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Depending upon the molar ratio of the educts and the reaction conditions used, hexa-
fluoroacetone azine (1) reacts with N,N-dialkyl-cyanamides (2) to give 3,4,6-triazaocta-
2,4,6-trienes (6) and/or 4,4-bis(trifluoromethyl)-l,4-dihydro-l,3,5-triazines (7). Cyclo-
addition reactions of 6 with teri-butyl isocyanide and l-diethylamino(propine) are de-
scribed. IR, *H, 19F, and 13C NMR data of the new compounds are discussed. 

Einleitung 

Azine reagieren mit CC-Mehrfachbindungssyste-
men bevorzugt unter [1.3]- bzw. [1.3; 2.4]-Cyclo-
addition (,, criss-cross "-Cycloaddition) [3-5]. Ein 
von diesem Schema abweichendes Reaktionsverhal-
ten wurde für isoherte CC- Doppelbindungen bisher 
nur im Falle der Umsetzung von Hexafluoraceton-
azin (1) mit einer Reihe von Enaminen beobachtet 
[6]. Bei der Reaktion von fluorfreien Azinen mit 
Diphenylketen und N-Sulflnylanilin [7, 8] sowie bei 
der Photooxidation von Acetonazin in Gegenwart 
von Sensibilisatoren [9] wird das „criss-cross"-
Cycloadditionsschema gleichfalls durchbrochen. Wir 
berichten nachfolgend im Rahmen unserer Unter-
suchungen zum Cycloadditionsverhalten von Azinen 
gegenüber Heteromehrfachbindungssystemen über 
das Reaktionsverhalten von Cyanamiden gegenüber 
Hexafluoracetonazin (1). 

Cycloadditionen von isoherten Heteromehrfach-
bindungssystemen an Azine scheinen unbekannt zu 
sein [3, 10-12]. Durch Verstärkung des nucleophilen 
Charakters der Nitril-Funktion mittels Einführung 
einer Dialkylaminogruppe und Erhöhung der elek-
trophilen Eigenschaften der CN-Doppelbindung im 

* Sonderdruckanforderungen an Prof. Dr. H. Brunner. 
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Azin durch Bestückung mit Trifluormethylgruppen 
versuchten wir optimale Voraussetzungen für das 
Gelingen der Reaktion zu schaffen. 

Ergebnisse und Diskussion 

Wie vermutet reagiert Hexafluoracetonazin (1) 
[13, 14] mit N.N-disubstituierten Cyanamiden (2) 
glatt. Je nach Dosierung der Ausgangskomponenten 
und je nach Wahl der Reaktionsbedingungen ent-
stehen dominierend [1:1]- und/oder [1:2]-Addukte. 
Die [1:1]-Addukte können nachträglich durch Er-
hitzen mit Cyanamiden (2) in die [1:2]-Addukte 
übergeführt werden. 

Die IR-Spektren der [1:1]-Addukte zeigen im 
Doppelbindungsbereich drei Absorptionen, bei 1730, 
1625 und 1550 cm - 1 . Diese Daten sind mit der Bil-
dung eines Azomethinimins (3) nicht vereinbar. Im 
19F-NMR-Spektrum sind drei Resonanzabsorptio-
nen mit einem Integrationsverhältnis 2 :1 :1 zu er-
kennen. Das sechs Fluoratome repräsentierende 
Singulett bei ö = — 9 ppm spricht für das Vorhegen 

I 
einer Sequenz (F 3 C ) 2 C =N-C=. Für das geminale 
Trifluormethylgruppen-Paar in 4.4-Bis(trifluorme-
thyl)-l-oxa-3-azabuta-1.3-dienen und 4.4-Bis(triflu-
or-methyl)-1.3-diazabuta-1.3-dienen winden gleich-
falls Resonanzabsorptionen im Bereich von <5 = — 9 
bis —10 ppm registriert [15]. Die Zentren der bei-
den zum Quartett aufgespaltenen Signale (VFF = 
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6,2 ppm) liegen mit <5 = — 1 2 und — 1 4 ppm in 
einem für die Hexafluoracetonhydrazon-Funktion 
charakteristischen Bereich [13, 16-18]. Die offen-
kettige Struktur 6 enthält die beiden anhand der 
19F-NMR-Spektren abgeleiteten Strukturelemente. 
Wie im Falle des aus 1 und l-Diethylamino(propin) 
gewonnenen 5 -Diethylamino -1.1.1.8.8.8-hexafluor-
2.7-bis(trifluormethyl)-3.4-diazahexa-2.4.6-triens 9 
sind die zwei an den Stickstoff gebundenen Alkyl-
gruppen magnetisch nicht äquivalent, dies beweist 
eine behinderte Rotation um die C-N-Bindung 

N y C F 3 

CF, 

N ^ N 

I 

CF, 

NR2 

CF, 

unter den Beobachtungsbedingungen [5, 19]. Die 
13C-NMR-Spektren bestätigen mit zwei zum Septett 
aufgespaltenen Signalen bei <5 = 147 und 132 ppm 
das Vorhegen zweier (FsC)2C=N-Funktionen. Das 
Resonanzsignal bei <5=161 ppm wird dem Kohlen-
stoffatom der Guanidino-Funktion zugeordnet. Ein 
Vergleich der 13C-NMR-Daten mit denen von 9 läßt 
schließlich an einer Struktur im Sinne von Formel 6 
keinen Zweifel. Auch die gelbe Farbe der Produkte 
wird mit einer offenkettigen Struktur zwanglos er-
klärt. 
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Die 19F-NMR-Spektren der [1:2]-Addukte zeigen 
gleichfalls drei Resonanzabsorptionen (Integrations-
verhältnis 2 :1 :1 ) . Allein aufgrund der Anzahl der 
Signale kann die Bildung eines ,, er iss - cross " - Cy clo -
addukts 4 ausgeschlossen werden. Die Hochfeldlage 
des sechs Fluoratome repräsentierenden Signals 
[6 = 0,5 ppm, (q, J — 3 Hz)] gibt eine beidseitige 
Flankierung der ^ C(CF3)2-Funktion durch Hetero-
atome zu erkennen [20, 21]. Die chemischen Ver-
schiebungswerte der beiden übrigen Trifluormethyl-
gruppen, ö — —12,5 ppm (q, 4«/FF = 8 Hz) und 
—15 ppm (q, 4JFF = 8 Hz), sprechen wiederum für 
die Präsenz einer Hexafluoracetonhydrazon-Funk-

tion [12,15-17]. Die Signalarmut der 1 H-NMR- und 
der 13C-NMR-Spektren, für das aus 1 und Dimethyl-
cyanamid 2 a synthetisierte Produkt werden jeweils 
nur ein Signal für die Kohlenstoffatome der vier 
Methylgruppen (ö = 38,6 ppm) und für zwei Guani-
dino-Funktionen (<5 = 153,3 ppm) gefunden, belegt 
einen symmetrischen Aufbau der [1:2]-Addukte. 
Der Befund, daß die Reaktion von 6 a mit N.N-
Diethylcyanamid 2 b und 6 b mit N.N-Dimethyl-
cyanamid zum gleichen Cycloaddukt führen, bietet 
einen weiteren Hinweis auf den symmetrischen 
Aufbau des im [1:2]-Addukt vorhegenden Ring-
skeletts. 
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Von den a priori möglichen Strukturalternativen 
4, 7 und 8 steht nur 7 mit allen aufgenommenen 
spektroskopischen Daten im Einklang, d.h. es liegt 
ein 1.4-Dihydro-1.3.5-triazin-System vor. Zwischen 
den Fluoratomen des unmittelbar an den Ring ge-
bundenen Trifluormethylgruppen-Paares und denen 
der bei tieferem Feld absorbierenden Trifluormethyl-
gruppe der Hexafluoracetonhydrazon-Funktion wird 
überraschenderweise eine 9 JFF-Kopplung von 3 Hz 
gefunden. 
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Für die Bildung der 3.4.6-Triazaocta-2.4.6-triene 6 
sind zwei mechanistische Alternativen in Betracht 
zu ziehen: 

W e g A : Eine [2+2]-Cycloaddition mit nachfol-
gender elektrocyclischer Ringöffnung (1 + 2^-5^-6). 

Weg B : Eine 1.3-Cycloaddition unter Bildung des 
Azomethinimins 3, das entweder unter heterolyti-
schem Bindungsbruch C(5)-N(l) [6] (3->5->6) oder 
über ein 1.3.5-Triazabicyclo[3.1.0]oct-4-en [5] in 6 
übergeht. 

Für beide Wege gibt es Analogien. So wurde 
einerseits für die Reaktion von /3.^-disubstituierten 
Enaminen mit Hexafluoracetonazin (1) eine direkte 
[ 2 + 2 ] - Cycloaddition der isoherten CC-Doppelbin-
dung an die C -N-Bindung des Azin-Systems wahr-
scheinlich gemacht [6], andererseits konnte bei der 
Reaktion von Inaminen mit 1 das entsprechende 
Azomethinimin unterhalb von — 2 0 °C isoliert wer-
den [5, 22]. Die Umlagerung in 3.4-Diazaocta-2.4.6-
triene erfolgt bereits im Temperaturbereich von 0 °C 
schnell. Eine sichere Unterscheidung zwischen den 
Reaktionswegen A und B ist beim gegenwärtigen 
Stand der Untersuchungen nicht möglich. 

Hexafluoracetonazin (1) zeigt damit ein völlig 
anderes Cycloadditionsverhalten gegenüber Cyan-
amiden (2) als Hexafluoraceton. Je nach Wahl des 
molaren Verhältnisses der Edukte und der Reak-
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tionsbedingungen werden dort Produkte einer 
[2+2-|-2]-Cycloaddition, nämlich 1.3.5-Dioxazine 
bzw. 1.3.5-Oxadiazine, erhalten [23]. 

Von den zwei in den Verbindungen 6 vorhandenen 
Heterodien-Systemen - einem 1.3-Diazabuta-1.3-
dien und einem 2.3-Diazabuta-1.3-dien - reagiert 
bei Raumtemperatur mit ter£-Butylisonitril aus-
schließlich ersteres unter [4+l]-Cycloaddition 
(6->10). Dagegen erfährt bei der Reaktion von 6 mit 

F,C CF, 

l-Diethylamino(propin) die erwartete [4-{-2]-Cyclo-
addition an das 2.3-Diazabuta-1.3-dien-System 
(6-^11) die Konkurrenz einer Kettenverlängerung 
(6->-12), wobei das in 6 präsente Azin-System mit 
dem Inamin in Reaktion tritt. Aufgrund des für die 
Reaktion von 1 mit Inaminen gesicherten Reaktions-
verlaufs über ein 1.3-Addukt [5, 22], muß auch für 
die Bildung von 12 vom Durchlaufen einer Azo-
methinimin-Zwischenstufe ausgegangen werden. 

i = (CH 3 ) 3 C-N=C 

ii = CH 3 -C = C-N(C 2 H 5 ) 2 

Experimenteller Teil 

Schmelzpunkte (nicht korrigiert): Gerät nach 
Tottoli (Fa. Büchi). - IR-Spektren: Perkin-Elmer-
Gerät 157 G und 257. - iH-NMR-Spektren: Varian 
A 60, TMS als innerer Standard. - 19F-NMR-Spek-
tren: Jeol C 60 HL bei 56,45 MHz; Trifluoressig-
säure als äußerer Standard. Die tieffeld vom Stan-
dard aufgezeichneten Signale wurden mit einem 
negativen Vorzeichen versehen [24]. - 1 3C-NMR-

Spektren: Jeol F X 60 bzw. F X 90, TMS als innerer 
Standard. - Massenspektren: MS 9 der Fa. AEI, 
Ionisierungsenergie: 70 eV. 

Säulenchromatographische Trennungen: Säule 
50 cm Länge und 2,5 cm Innendurchmesser, Kiesel-
gel 60 „Merck" (Korngröße 0,063-0,200 mm). Prä-
parative Schichtchromatographie: Glasplatten 20 X 
20 cm, 2,00 mm dicke Kieselgelschicht (Kieselgel 
60 F254 „Merck"). 
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5-Dialkylamino-1.1.1.8.8.8-hexafliu)r-2.7-bis-
(trifluormethyl)-3.4.6-triazaocta-2.4.6-triene (6) 

Allgemeine Arbeitsvorschrift 

Methode A: 9,84 g (30 mmol) Hexafluoracetonazin 
1 [14] werden mit 15 mmol des entsprechenden 
Cyanamids 2 4 Wochen lang im Einschlußrohr auf 
65-80 °C erhitzt. Danach wird die Reaktions-
mischung mit 5 ml wasserfreiem Hexan versetzt 
und 12 h a u f — 3 0 °C gekühlt. Man trennt das aus-
gefallene 1.4-Dihydro-1.3.5-triazin 7 ab und frak-
tioniert das Filtrat. 

Methode B: 19,68 g (60 mmol) 1 werden mit 
50 mmol Cyanamid 2 in 50 ml wasserfreiem Aceto-
nitril 5 d unter Rückfluß erhitzt. Nach Entfernen 
des Lösungsmittels wird der Rückstand durch frak-
tionierende Destillation gereinigt. 

5-Dimethylamino-l .1.1.8.8.8-hexafluor-2.7-bis-
(trifluormethyl)-3.4.6-triazaocta-2.4.6-trien (6 a) 

Methode A: Ausbeute 2,52 g (42%, bezogen auf 
2a); Methode B: Ausbeute 12,16 g (61%), gelbe 
Flüssigkeit mit Sdp. 70-71 °C/14 Torr. - IR (Film): 
v = 1732, 1627, 1560 cm-i. - *H-NMR (CDCI3): 
ö = 2,62-3,40 ppm [m, 6 H ; N(CH3)2]. - 1 9 F-NMR 
(CDCI3): d = — 9 , 0 p p m [s, 6 F ; =C-N=C(CF 3 ) 2 ] , 
— 11,7 ppm (q, br., J = 6,2 Hz, 3F ; =C-CF 3 ) , 
— 14,0 ppm (q, J = 6,2 Hz, 3 F ; =C-CF 3 ) . -
1 3C-NMR (CDCls): 6 = 37,0 ppm (N-CH3), 37,5ppm 
(N-CH3), 116,6 ppm (q, J = 282,2 Hz ; CF3), 
117,7 ppm (q, J = 284,2 Hz; CF3), 120,1 ppm 
(q, J = 267,6Hz; CF3), 132,6ppm (sept., «7 = 33Hz; 
C-2), 147,7 ppm (sept., J = 38,1 Hz ; C-7), 161,2ppm 
(C-5). 

C9H6F12N4 (398,2) 
Ber. C 27,15 H 1,52 N 14,07, 
Gef. C 27,35 H 1,67 N 14,04. 

5-Diethylamino-1.1.1.8.8.8-hexafluor-2.7-bis-
(trifluormethyl)-3.4.6-triazaocta-2.4.6-trien (6 b) 

Methode A: Ausbeute 5,82 g (91%, bezogen auf 
2b), gelbe Flüssigkeit mit Sdp. 92-93 °C/14 Torr. -
IR (Film): v = 1727, 1617, 1540 cm-*. - X H-NMR 
(CDClg): <5 = 1,19 ppm (t, br., J = 7 Hz, 3 H ; 
N-CH2CH3), 1,27 ppm (t, br., J = 7 Hz, 3 H ; 
N-CH2CH3), 3,30 ppm (q, br., J = 7 Hz, 2 H ; 
N-CH2CH3), 3,68 ppm (q, br., J = 7 H z , 2 H ; 
N-CH2CH3). - 1 9F-NMR (CDCI3): d = — 9 , 2 ppm 
[s, 6 F ; =C-N=C(CF 3 ) 2 ] , —11,7 ppm (q, br., / = 
6,2 Hz, 3 F ; =C-CF 3 ) , —13,95 ppm (q, J = 6,2 Hz, 
3 F ; =C-CF 3 ) . - 1 3C-NMR (CDC13): <5 = 12,3 ppm 
(CH2CH3), 13,4 ppm (CH2CH3), 43,2 ppm 
(N-CH2CH3), 44,1 ppm (N-CH2CH3), 116,6 ppm 
(q, J= 283,2Hz; CF3), 117,7ppm (q, J= 283,2Hz; 
CF3), 120,4 ppm (q, br., J = 265,6 Hz ; CF3), 
132,1 ppm (sept., J = 34,2 Hz ; C-2), 147,5 ppm 
(sept., J = 38,1 Hz; C-7), 160,1 ppm (C-5). 

C11H10F12N4 (426,2) 
Ber. C 31,00 H 2,37 N 13,15, 
Gef. C 30,87 H2,47 N 13,37. 

1.1.1.8.8.8-Hexafluor-5- (N-piperidino )-2.7-bis-
(trifluormethyl)-3.4.6-triazaocta-2.4.6-trien (6 c) 

Methode A: Ausbeute 5,00 g (76%, bezogen auf 
2c), gelbe Flüssigkeit mit Sdp. 68-69 °C/0,9 Torr. -
IR (Film): v = 1728, 1621, 1543 cm-i. - X H-NMR 
(CDCla): ö = 1,50-1,92 ppm (m, 6 H ; CH2CH2CH2), 
3,02-4,27 ppm (m, 4 H ; 2N-CH2-). - 1 9 F-NMR 
(CDCls): 6 = —9,4 ppm [s, 6 F ; =C-N=C(CF 3 ) 2 ] , 
— 11,9 ppm (q, br., J = 6,1 Hz, 3 F ; =C-CF 3 ) , 
— 14,2ppm (q, J = 6,1 Hz, 3 F ; =C-CF 3 ) . 

Ci2H10F12N4 (438,2) 
Ber. C 32,89 H 2,30 N 12,79, 
Gef. C 33,24 H 2,49 N 12,88. 

2.6-Bis(dialkylamino)-l-[2.2.2-trifluor-l-
tr ifluormethyl ( ethylidenamino ) ]-4.4-bis-
(trifluormethyl)1.4-dihydro-1.3.5-triazine (7) 

Allgemeine Arbeitsvorschrift 
Methode A: 3,28 g (10 mmol) 1 werden mit 20 mmol 

eines Cyanamids 2 14 d im Einschlußrohr auf 80 °C 
erhitzt. Die Verbindungen 7 werden durch Um-
kristallisation aus wasserfreiem Hexan (Kältebad, 
—30 °C) gereinigt. 

Methode B: Äquimolare Mengen an 6 (5 mmol) 
und des entsprechenden Cyanamids 2 werden 17 d 
auf 80 °C erhitzt. Reinigung wie oben. 

2.6-Bis(dimethylamino )-l-[2.2.2-trifluor-l 
trifluormethyl ( ethylidenamino ) J-4.4-bis-
(trifluormethyl)-1.4-dihydro-1.3.5-triazin (7 a) 

Methode A: Ausbeute 1,36 g (29%); Methode .B.-
Ausbeute 2,20 g (94%), Schmp. 143-144 °C. - I R 
(KBr): v = 1686,1621 cm~i. - ^H-NMR [D«-Aceton]: 
ö = 2,90 ppm [s, 12H; 2 N(CH3)2]. - 1 9 F-NMR 
[D6-Aceton]: ö = 0,5 ppm [q, J = 3,3 Hz, 6F ; 
C(CF3)2], —12,6 ppm (q, J = 8,2 Hz, 3 F ; =C-CF 3 ) , 
— 14,5 ppm (mc, J = 8,2 Hz, J = 3,3 Hz, 3 F ; 
=C-CF 3 ) . - 1 3C-NMR [De-Aceton]: <5 = 38,6 ppm 
[N(CH3)2], 77,7 ppm (sept., J = 29,2 Hz ; C-4), 
117,6 ppm (q, J = 282,0 Hz; CF3), 120,6 ppm (q, 
J = 276,5 Hz; CF3), 122,7 ppm [sept., J = 36,1 Hz; 
N=C(CF3 )2 ] , 123,2 ppm (q, J = 288,0 Hz ; CF3), 
153,3 ppm (C-2 und C-6). 

Ci2HI2F12N6 (468,3) 
Ber. C 30,78 H 2,58 N 17,95, 
Gef. C 30,66 H 2,49 N 18,25. 

2.6-Bis(diethylamino )-l-[ 2.2.2-trifluor-l-
tr ifluormethyl ( ethylidenamino ) ]-4.4-bis-
(trifluormethyl)-1.4-dihydro-1.3.5-triazin (7 b) 

Methode A: Ausbeute 2,32 g (44%), Schmp. 5 3 -
54 °C. - IR (KBr): v = 1675, 1613 cm-i. - *H-NMR 
[De-Aceton]: <5 = 1,18 ppm [t, J = 7 Hz, 12H; 
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2 N(CH2CH3)2], 3,32 ppm [q, J = 7 Hz, 8 H ; 
2 N(CH2CH8)a]. - 1 9F-NMR [De-Aceton]: <3 = 
0,5 ppm [q, J = 3 Hz, 6 F ; C(CF3)2], —12,65 ppm 
(q, J = 8,2 Hz, 3 F ; =C-CF 3 ) , —15,85 ppm (mc, 
3 F ; =C-CF 3 ) . 

CxeHaoFiaNe (524,4) 
Ber. C 36,65 H 3,84 N 16,03, 
Gef. C 36,72 H 4,01 N 16,04. 

2.6-Di(N-piperidino)-l-[ 2.2.2-trifluor-l 
trifluormethyl ( ethylidenamino ) ]-4.4-bis-
(trifluormethyl)-1.4-dihydro-1.3.5-triazin (7 c) 

Methode A: Ausbeute 3,13 g (57%), Schmp. 9 0 -
91 °C. - IR (KBr): v = 1680, 1613 cm-*. - 1 H-NMR 
[De-Aceton]: ö = 1,62ppm (mc, 12H; 2 CH2CH2CH2), 
3,27 ppm [mc, 8 H ; 2 N(CH2-)2]. - 1 9F-NMR 
[De-Aceton]: 0,45 ppm [q, J = 3 Hz, 6F ; C(CF3)2], 
—12,4ppm (q, J= 8Hz, 3 F ; =C-CF 3 ) , —14,85 ppm 
(mc, J = 8 Hz, J = 3 Hz, 3 F ; =C-CF 3 ) . 

Ci8H2OFI2N6 (548,4) 
Ber. C 39,43 H 3,68 N 15,33, 
Gef. C 39,45 H 3,86 N 15,33. 

2-Diethylamino-6-dimethylamino-l-[2.2.2-trifluor-l-
tr ifluor methyl ( ethylidenamino ) ]-4.4-bis-
(trifluormethyl)-1.4-dihydro-1.3.5-triazin (7 d) 

Methode A: 1,99 g (5 mmol) 6 a werden mit 0,49 g 
(5 mmol) Diethylcyanamid 4 Wochen lang im Ein-
schlußrohr auf 100 °C erhitzt. Ausbeute 2,28 g 
(92%), Schmp. 72 °C (aus Hexan, —30 °C). 

Methode B: 2,13 g (5 mmol) 6 b werden mit 0,35 g 
(5 mmol) Dimethylcyanamid 4 Wochen lang im 
Einschlußrohr auf 100 °C erhitzt. Ausbeute 2,20 g 
(89%), Schmp. 72 °C (aus Hexan, — 30 °C). -
1R (KBr): v = 1675, 1612 cm-i. - XH-NMR 
(CDCls): <5 = 1,22 ppm [t, J = 7,2 Hz, 6 H ; 
N(CH2CH3)2], 2,91 ppm [s, 6 H ; N(CH3)2], 3,40ppm 
[q, J = 7,2 Hz, 4 H ; N(CH2CH3)2]. - 1 9F-NMR 
(CDC13): <5 = —0,4 ppm [q, J = 3,3 Hz, 6F ; 
C(CF3)2], —13,9 ppm (q, J = 8,2 Hz, 3 F ; =C-CF 3 ) , 
— 15,5 ppm (mc, J = 8,2 Hz, J = 3,3 Hz, 3 F ; 
=C-CF 3 ) . - 1 3C-NMR (CDCls): <5 = 12,4 ppm 
[N(CH2CH3)2], 37,9 ppm [N(CH3)2], 43,3 ppm 
[N(CH2CH3)2], 77,1 ppm (sept., J = 29 Hz; C-4), 
116,7 ppm (q, J = 283,2 Hz; CF3), 119,4 ppm 
(q, J = 276,8 Hz; CF3), 122,3 ppm (q, J = 288,1 Hz; 
QF3), 124,3ppm [sept., J = 36,1 Hz; N=Q(CF3)2], 
151,0 ppm, 152,5 ppm (C-2 und Q-6). 

Ci4H16FI2N6 (496,3) 
Ber. C 33,88 H 3,25 N 16,93, 
Gef. C 33,87 H 3,37 N 17,23. 

5-tert-Butyl-2-dimethylamino-l-[2.2.2-trifluor-l-
trifluormethyl (ethylidenamino ) ]-4.4-bis-
(trifluormethyl)-2-imidazolin (10) 

1,00 g (2,5 mmol) 6a und 0,25 g (3 mmol) tert-
Butylisonitril werden in 3 ml wasserfreiem Hexan 

2 d bei Raumtemperatur gerührt. Der nach dem 
Abdestillieren der flüchtigen Anteile i.Vak. ver-
bleibende Rückstand wird aus wasserfreiem Hexan 
umkristallisiert (Kältbad, — 3 0 °C). Ausbeute 0,92 g 
(77%), gelbe Kristalle mit Schmp. 48-49 °C. -
I R (KBr): v = 1725,1650 cm~i. - XH-NMR (CDCls): 
<5 = 1,38 ppm [s, 9H; C(CH3)3], 2,95 ppm [s, 6 H ; 
N(CH3)2]. - 1 9F-NMR (CDCls): <5 = —7,2 ppm 
[s, 6 F ; C(CF3)2], —12,45 bis —13,45 ppm (m, 6 F ; 
N - N = C ( C F S ) 2 . 

Ci4HI5F12N5 (481,3) 
Ber. C 34,94 H 3,14 N 14,55, 
Gef. C 35,06 H 3,33 N 14,66. 

2-Diethylamino-6-dimethylamino-3-methyl-l-
f 2.2.2-trifluor-l-trifluormethyl( ethylidenamino ) ]-
4.4-bis(trifluormethyl)-l.4-dihydro-jryrimidin (11) 
7-Diethylamino-4-dimethylamino-
1.1.1.10.10.10-hexafluor-8-methyl-2.9-bis(trifluor-
methyl)-3.5.6-triazadeca-2.4.6.8-tetraen (12) 

Zu einer Lösung von 3,19 g (8 mmol) 6 a in 15 ml 
wasserfreiem Hexan werden bei —30 °C 0,90 g 
(8 mmol) 1-Diethylamino(propin) in 8 ml Hexan ge-
tropft. Man erwärmt die Reaktionslösung langsam 
auf Raumtemperatur und rührt 16 h. Das Produkt-
gemisch wird durch Säulenchromatographie unter 
Wasserausschluß aufgetrennt [Kieselgel, Eluent: 
Chloroform/Hexan 1:1]. Verbindung 11 ist erst nach 
zusätzlicher präp. Schichtchromatographie isome-
renfrei. 

1. Fraktion: Ausbeute 0,50 g (12%) 11, Schmp. 
62 °C (aus Hexan, —30 °C). - IR (KBr): v = 1680, 
1636, 1600 cm-i . - *H-NMR (CDC13): d = 1,03 ppm 
[t, J = 7 Hz, 6 H ; N(CH2CH3)2], 1,98 ppm (mc, 3 H ; 
=C-CH 3 ) , 2,66 ppm [s, 6 H ; N(CH3)2], 2,98 ppm 
[q, J = 7 H z , 4 H ; N(CH2CH3)2]. - 19F-NMR(CDC13): 
6 = —6,1 ppm [mc, 6 F ; C(CF3)2], —13,1 bis 
— 14,5 ppm [m, 6F ; N-N=C(CF 3 ) 2 ] . 

2. Fraktion: Ausbeute 2,03 g (49%) 12, gelbes 
nicht destillierbares öl . - I R (Film): v = 1643, 1609, 
1584, 1538, 1497 cm-1. - X H-NMR (CDCls): ö = 
1,19 ppm (t, J = 7 Hz, 3 H ; NCH2CH3), 1,22 ppm 
(t, J = 7 Hz, 3 H ; NCH2CH3), 2,18 ppm (sept., 
J = 2 Hz, 3 H ; =C-CHs) , 3,11 ppm [s, 6 H ; 
N(CHs)2], 2,88-3,84 ppm [m, 4 H ; N(CH2CH3)2]. -
1 9F-NMR (CDCls): <3 = —13,8 bis —14,7 ppm (m; 
6F), —18,6 ppm [q (mit Feinstruktur), J = 9 Hz; 
3F)], —19,7 ppm (qq, J = 9 Hz, J = 2 Hz; 3F). 

Ci6Hi9F12N5 (509,3) 
Ber. C 37,73 H 3,76 N 13,75, 

11: Gef. C 38,11 H 4 , l l N 13,86, 
12: Gef. C 37,79 H 4,09 N 13,66. 
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