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Depending upon the molar ratio of the educts and the reaction conditions used, hexa-
fluoroacetone azine (1) reacts with N,N-dialkyl-cyanamides (2) to give 3,4,6-triazaocta-
2,4,6-trienes (6) and/or 4,4-bis(trifluoromethyl)-1,4-dihydro-1,3,5-triazines (7). Cyeclo-
addition reactions of 6 with tert-butyl isocyanide and 1-diethylamino(propine) are de-
scribed. IR, 1H, 19F, and 13C NMR data of the new compounds are discussed.

Einleitung

Azine reagieren mit CC-Mehrfachbindungssyste-
men bevorzugt unter [1.3]- bzw. [1.3; 2.4]-Cyclo-
addition (,,criss-cross‘‘-Cycloaddition) [3-5]. Ein
von diesem Schema abweichendes Reaktionsverhal-
ten wurde fiir isolierte CC-Doppelbindungen bisher
nur im Falle der Umsetzung von Hexafluoraceton-
azin (1) mit einer Reihe von Enaminen beobachtet
[6]. Bei der Reaktion von fluorfreien Azinen mit
Diphenylketen und N-Sulfinylanilin [7, 8] sowie bei
der Photooxidation von Acetonazin in Gegenwart
von Sensibilisatoren [9] wird das ,,criss-cross‘-
Cycloadditionsschema gleichfalls durchbrochen. Wir
berichten nachfolgend im Rahmen unserer Unter-
suchungen zum Cycloadditionsverhalten von Azinen
gegeniiber Heteromehrfachbindungssystemen iiber
das Reaktionsverhalten von Cyanamiden gegeniiber
Hexafluoracetonazin (1).

Cycloadditionen von isolierten Heteromehrfach-
bindungssystemen an Azine scheinen unbekannt zu
sein [3, 10-12]. Durch Verstiarkung des nucleophilen
Charakters der Nitril-Funktion mittels Einfiihrung
einer Dialkylaminogruppe und Erhohung der elek-
trophilen Eigenschaften der CN-Doppelbindung im
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Azin durch Bestiickung mit Trifluormethylgruppen
versuchten wir optimale Voraussetzungen fiir das
Gelingen der Reaktion zu schaffen.

Ergebnisse und Diskussion

Wie vermutet reagiert Hexafluoracetonazin (1)
[13, 14] mit N.N-disubstituierten Cyanamiden (2)
glatt. Je nach Dosierung der Ausgangskomponenten
und je nach Wahl der Reaktionsbedingungen ent-
stehen dominierend [1:1]- und/oder [1:2]-Addukte.
Die [1:1]-Addukte kénnen nachtraglich durch Er-
hitzen mit Cyanamiden (2) in die [1:2]-Addukte
iibergefiihrt werden.

Die IR-Spektren der [1:1]-Addukte zeigen im
Doppelbindungsbereich drei Absorptionen, bei 1730,
1625 und 1550 cm-!. Diese Daten sind mit der Bil-
dung eines Azomethinimins (3) nicht vereinbar. Im
19F-NMR-Spektrum sind drei Resonanzabsorptio-
nen mit einem Integrationsverhéltnis 2:1:1 zu er-
kennen. Das sechs Fluoratome reprasentierende
Singulett bei 6 = —9 ppm spricht fiir das Vorliegen

einer Sequenz (F3C)20=N—(|3=. Fiir das geminale
Trifluormethylgruppen-Paar in 4.4-Bis(trifluorme-
thyl)-1-oxa-3-azabuta-1.3-dienen und 4.4-Bis(triflu-
or-methyl)-1.3-diazabuta-1.3-dienen wurden gleich-
falls Resonanzabsorptionen im Bereich von 6 =—9
bis —10 ppm registriert [15]. Die Zentren der bei-
den zum Quartett aufgespaltenen Signale (4Jrr =
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6,2 ppm) liegen mit 6 = —12 und —14 ppm in
einem fiir die Hexafluoracetonhydrazon-Funktion
charakteristischen Bereich [13, 16-18]. Die offen-
kettige Struktur 6 enthalt die beiden anhand der
19F-NMR-Spektren abgeleiteten Strukturelemente.
Wie im Falle des aus 1 und 1-Diethylamino(propin)
gewonnenen H-Diethylamino-1.1.1.8.8.8-hexafluor-
2.7-bis(trifluormethyl)-3.4-diazahexa-2.4.6-triens 9
sind die zwei an den Stickstoff gebundenen Alkyl-
gruppen magnetisch nicht dquivalent, dies beweist
eine behinderte Rotation um die C-N-Bindung

unter den Beobachtungsbedingungen [5, 19]. Die
13C-NMR-Spektren bestéatigen mit zwei zum Septett
aufgespaltenen Signalen bei 6 =147 und 132 ppm
das Vorliegen zweier (F3C):C=N-Funktionen. Das
Resonanzsignal bei 6 = 161 ppm wird dem Kohlen-
stoffatom der Guanidino-Funktion zugeordnet. Ein
Vergleich der 13C-NMR-Daten mit denen von 9 148t
schlieBlich an einer Struktur im Sinne von Formel 6
keinen Zweifel. Auch die gelbe Farbe der Produkte
wird mit einer offenkettigen Struktur zwanglos er-
klart.

* *
16,6 (q,J=283,2 Hz) 121,0(q,J= 121,2 (q,J =
/ \ \\273.4 Hz) r'g 275,3 Hz)
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/.ﬁ( 121,6(sept., — ‘
WIS (aupt., N(C,H¢) J=31,7Hz) N(C,Hg)
J=38,1 Hz) N 278’2 BRI TR r P e
,50,,/'W( 43,2 123 20,4(q,1= 42,6 1.4
NO o 441 134 B ~y 448 134
132,1(sept., 3Hz) N
J=34,2 Hz) 7= |</132,L(sept.. J=33,4Hz)
-13,95 F,C CF, -117 -14,85 F,C CFy -12,0
/ 6b 120,4°(q.J = 265,6 Hz) 9  120,2°(q,J=269,6 Hz)
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°* Zuordnung unsicher.

117,6°(q.J = 281,3 Hz)
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Die ®F-NMR-Spektren der [1:2]-Addukte zeigen
gleichfalls drei Resonanzabsorptionen (Integrations-
verhaltnis 2:1:1). Allein aufgrund der Anzahl der
Signale kann die Bildung eines ,,criss-cross‘‘-Cyclo-
addukts 4 ausgeschlossen werden. Die Hochfeldlage
des sechs Fluoratome reprisentierenden Signals
[6=0,5 ppm, (q, J=3 Hz)] gibt eine beidseitige
Flankierung der > C(CFs):-Funktion durch Hetero-
atome zu erkennen [20, 21]. Die chemischen Ver-
schiebungswerte der beiden iibrigen Trifluormethyl-
gruppen, 6 = —12,5ppm (q, 4/rr=8 Hz) und
—15 ppm (q, 4Jrr =8 Hz), sprechen wiederum fiir
die Prisenz einer Hexafluoracetonhydrazon-Funk-

jF, F,C CFy
NZ cF, N7 N
SRR T §
(HyCIN" N (H3C)oNT N7 NICHS),
Ny CF; NYCF,
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Von den a prior: moglichen Strukturalternativen
4, 7 und 8 steht nur 7 mit allen aufgenommenen
spektroskopischen Daten im Einklang, d.h. es liegt
ein 1.4-Dihydro-1.3.5-triazin-System vor. Zwischen
den Fluoratomen des unmittelbar an den Ring ge-
bundenen Trifluormethylgruppen-Paares und denen
der bei tieferem Feld absorbierenden Trifluormethyl-
- gruppe der Hexafluoracetonhydrazon-Funktion wird
iiberraschenderweise eine 8J¢r-Kopplung von 3 Hz
gefunden.
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Fiir die Bildung der 3.4.6-Triazaocta-2.4.6-triene 6
sind zwei mechanistische Alternativen in Betracht
zu ziehen:

tion [12, 15-17]. Die Signalarmut der tTH-NMR- und
der 13C-NMR-Spektren, fiir das aus 1 und Dimethyl-
cyanamid 2a synthetisierte Produkt werden jeweils
nur ein Signal fiir die Kohlenstoffatome der vier
Methylgruppen (6 = 38,6 ppm) und fiir zwei Guani-
dino-Funktionen (6 =153,3 ppm) gefunden, belegt
einen symmetrischen Aufbau der [1:2]-Addukte.
Der Befund, daB die Reaktion von 6a mit N.N-
Diethylcyanamid 2b und 6b mit N.N-Dimethyl-
cyanamid zum gleichen Cycloaddukt fiithren, bietet
einen weiteren Hinweis auf den symmetrischen
Aufbau des im [1:2]-Addukt vorliegenden Ring-
skeletts.

CF,
FiC /I\N

N" TNIC;Hg),
F,C\(N

2a +

CF,;

6b

Weg A: Eine [2+42]-Cycloaddition mit nachfol-
gender elektrocyclischer Ring6ffnung (1 4 2—->5—6).

Weg B: Eine 1.3-Cycloaddition unter Bildung des
Azomethinimins 3, das entweder unter heterolyti-
schem Bindungsbruch C(5)-N(1) [6] (3 -5 —6) oder
iiber ein 1.3.5-Triazabicyclo[3.1.0]oct-4-en [5] in 6
iibergeht.

Fiir beide Wege gibt es Analogien. So wurde
einerseits fiir die Reaktion von B.8-disubstituierten
Enaminen mit Hexafluoracetonazin (1) eine direkte
[242]-Cycloaddition der isolierten CC-Doppelbin-
dung an die C=N-Bindung des Azin-Systems wahr-
scheinlich gemacht [6], andererseits konnte bei der
Reaktion von Inaminen mit 1 das entsprechende
Azomethinimin unterhalb von —20 °C isoliert wer-
den [5, 22]. Die Umlagerung in 3.4-Diazaocta-2.4.6-
triene erfolgt bereits im Temperaturbereich von 0 °C
schnell. Eine sichere Unterscheidung zwischen den
Reaktionswegen A und B ist beim gegenwirtigen
Stand der Untersuchungen nicht méglich.

Hexafluoracetonazin (1) zeigt damit ein voéllig
anderes Cycloadditionsverhalten gegeniiber Cyan-
amiden (2) als Hexafluoraceton. Je nach Wahl des
molaren Verhéltnisses der Edukte und der Reak-
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tionsbedingungen werden dort Produkte einer
[24-2+2]-Cycloaddition, namlich 1.3.5-Dioxazine
bzw. 1.3.5-Oxadiazine, erhalten [23].

Von den zwei in den Verbindungen 6 vorhandenen
Heterodien-Systemen — einem 1.3-Diazabuta-1.3-
dien und einem 2.3-Diazabuta-1.3-dien — reagiert
bei Raumtemperatur mit tert-Butylisonitril aus-
schlieBlich ersteres unter [4+1]-Cycloaddition
(6 —~10). Dagegen erfahrt bei der Reaktion von 6 mit

FiC CF,

i F,C CF,

\
||

(H,C),N
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i = (CHy);C-N=C
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Experimenteller Teil

Schmelzpunkte (nicht korrigiert): Gerat nach
Tottoli (Fa. Biichi). — IR-Spektren: Perkin-Elmer-
Gerit 157 G und 257. — TH-NMR-Spektren: Varian
A 60, TMS als innerer Standard. — 1Y)F—-NMR-Spek-
tren: Jeol C 60 HL bei 56,45 MHz; Trifluoressig-
saure als auBerer Standard. Die tieffeld vom Stan-
dard aufgezeichneten Signale wurden mit einem
negativen Vorzeichen versehen [24]. — 13C-NMR-

1-Diethylamino(propin) die erwartete [4+2]-Cyclo-
addition an das 2.3-Diazabuta-1.3-dien-System
(6—~11) die Konkurrenz einer Kettenverlingerung
(6>12), wobei das in 6 prasente Azin-System mit
dem Inamin in Reaktion tritt. Aufgrund des fiir die
Reaktion von 1 mit Inaminen gesicherten Reaktions-
verlaufs iiber ein 1.3-Addukt [5, 22], muB auch fiir
die Bildung von 12 vom Durchlaufen einer Azo-
methinimin-Zwischenstufe ausgegangen werden.

Spektren: Jeol FX 60 bzw. FX 90, TMS als innerer
Standard. — Massenspektren: MS 9 der Fa. AEI,
Ionisierungsenergie: 70 eV.

Séulenchromatographische Trennungen: Saule
50 cm Lange und 2,5 cm Innendurchmesser, Kiesel-
gel 60 ,,Merck* (KorngréBe 0,063-0,200 mm). Pra-
parative Schichtchromatographie : Glasplatten 20 X
20 cm, 2,00 mm dicke Kieselgelschicht (Kieselgel
60 Fzs4 ,,Merck®).
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5-Dialkylamino-1.1.1.8.8.8-hexafluor-2.7-bis-
(trifluormethyl )-3.4.6-triazaocta-2.4.6-triene (6)

Allgemeine Arbeitsvorschrift

Methode A : 9,84 g (30 mmol) Hexafluoracetonazin
1 [14] werden mit 15 mmol des entsprechenden
Cyanamids 2 4 Wochen lang im EinschluBrohr auf
65-80 °C erhitzt. Danach wird die Reaktions-
mischung mit 5 ml wasserfreiem Hexan versetzt
und 12 h auf —30 °C gekiihlt. Man trennt das aus-
gefallene 1.4-Dihydro-1.3.5-triazin 7 ab und frak-
tioniert das Filtrat.

Methode B: 19,68 g (60 mmol) 1 werden mit
50 mmol Cyanamid 2 in 50 ml wasserfreiem Aceto-
nitril 5 d unter RiickfluB erhitzt. Nach Entfernen
des Losungsmittels wird der Riickstand durch frak-
tionierende Destillation gereinigt.

5-Dimethylamino-1.1.1.8.8.8-hexafluor-2.7-bis-
(trifluormethyl))-3.4.6-triazaocta-2.4.6-trien (6a)

Methode A: Ausbeute 2,52 g (429%,, bezogen auf
2a); Methode B: Ausbeute 12,16 g (619,), gelbe
Fliissigkeit mit Sdp. 70-71 °C/14 Torr. — IR (Film):
» = 1732, 1627, 1560 cm-1. — tH-NMR (CDCls):
8 = 2,62-3,40 ppm [m, 6H; N(CHs):]. - *F-NMR
(CDCly): 6 = —9,0 ppm [s, 6F; _C—N—C(CFs)z],
—117ppm (a, br J =62 Hz 3F; CEs),
—140ppm (q, J = 6,2 Hz, 3F; =C—CF3) -
1=’C—NMI_)£ (CDCls): 6 = 37,0 ppm (N-CHs), 37,5 ppm
(N-CHs), 116,6 ppm (q, J = 282,2 Hz; CFs),
117,7ppm (q, J = 284,2 Hz; CFs), 120,1 ppm
(a9, J =267,6Hz; CFs), 132,6 ppm (sept., J =33 Hz;
%2), 147,7 ppm (sept., J = 38,1 Hz; C-7), 161,2 ppm
(C-5).

CsHeF12N4 (398,2)

Ber. C27,15 H1,52 N 14,07,
Gef. C27,35 H 1,67 N 14,04.

5-Diethylamino-1.1.1.8.8.8-hexafluor-2.7-bis-
(trifluormethyl))-3.4.6-triazaocta-2.4.6-trien (6b)

Methode A: Ausbeute 5,82 g (91%, bezogen auf
2bh), gelbe Fliissigkeit mit Sdp. 92-93 °C/14 Torr. —

IR (Film): » = 1727, 1617, 1540 cm-1. - tH-NMR
(CDCls): 6 = 1,19 ppm (t, br., J = 7Hz, 3H;
N-CH:CHs), 1,27 ppm (t, br., J = 7Hz, 3H;
N-CH:CHs), 3,30 ppm (q, br., J = 7 Hz, 2H;

N-CH:CHs), 3,68 p (g, br., J = 7THz, 2H;
N-CH:CHj). - 19F—§MR CDCls) 8=—92 ppm
[s, 6F; =C-N=C(CFs):], —11,7 ppm (q, br.,

6,2 Hz, 3F; =C-CFs), —13,95 ppm (q, J = 62Hz
3F, —C—CFa) - 13C-NMR (CDgls) §=123 ppm
(CHzCHa), 134 ppm (CH.CH;), 43, 2 Ppm
(N-CH:CHs), 44,1 ppm (N—CHzCHs) 116,6p m
(q, J=283,2Hz; CFa) 117,7ppm (q, J=283,2Hz;
CFs), 120,4 pPpm (q, br., J = 265,6 Hz; CFs),
132,1 ppm (sept., 34 2 Hz; C-2), 147 5 ppm
(sept., J = 38,1 Hz C-7), 160,1 ppm (C-5).

CuHioF12N4 (426,2)
Ber. C31,00 H2,37 N 13,15,
Gef. C30,87 H247 N 13,37.

1.1.1.8.8.8-Hexafluor-5-( N-piperidino )-2.7 -bis-
(trifluormethyl )-3.4.6-triazaocta-2.4.6-trien (6¢)

Methode A: Ausbeute 5,00 g (76%,, bezogen auf
2¢), gelbe Fliissigkeit mit Sdp. 68-69 °C/0,9 Torr. —
IR (Film): v = 1728, 1621, 1543 cm-1. - tH-NMR
(CDCls): 6 = 1,50-1,92 ppm (m, 6 H; CH:CH2CH.),
3,024,27 ppm (m, 4H; 2N-CHs-). — ¥F-NMR
(CDCls): 6 = —9,4 ppm [s, 6F; =C-N=C(CF3s)z],
—11,9 ppm (q, br., J = 6,1 Hz, 3F; =C-CF3),
—14,2 ppm (q, J = 6,1 Hz, 3F; =C-CF3s).

Ci2H10F12Ns (438,2)
Ber. C32,89 H230 N 12,79,
Gef. C33,24 H249 N 12,88.

2.6-Bis(dialkylamino)-1-[2.2.2-trifluor-1-
trifluormethyl(ethylidenamino ) | -4.4-bis-
(trifluormethyl ) 1.4-dihydro-1.3.5-triazine (7)

Allgemeine Arbeitsvorschrift

Methode A : 3,28 g (10 mmol) 1 werden mit 20 mmol
eines Cyanamids 2 14 d im EinschluBrohr auf 80 °C
erhitzt. Die Verbindungen 7 werden durch Um-
kristallisation aus wasserfreiem Hexan (Kaltebad,
—30 °C) gereinigt.

Methode B: Aquimolare Mengen an 6 (5 mmol)
und des entsprechenden Cyanamids 2 werden 17 d
auf 80 °C erhitzt. Reinigung wie oben.

2.6-Bis(dimethylamino )-1-[2.2.2-trifluor-1
trifluormethyl(ethylidenamino ) | -4.4-bis-
(trifluormethyl )-1.4-dihydro-1.3.5-triazin (7a)

Methode A: Ausbeute 1,36 g (29%,); Methode B:
Ausbeute 2,20 g (94%,), Schmp 143-144 °C. - IR
(KBr): v—1686 1621 cm-1. - 1H-NMR[De¢-Aceton]:
6 = 2,90 ppm [s, 12H; 2 N(CHs):]. - ¥F-NMR
[De-Aceton] 6 = 05ppm [q, J = 3,3Hz, 6F;
C(CFs):], —12,6 ppm (q, J = 8,2 Hz, 3F; C—CFs),
—14,5 pm (mc, J = 82Hz J = 33Hz 3F;
= - 13C-NMR [Da Aceton] 6 = 38, 6 pPpm
[N(CHa)z], 77,7 ppm (sept., J = 29,2 Hz; C-4),
117,6 ppm (q, J = 282,0 Hz CFs), 120 6ppm (q,
J = 276,56 Hz; CFs), 122,7 ppm [sept., J = 36,1 Hz;
N——C(CFs)z], 1232ppm (9, J = 288,0 Hz; CFa)
153,3 ppm (C-2 und C-6).

C12H12F1sNs (468,3)
Ber. 30,78 H258 N 17,95,
Gef. 30,66 H249 N 1825,

2.6-Bis(diethylamino )-1-[2.2.2-trifluor-1-
trifluormethyl(ethylidenamino ) ] -4.4-bis-
(trifluormethyl )-1.4-dihydro-1.3.5-triazin (7b)
Methode A: Ausbeute 2,32 g (44%), Schmp. 53 -
54 °C. - IR (KBr): » = 1675, 1613 cm-1. - tH-NMR
[De-Aceton]: 6 = 1,18 ppm [t, J = 7 Hz, 12H;
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2 N(CH:CHs):], 3,32ppm [q, J = 7Hz, 8H;
2 N(CH:CHs):]. — 19F-NMR [Dg-Aceton]: 6 =
0,5 ppm [q, J = 3 Hz, 6F; C(CFs)2], —12,65 ppm
(9, J = 8,2 Hz, 3F; =C-CFs), —15,85 ppm (mec,
3F; =C-CFs).

Ci16H20F12Ne (524,4)

Ber. C36,66 H3,84 N 16,03,
Gef. C36,72 H 4,01 N 16,04.

2.6-Di(N-piperidino)-1-[2.2.2-trifluor-1
trifluormethyl(ethylidenamino) |-4.4-bis-
(trifluormethyl )-1.4-dihydro-1.3.5-triazin (7¢)

Methode A: Ausbeute 3,13 g (579,), Schmp. 90 -
91 °C. - IR (KBr): » = 1680, 1613 cm~1. - tH-NMR
[Ds-Aceton]:6=1,62 ppm (me, 12H ; 2 CH.CH>CH>),
3,27 ppm [mec, 8H; 2 N(CH:z-);]. — 19F-NMR
[De-Aceton]: 0,45 ppm [q, J = 3 Hz, 6 F; C(CFs):],
—I12,4ppm (q, J=8Hz, 3F; =C-CF3s), —14,85 ppm
(me, J = 8 Hz, J = 3 Hz, 3F; =C-CF3).

CisH20F12Ns (548,4)

Ber. C39,43 H3,68 N 15,33,
Gef. C39,45 H 3,86 N 15,33.

2-Diethylamino-6-dimethylamino-1-[2.2.2-trifluor-1-
trifluormethyl(ethylidenamino ) | -4.4-bis-
(trifluormethyl )-1.4-dihydro-1.3.5-triazin (74)

Methode A: 1,99 g (5 mmol) 6a werden mit 0,49 g
(6 mmol) Diethylcyanamid 4 Wochen lang im Ein-
schluBrohr auf 100 °C erhitzt. Ausbeute 2,28 g
(929%,), Schmp. 72 °C (aus Hexan, —30 °C).

Methode B: 2,13 g (5 mmol) 6b werden mit 0,35 g
(6 mmol) Dimethylcyanamid 4 Wochen lang im
EinschluBrohr auf 100 °C erhitzt. Ausbeute 2,20 g
(89%), Schmp. 72 °C (aus Hexan, —30 °C). —
IR (KBr): » = 1675, 1612cm-t. — 'H-NMR
(CDCl3): 6 = 122ppm [t, J = 7,2Hz, 6 H;
N(CH:CHjs):], 2,91 ppm [s, 6H; N(CHs):], 3,40 ppm
[q, / = 7,2Hz, 4H; N(CH:CH;):]. — ¥YF-NMR
(CDCls): 6 = —04ppm [q, J = 3,3Hz, 6F;
C(CEs)z], —13,9 ppm (q, J = 8,2 Hz, 3F; =C-CF3),
—15,5 ppm (me, J = 82Hz, J = 3,3 Hz, 3F,;
=C-CF3). - 13C-NMR (CDCls): 6 = 12,4 ppm
[N(CH2CH3)2], 37,9 ppm [N(CHs)], 43,3 ppm
[N(CH:CHs):], 77,1 ppm (sept., J = 29 Hz; C-4),
116,7 ppm (q, J = 283,2 Hz; CF3), 119,4 ppm
(q,J =276,8 Hz; CFs), 122,3 ppm (q, J = 288,1 Hz;
CF3), 124,3 ppm [sept., J = 36,1 Hz; N=C(CF3)],
151,0 ppm, 152,5 ppm (C-2 und C-6).

Ci1sH16F12N¢ (496,3)

Ber. C33,88 H3,25 N 16,93,
Gef. C33,87 H337 N17,:23.

5-tert- Butyl-2-dimethylamino-1-[2.2.2-trifluor-1-
trifluormethyl(ethylidenamino ) | -4.4-bis-
(trifluormethyl )-2-imidazolin (10)

1,00 g (2,5 mmol) 6a und 0,25 g (3 mmol) tert-
Butylisonitril werden in 3 ml wasserfreiem Hexan

2d bei Raumtemperatur geriihrt. Der nach dem
Abdestillieren der fliichtigen Anteile i.Vak. ver-
bleibende Riickstand wird aus wasserfreiem Hexan
umbkristallisiert (Kaltbad, —30 °C). Ausbeute 0,92 g
(77%,), gelbe Kristalle mit Schmp. 48-49 °C. -
IR (KBr): » = 1725, 1650 cm-1. — tH-NMR (CDCls):
é = 1,38 ppm [s, 9H; C(CHs)s], 2,95 ppm [s, 6H;
N(CHs):]. — *F-NMR (CDCls): 6 = —7,2 ppm
[s, 6F; C(CEs)2], —12,45 bis —13,45 ppm (m, 6F;
N-N=C(CFs)s.

C14H15F12Ns (481,3)

Ber. C3494 H3,14 N 14,55,
Gef. C35,06 H 3,33 N 14,66.

2-Diethylamino-6-dimethylamino-3-methyl-1-
[2.2.2-trifluor-1-trifluormethyl(ethylidenamino ) | -
4.4-bis(trifluormethyl )-1.4-dihydro-pyrimidin (11)
7-Diethylamino-4-dimethylamino-
1.1.1.10.10.10-hexafluor-8-methyl-2.9-bis(trifluor-
methyl )-3.5.6-triazadeca-2.4.6.8-tetraen (12)

Zu einer Losung von 3,19 g (8 mmol) 6a in 15 ml
wasserfreiem Hexan werden bei —30 °C 0,90 g
(8 mmol) 1-Diethylamino(propin) in 8 ml Hexan ge-
tropft. Man erwirmt die Reaktionslésung langsam
auf Raumtemperatur und riithrt 16 h. Das Produkt-
gemisch wird durch Saulenchromatographie unter
WasserausschluB aufgetrennt [Kieselgel, Eluent:
Chloroform/Hexan 1:1]. Verbindung 11 ist erst nach
zusitzlicher prap. Schichtchromatographie isome-
renfrei.

1. Fraktion: Ausbeute 0,50 g (129,) 11, Schmp.
62 °C (aus Hexan, —30 °C). — IR (KBr): » = 1680,
1636, 1600 cm-1. — tH-NMR (CDCls): 6 = 1,03 ppm
[t,J =7 Hz, 6 H; N(CH2CHs):], 1,98 ppm (mec, 3H;
=C-CHs), 2,66 ppm [s, 6H; N(CHs):], 2,98 ppm
[q, J=7HZ, 4H; N(CI;Icha)z] —-19F-NMR (CDCE) .
6 = —6,1 ppm [me, 6F; C(CFs):], —13,1 bis
—14,5 ppm [m, 6F; N-N=C(CF3):].

2. Fraktion: Ausbeute 2,03 g (499%,) 12, gelbes
nicht destillierbares Ol. — IR (Film): » = 1643, 1609,
1584, 1538, 1497 cm-1. — 1H-NMR (CDCls): 6 =
1,19 ppm (t, J = 7 Hz, 3H; NCH:CHs), 1,22 ppm
(t, J = 7Hz, 3H; NCH:CHs), 2,18 ppm (sept.,
J = 2Hz, 3H; =C-CHs), 3,11Nppm [s, 6H;
N(CHa)z], 2,88-3,84 ppm [m, 4H; (CI_IzCHa)z] -
BF-NMR (CDCls): 6 = —13,8 bis —14,7 ppm (m;
6F), —18,6 ppm [q (mit Feinstruktur), J = 9 Hz;
3F)], —19,7 ppm (qq, J = 9 Hz, J = 2 Hz; 3F).

C16H19F12N5 (509,3)
Ber. C37,73 H3,76 N 13,75,
11: Gef. C38,11 H4,11 N 13,86,
12: Gef. C37,79 H 4,09 N 13,66.

Wir danken der Deutschen Forschungsgemein-
schaft und dem Fonds der Chemischen Industrie fiir
finanzielle Férderung dieser Untersuchungen. Herrn
Dr. G. R. Coraor, E. I. Du Pont de Nemours & Co.,
Wilmington, Delaware, USA, danken wir fiir eine
groBziigige Hexafluoraceton-Spende.
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