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1,2,4,5-Tetrathian

The conformation of 1,2,4,5-tetrathian was determined by means of dynamic NMR
spectroscopy. The barrier (4 G#+) of the chair/twist equilibration is 14.5 kcal/mol and the
chair form is more stable than the twist form in this molecule by 1.4 kcal/mol. These
experimental data are in excellent agreement with force field calculations.

Im Vergleich zum Grundkorper zeichnen sich die
Schwefelisologen des Cyclohexans durch eine ver-
ringerte Flexibilitat aus. Dies muBl zum groBen Teil
auf die hohe Energiebarriere der Rotation um die
S—S-Bindung zuriickgefiihrt werden, die bei ali-
phatischen Disulfiden etwa 7-12 kcal/mol [1, 2]
betragt. Die durch den Einbau der S—S-Bindungen
bedingte Anderung der Bindungslingen und -winkel
fithrt zwangslaufig zu einer Anderung der relativen
Stabilitaten der verschiedenen Konformeren. In
Tab. I sind die bisher bekannten theoretischen und
experimentellen Befunde der cyclischen Polysulfide
zusammengestellt.

Im Falle des 1.2.4.5-Tetrathians sollte — wegen
der geringen Energiedifferenz zwischen Sessel- und
der Twistform — ein NMR-spektroskopischer Nach-
weis beider Konformere moglich sein. Zwar konnte
bereits an alkylsubstituierten Abkémmlingen dieses
Systems die Twist- neben der Sesselform nachge-

wiesen werden [6], jedoch nimmt auch in den ent
sprechend geminal substituierten Cyclohexanderiva-
ten durch die Destabilisierung der Sesselform die
relative Energiedifferenz zwischen Sessel- und
Twistform ab, so daB bisher nicht zwischen einem
Substituenteneffekt und einer Eigenschaft des
1.2.4.5-Tetrathian-Grundsystems selbst unterschie-
den werden konnte.

Zur Klirung dieser Frage untersuchten wir die
Temperaturabhéngigkeit des H-NMR-Spektrums
von 1.2.4.5-Tetrathian, das durch thermische Zer-
setzung von 1.2.4.5.7.8-Hexathionan, einem Inhalts-
stoff von Parkia speciosa Hassk. (Mimosaceae), dar-
gestellt werden konnte [7].

Neben den typischen Spektren eines AB =A,-
Spinsystems tritt bei Temperaturen unterhalb
—20 °C zusétzlich ein Singulett bei 3,99 ppm auf,
das der Twistform zugeordnet werden muB}. Aus den
relativen Signalintensitdten kann die relative freie

Tab. I. Ubersicht iiber experimentelle und berechnete thermodynamische Daten von Schwefelisologen des

Cyclohexans. Alle Angaben in kecal/mol.

Verbindung Sessel- Twist- [3] Wannenform [3] 4G+ (ber.) [3] 4G+ (exp.)
Cyclohexan 0 5,3 6,8 9,2 10 [4]
1.2-Dithian 0 3,9 10,9 1L7 11,6 [6]
1.2.3.4-Tetrathian 0 7,5 14,7 14,7

1.2.4.5-Tetrathian 0 1,1 18,9 14,2 .
Pentathian 0 10,2 14,8 17,4 15 [5]
Schwefel-Sg 0 18,4 19,7 29,9
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Konformationsenthalpie 4 G der Twistform berech-
net werden. Eine Auswertung der temperaturab-
héngigen Spektren ergibt insgesamt folgende Daten :
O3qu = 4,56 ppm; J,x = 3,44 ppm;
Oiwist = 3,99 ppm
2 ax-squ = 14,0 Hz; 4Gt = 14,5 keal/mol;
AG (twist) = 1,4 keal/mol.
Insgesamt stehen diese Ergebnisse in ausgezeich-

neter Ubereinstimmung mit den Kraftfeldberech-
nungen von Allinger [3], wonach sich im 1.2.4.5-

Tetrathian gegeniiber Cyclohexan der Energieunter-
schied zwischen Twist- und Sesselform von 5,6 auf
1,4 keal/mol verringert, wahrend sich die entspre-
chende Energiebarriere der Umwandlung von 9,2
auf 14,2 kcal/mol ansteigt.

Experimentelles

Die tH-NMR-Spektren wurden mit einem Bruker
WH-270-Spektrometer bei einer MeBfrequenz von
270 MHz aufgenommen. Als Losungsmittel wurde
Deuteromethylenchlorid der Fa. Sharp und Dohme
verwendet.
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Abb. 1. Temperaturabhingige 270 MHz 1H-NMR-Spektren von 1.2.4.5-Tetrathian in CDzClz (rechts) im Ver-
gleich zu den Ergebnissen theoretischer Simulationen (links).
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