δC_4 24.2, $^1J_{\text{CH}}$ 124 ± 5 ; δC_5 152.5, $^1J_{\text{CH}}$ 142 ± 1 ; δC_6 90.3, $^1J_{\text{CH}}$ 151 ± 1 ; $\delta\text{C}_{\text{Me}}$ -10.1 , $^1J_{\text{CH}}$ $117 \pm 1\text{ Hz}$ at -106°C). The absorptions for C_1 , C_3 , C_4 and C_6 as well as those for C_2 and C_5 coalesce at *ca.* -50°C and at 0°C two absorptions are observed at 52.1 and 127.8 ppm.

The scope of this reaction as well as the catalytic and chemical properties of the products are being investigated further.

Experimental

$[\text{Li}(\text{TMED})_2]/[\text{PdMe}(\eta^1,\eta^3\text{-C}_3\text{H}_5)_2]$

3.7 g (19.4 mmol) $[\text{Pd}(\eta^3\text{-C}_3\text{H}_5)_2]$ were dissolved in 50 ml ether at -60°C . 28.5 ml (190 mmol) TMED and 12.7 ml (19.4 mmol) of an ethereal solution of methylolithium were added successively. A white precipitate was immediately deposited, isolated at -80°C , washed with ether-pentane (1:5) and dried

under high vacuum at -80°C . Yield 6.0 g (70% theory).

$\text{C}_{19}\text{H}_{45}\text{LiN}_4\text{Pd}$ (443)

Calcd. Pd 24.03 Li 1.60,
Found Pd 24.3 Li 1.5.

$[\text{Li}(\text{TMED})_2]/[\text{NiPh}(\eta^1,\eta^3\text{-C}_8\text{H}_{12})]$

5 g (22.6 mmol) $[\text{Ni}(\text{cdt})]$ were suspended in 100 ml ether at -78°C . 15 ml TMED, 1.9 g (22.6 mmol) PhLi and 3.1 ml (23.0 mmol) of *cis*-1,2-divinylcyclobutane were added successively. The initial product was a yellow suspension of $[\text{NiPh}(\text{cdt})]\text{Li}$ [2] which reacted further at -20°C to give the product as yellow crystals which were isolated at -30°C , washed with ether and dried under high vacuum. Yield 7.0 g (64% theory).

$\text{C}_{26}\text{H}_{49}\text{LiN}_4\text{Ni}$ (483)

Calcd. Ni 12.15 Li 1.45,
Found Ni 12.1 Li 1.5.

[1] Recent reviews include those by P. J. Davidson, M. F. Lappert, and R. Pearce, *Chem. Revs.* **76**, 219 (1976); R. R. Schrock and G. W. Parshall, *Chem. Rev.* **76**, 243 (1976); R. Taube, H. Drechsler, and D. Steinborn, *Z. Chem.* **18**, 425 (1978).
 [2] K. Jonas and C. Krüger, *Angew. Chem.* **92**, 513 (1980); K. Jonas, *Adv. Organomet. Chem.* **19**, 97 (1981).

[3] B. Henc, P. W. Jolly, R. Salz, S. Stobbe, G. Wilke, R. Benn, R. Mynott, K. Seevogel, R. Goddard, and C. Krüger, *J. Organomet. Chem.* **191**, 449 (1980).
 [4] R. Salz, Dissertation, Ruhr-Universität Bochum 1976. $^{13}\text{C}\{^1\text{H}\}$ -NMR spectrum (25.2 MHz) at -1°C in d-THF: δC_1 49.6, $\delta\text{C}_{2,6}$ 104.6, δC_3 58.3, $\delta\text{C}_{4,5}$ 29.6, 26.2, $\delta\text{C}_{6,2}$ 100.8, δC_7 136.5, δC_8 19.3, $\delta\text{C}_{\text{Ph}}$ 180.1, 141.1, 124.0, 118.0.