Verteilung und Valenz der Kationen in Spinellsystemen mit Eisen und Vanadium, II Röntgenographische Untersuchung, Seebeck Koeffizienten, Mößbauer- und IR-Spektren der Mischkristallreihen Fe₂VO₄-ZnV₂O₄ und Fe₂VO₄-ZnFe₂O₄

Distribution and Valence of the Cations in Spinel Systems with Iron and Vanadium, II X-ray Investigation, Seebeck Coefficients, Mössbauer and IR Spectra of the Solid Solutions Fe₂VO₄-ZnV₂O₄ and Fe₂VO₄-ZnFe₂O₄

Erwin Riedel* und Norbert Pfeil

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12

Z. Naturforsch. 35b, 1261-1267 (1980); eingegangen am 2. Juni 1980

Zinc-Iron-Vanadium Spinels, Mössbauer Spectroscopy, Seebeck Effect, Charge Hopping, Cation Distribution

The spinel series Fe₂VO₄-ZnV₂O₄ and Fe₂VO₄-ZnFe₂O₄ have been prepared and investigated. The lattice constants and Mössbauer spectra lead to a distribution of cations which proves that Fe₂VO₄ is a partially inverse spinel with Fe(II) and Fe(III) on the tetrahedral site. The Seebeck effect is interpreted with a model of both tetrahedral and octahedral conduction based on charge hopping.

1. Einleitung

Die Kationenverteilung im Spinell Fe₂VO₄ war bereits Gegenstand zahlreicher Untersuchungen, meist im Zusammenhang mit der Mischkristallreihe FeV₂O₄-Fe₃O₄. Die Eigenschaften des Fe₂VO₄ wurden durch Verteilungen wie Fe²⁺[Fe²⁺V⁴⁺]O₄ [1, 2] oder $Fe_{1-\lambda}^{2+}Fe_{\lambda}^{3+}[Fe_{\lambda}^{2+}Fe_{1-\lambda}^{3+}V^{3+}]O_4$ mit $\lambda = 0$ (normal) [3], $\lambda = 1$ (invers) [4-6] oder $0 < \lambda < 1$ (teilweise invers) [7-9] erklärt. In der vorliegenden Arbeit soll die Änderung der Eigenschaften des Fe₂VO₄ bei Einbau von Eisen(III) oder Vanadium(III) untersucht werden und Aufschluß über die Valenzverteilung geben.

Zur Mischkristallbildung boten sich die normalen Spinelle ZnV₂O₄ und ZnFe₂O₄ aus dem im I. Teil dieser Veröffentlichungsreihe [10] vorgestellten System an, da Zink(II) aufgrund seiner Tetraederplatzpräferenz in einer einheitlichen Koordination zu erwarten ist.

Die Präparation von Mischkristallen zwischen Fe₂VO₄ und GeFe₂O₄ – Einbau von Eisen(II) – gelang nicht. Aus den Ausgangsstoffen Fe, Fe₂O₃, GeO₂ und V₂O₅ bildeten sich stets Fe₂VO₄ und GeFe₂O₄ nebeneinander.

graphischen und thermoelektrischen Eigenschaften, die Analytik sowie die Messung der ⁵⁷Fe-Mößbauer-

2. Präparationsbedingungen

Die Mischkristalle wurden durch Festkörperreaktion im Ölpumpenvakuum aus Fe, Fe₂O₃, ZnO und V₂O₅ oder V₂O₃ bzw. den entsprechend präparierten Endgliedern Fe₂VO₄ und ZnV₂O₄ hergestellt. Platinschiffchen oder -zylinder schützten die mit einem Druck von 3,5 kbar zu Tabletten gepreßten Mischungen vor Kontakt mit den Pythagorasrohren bzw. Quarzampullen. Das Schmelzen des V₂O₅ wurde durch eine mehrstündige Vorreaktion bei 600 °C verhindert. Die Reaktionstemperatur betrug 900 °C, die Reaktionszeit zweimal 24 Stunden, die Abkühlzeit mindestens 30 Minuten. Zwischen den Sinterungen wurden die Tabletten pulverisiert und erneut gepreßt.

3. Ergebnisse und Diskussion

Die Spinellmischkristalle der Reihen Fe₂VO₄–ZnV₂O₄ und Fe₂VO₄–ZnFe₂O₄ sind lückenlos darstellbar und werden im folgenden mit den Formeln $\operatorname{Zn}_x\operatorname{Fe}_{1-x}[\operatorname{Fe}_{1-x}\operatorname{V}_{1+x}]\operatorname{O}_4$ bzw. $\operatorname{Zn}_{y}\operatorname{Fe}_{1-y}[\operatorname{Fe}_{1+y}\operatorname{V}_{1-y}]\operatorname{O}_{4}$ gekennzeichnet.

3.1. Gitterkonstanten und Sauerstoffparameter

In der Tab. I sind die Gitterkonstanten a und die Sauerstoffparameter u zusammengestellt. In der Abb. 1 sind neben den experimentellen Werten

Über die Methoden zur Ermittlung der kristallo-

Spektren und der IR-Spektren wurde bereits berichtet [10].

^{*} Sonderdruckanforderungen an Prof. Dr. E. Riedel. 0340-5087/80/1000-1261/\$ 01.00/0

theoretische Gitterkonstantenverläufe eingetragen, die nach

$$a = 2,0955 \text{ (Me-O)}_{\text{T}} + [5,8182 \text{ (Me-O)}_{\text{O}}^2 - 1,4105 \text{ (Me-O)}_{\text{T}}^2]^{0,5}$$

berechnet wurden [11]. Aus dem Vergleich folgt ein normaler Bereich $(x \ge 0.5)$, ein inverser Be-

Tab. I. Gitterkonstanten und Sauerstoffparameter.

$\mathbf{Z}\mathbf{n}_{x}\mathbf{F}\mathbf{e}_{1-x}$	TIC.	7 70	7-	To.	rTro.	77.	70.
ZIIrF 01_r	F 01_7	V 1 + r U.	ı ZII	η F Θ1_	-21 F O1+	2/ V 1_2	<i>1</i> U 4

x, y	a [pm]	u	a [pm]	u
0.0	842,5	0,379	842,5	0,379
0,025	842,4	0,010	842,5	0,010
0,075	842,4		842,4	
0,15	842,9		842,0	
0,25	843,6	0,381	841,9	0,378
0,35	843,7	0,382	, ,	,
0,5	844,0	0,385	842,1	0,378
0,75	842,9	0,383	843,3	0,381
0,90	841,6	0,383		
0,95	,		844,4	
0,975	841,0		,	
1,0	841,2	0,384	844,5	0,383

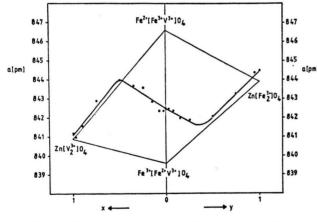


Abb. 1. Vergleich experimenteller und berechneter Gitterkonstanten.

Tab. II. Ionenabstände in Spinellen.

reich $(y \ge 0.4)$ und ein teilweise inverser Bereich mit sowohl Eisen(II) als auch Fe(III) auf den Tetraeder- und Oktaederplätzen.

Die Gitterkonstanten wurden mit den in Tab. II angegebenen Metall-Sauerstoff-Abständen für tetraedrische und oktaedrische Koordination (Me-O)_T bzw. (Me-O)o berechnet. Die Metall-Sauerstoff-Abstände wurden aus Spinellparametern mit der oben angegebenen Gleichung bzw. den Beziehungen

$$(\text{Me-O})_{ extsf{T}} = a \sqrt[7]{3} (1/8 + \delta) (\text{Me-O})_{ extsf{O}} = a (1/16 - \delta/2 + 3 \delta^2)^{0.5} u = 0.375 + \delta$$

bestimmt. Nur beim Abstand (Fe²⁺-O)₀ ist die Differenz zu den Radiensummen nach Shannon und Prewitt [12] größer als ≈1 pm.

Die Sauerstoffparameter zeigen ebenfalls unterschiedliche Bereiche, die größeren Fehler der u-Werte lassen aber keine genaue Deutung zu.

3.2. Mößbauer-Spektren

In der Reihe $Zn_xFe_{1-x}[Fe_{1-x}V_{1+x}]O_4$ lassen die Mößbauer-Spektren (Abb. 2) eine eindeutige Aussage über die Kationenverteilung zu. Tab. III enthält die Parameter für das Anpassen von zwei Dubletts (zwei Singuletts bei x = 0.975). Im Bereich $0.5 \leqslant x \le 0.975$, in dem die Flächengleichheit der Dubletts dem erwarteten Verhältnis Feo: Fe_T = 1:1 entspricht, lassen sich aufgrund der Mößbauer-Parameter die Dubletts Eisen(II) in tetraedrischer Koordination und Eisen(III) in oktaedrischer Koordination zuordnen. Die Isomerieverschiebung der Fe(II)-Absorption stimmt mit dem beim Normalspinell FeV₂O₄ [15] gefundenen Shift von $\delta =$ 0,92 mm/s überein. Die Isomerieverschiebung der Fe(III)-Absorption entspricht der in der Spinellreihe ZnV_2O_4 – $ZnFeVO_4$, in der die Shifts von $\delta =$ 0.40 mm/s auf $\delta = 0.38 \text{ mm/s}$ abnehmen [10]. Die

	Abstände in Spinellen in pm	Abstände nach Shannon in pm [12]	Berechnung
$\begin{array}{c} \hline (Zn^{2+}-O)_T \\ (V^{3+}-O)_O \\ (Fe^{2+}-O)_T \\ (Fe^{3+}-O)_O \\ \hline (Fe^{3+}-O)_T \\ (Fe^{2+}-O)_O \\ \end{array}$	196,7 202,4 199,7 203,5 187 212	198 202 201 202,5 187 216	Mittelwert aus ZnMe ₂ ³⁺ O ₄ -Spinellen [13] Mittelwert aus Me ²⁺ V ₂ ³⁺ O ₄ -Spinellen [14] a _{FeV₂O₄} , (V ³⁺ -O) _O a _{ZnFe₂O₄} , (Zn-O) _T , (V ³⁺ -O) _O ————————————————————————————————————

mittlere Isomerieverschiebung ist konstant. Auch das Fehlen einer großen Aufspaltung der Eisen(II)-Absorption ist nur durch tetraedrische Koordination von Eisen(II) zu erklären. Beim Normalspinell Ge[Fe₂]O₄ z.B. beträgt die Quadrupolaufspaltung $\Delta=2,85$ mm/s [15]. Die gefundene kleine Aufspaltung auf einem Platz mit kubischer Symmetrie ist auf die inhomogen besetzten Oktaederplätze zurückzuführen [16, 17]. Mit zunehmender Inhomo-

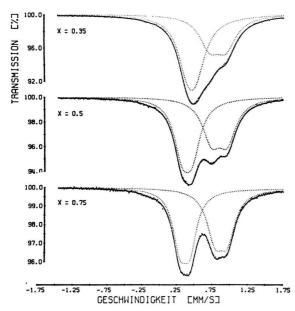


Abb. 2. Raumtemperatur-Mößbauer-Spektren der Spinelle $\mathbf{Z}\mathbf{n}_x\mathbf{F}\mathbf{e}_{1-x}[\mathbf{F}\mathbf{e}_{1-x}\mathbf{V}_{1+x}]\mathbf{O}_4$.

Tab. III. Mößbauer-Parameter der Spinellmischkristalle $Zn_xFe_{1-x}[Fe_{1-x}V_{1+x}]O_4$.

x	$\delta \ [ext{mm/s}]$	$oldsymbol{\delta}$ [mm/s]	Δ [mm/s]	$\Gamma \ [ext{mm/s}]$	FA [%]	χ²
0,25	0.51_2 0.89_0	0,634	0,10 0,24	0,43 0,39	68 32	544
0,35	$0,50_1$ $0,87_0$	$0,65_2$	$0,12 \\ 0,23$	0,34 0,35	59 41	818
0,50	$0,43_9 \\ 0,89_7$	$0,65_{4}$	$0,14 \\ 0,22$	$0,28 \\ 0,31$	53 47	561
0,75	$0,40_3 \\ 0,91_5$	$0,65_{5}$	$0,14 \\ 0,17$	$0,24 \\ 0,27$	51 49	525
0,90	$0,39_9 \\ 0,92_1$	$0,65_{3}$	$0,12 \\ 0,11$	$0,24 \\ 0,27$	51 49	5 00
$0,97_{5}$	$0,39_{6} \\ 0,92_{3}$	$0,65_{3}$	-	$0,27 \\ 0,27$	51 49	462

 $[\]delta$ Isomerieverschiebung, δ mittlere Isomerieverschiebung, Δ Quadrupolaufspaltung, Γ Halbwertsbreite, FA relativer Flächenanteil.

genität wächst die Aufspaltung. Übereinstimmend ergeben Gitterkonstantenverlauf und Mößbauer-Spektren im Bereich x>0,5 eine normale Kationenverteilung.

Die Änderung der Mößbauer-Parameter bei abnehmenden x-Werten weist auf zunehmende Inversion hin. Da weiterhin ein Fit mit nur zwei Absorptionen möglich ist, zeigen die Mößbauer-Spektren, daß auf beiden kristallographischen Plätzen ein schneller Elektronenaustausch zwischen den Fe²+- und Fe³+-Ionen stattfindet. Der Verlauf der Isomerieverschiebung für beide Plätze ist in der Abb. 3 dargestellt. Fe²VO₄ ist bereits überwiegend invers. Dies folgt aus einem Hochtemperatur-Mößbauer-Spektrum von Fe²VO₄ und stimmt auch mit der Gitterkonstante überein (Abb. 1). In einer späteren Veröffentlichung über die Spinellreihe FeV²O₄-Fe₃O₄ soll die Kationenverteilung von Fe²VO₄ genauer analysiert werden.

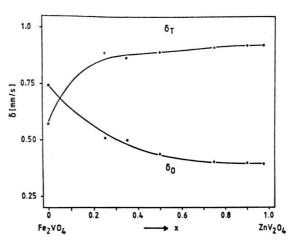


Abb. 3. Isomerieverschiebungen im Spinellsystem $\operatorname{Zn}_x\operatorname{Fe}_{1-x}[\operatorname{Fe}_{1-x}V_{1+x}]\operatorname{O}_4$.

Das Mößbauer-Raumtemperaturspektrum des Fe_2VO_4 – Curie-Temperatur 454 K [5] – ist magnetisch aufgespalten und besteht aus sechs zum Teil sehr breiten Absorptionen [2, 3, 6]. Das Spektrum mit y=0,5 ist ähnlich strukturiert, das mit x=0,15 ist noch schlechter aufgelöst, beide sind nicht durch das Anpassen einer beschränkten Zahl von Lorentz-Linien auszuwerten (Abb. 4).

Spektren der paramagnetischen Proben der Reihe $\operatorname{Zn}_y\operatorname{Fe}_{1-y}[\operatorname{Fe}_{1+y}\operatorname{V}_{1-y}]\operatorname{O}_4$ (y=0.75 und 0.95) werden in Abb. 5 gezeigt, von anderen Proben ($0 \le y \le 0.5$) sind Hochtemperaturspektren oberhalb der Curie-

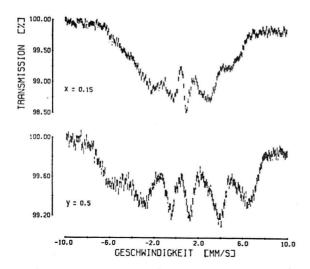


Abb. 4. Raumtemperatur-Mößbauer-Spektren von $Zn_{0,5}Fe_2V_{0,5}O_4$ (y=0,5) und $Zn_{0,15}Fe_{1,70}V_{1,15}O_4$ (x=0,15).

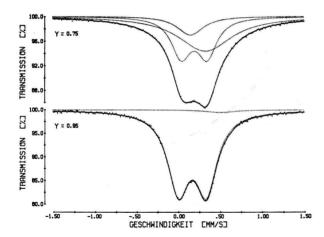


Abb. 5. Raumtemperatur-Mößbauer-Spektren in der Reihe $\mathrm{Zn}_y\mathrm{Fe}_{1-y}[\mathrm{Fe}_{1+y}\mathrm{V}_{1-y}]\mathrm{O}_4.$

Temperatur aufgenommen worden (Abb. 6). Aus den Hochtemperatur-Shifts wurden mit der experimentell bestimmten Temperaturabhängigkeit $\Delta \delta/\Delta T = 6.85 \cdot 10^{-4} \text{ mm s}^{-1} \text{ K}^{-1} \text{ Raumtemperatur}$ Shifts berechnet. Die Parameter sind in Tab. IV angegeben. Die Spektren sind weniger strukturiert und schwieriger zu interpretieren als die der Reihe $\operatorname{Zn}_x\operatorname{Fe}_{1-x}[\operatorname{Fe}_{1-x}\operatorname{V}_{1+x}]\operatorname{O}_4$. Die beiden bei y=0.5 gefundenen Dubletts lassen sich sowohl nach ihren Flächenanteilen als auch nach ihren Shifts Fe3+ auf dem Tetraederplatz und Eisen mit der Oxidationsstufe +2,67 auf dem Oktaederplatz zuordnen. Das Spektrum mit y = 0.75 wurde mit drei Linien gefittet, Shift und Flächenanteil der Fer3+-Absorption mußten festgehalten werden. Für die Eisenionen auf dem Oktaederplatz erhält man zwei Absorptionen. Sie entsprechen auf Grund ihrer Isomerieverschiebungen Fe3+ und Eisen der Oxidationsstufe +2.8. Der Elektronenaustausch erfolgt langsamer als bei kleinen y-Werten und die Absorp-

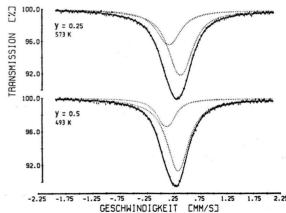


Abb. 6. Hochtemperatur-Mößbauer-Spektren in der Reihe $\mathrm{Zn}_y\mathrm{Fe}_{1-y}[\mathrm{Fe}_{1+y}V_{1-y}]\mathrm{O}_4.$

\boldsymbol{y}	$\delta/\delta_{ m RT} \ [{ m mm/s}]$]	$oldsymbol{\delta} [ext{mm/s}]$	⊿ [mm/s]	$\Gamma \ [ext{mm/s}]$	FA [%]	χ^2
0,25 573 K	0,24 ₃ / 0,46 ₈ /	$0,43_{3}$ $0,65_{9}$	0,582	0,13 0,16	0,49 0,48	34 66	460
0,50 493 K	$0,19_{4}$ / $0,41_{7}$ /	0.32_{9}	$0,50_{1}$	0,13 0,08	$0,35 \\ 0,50$	$\begin{array}{c} 23 \\ 77 \end{array}$	438
$^{0,75}_{ m RT}$		$0,327* \\ 0,37_1$	$0,42_{9}$	0,32	$0,38 \\ 0,28$	13* 39	527
0,95	_	$0,50_4 \\ 0,35_4$	$0,36_{2}$	0,34	0,78 $0,32$	48 98	511
RT 1,0 RT	-	$0,70_{1} \ 0,34_{5}$		0,36	$\substack{0,43\\0,29}$	100	883

Tab. IV. Mößbauer-Parameter der Spinellmischkristalle $\mathbf{Z}\mathbf{n}_y\mathbf{F}\mathbf{e}_{1-y}[\mathbf{F}\mathbf{e}_{1+y}\mathbf{V}_{1-y}]\mathbf{O}_4.$

^{*} festgehalten

tion der γ -Quanten durch Eisen auf den Oktaederplätzen erfolgt mit 55% Wahrscheinlichkeit durch Fe³+-Ionen und mit 45% durch Fe-Ionen einer mittleren Oxidationsstufe. Die große Halbwertsbreite zeigt, daß keine einheitlichen Eisenspezies vorliegen und durch eine einzelne Linie nur die durchschnittliche Ladung erfaßt wird. Analog können das Spektrum mit y=0.95 und einige Spektren der Mischkristallreihe ZnFeVO4-Fe³O4 interpretiert werden, über die im III. Teil der Mitteilungsreihe berichtet werden wird. Im Bereich $0 \le y \le 0.5$ ist der Elektronenplatzwechsel schnell, beide Plätze verursachen einheitliche Absorptionen, deren Isomerieverschiebungen die erwartete partiell inverse Ionenverteilung bestätigen (Abb. 7).

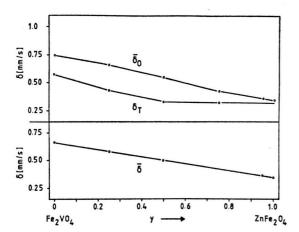


Abb. 7. Isomerieverschiebungen im Spinellsystem $\mathbf{Zn}_y\mathbf{Fe}_{1-y}[\mathbf{Fe}_{1+y}\mathbf{V}_{1-y}]\mathbf{O}_4$.

3.3. Thermokraft

Der in Abb. 8 dargestellte Verlauf der Thermokraft kann mit dem Modell lokalisierter Ladungsträger [18] gedeutet werden. Unter Anwendung der Fermi-Statistik erhält man für die Thermokraft Θ

$$\Theta = \pm \frac{k}{6} \left(\ln \frac{N-n}{n} + A \right)$$

sofern der Leitungsprozeß praktisch nur auf einem Niveau stattfindet. (k Boltzmann-Konstante, e Elementarladung, N Konzentration besetzbarer Plätze, n Ladungsträgerkonzentration, A Transportkonstante). Damit folgt für Leitung auf den Oktaederplätzen unter Beteiligung von Fe²⁺- und Fe³⁺-Ionen bei Vernachlässigung der Transportkonstante [19]

$$\Theta = 198 \lg \frac{c Feo^{2+}}{c Feo^{3+}}.$$

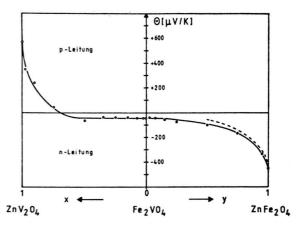


Abb. 8. Thermokraft bei Raumtemperatur in den Systemen $Z_{n_x}F_{e_{1-x}}[F_{e_{1-x}}V_{1+x}]O_4$ und $Z_{n_y}F_{e_{1-y}}[F_{e_{1+y}}V_{1-y}]O_4$ (— berechnet).

Die nach dieser Gleichung berechnete Thermokraft der Reihe $\operatorname{Zn}_y\operatorname{Fe}_{1-y}[\operatorname{Fe}_{1+y}V_{1-y}]O_4$ im Bereich $0,5 \leq y \leq 1$ bestätigt die inverse Kationenverteilung $\operatorname{Zn}_y\operatorname{Fe}_{1-y}^{3+}[V_{1-y}^{3+}\operatorname{Fe}_{1-y}^{2+}\operatorname{Fe}_{2y}^{3+}]O_4$ (Abb. 1 und Abb. 7). Im Bereich $0 \leq y \leq 0,5$ sind auch auf den Tetraederplätzen Fe^{2+} - und Fe^{3+} -Ionen vorhanden, und wie die Mößbauer-Spektren zeigen, erfolgt Hopping auf beiden Plätzen. Der Seebeck-Koeffizient wird sowohl durch Oktaederleitung als auch durch Tetraederleitung bestimmt. Reine Tetraederleitung wurde bei den Spinellmischkristallen $\operatorname{Li}_x\operatorname{Fe}_{1-2x}^{2+}\operatorname{Fe}_x^{3+}[\operatorname{Cr}_2]O_4$ nachgewiesen [20].

Im Bereich $0 \le x \le 0.5$ der Reihe $\operatorname{Zn}_x\operatorname{Fe}_{1-x}[\operatorname{Fe}_{1-x}V_{1+x}]O_4$ ändert sich auf beiden Plätzen das Eisen(II)-Eisen(III)-Verhältnis, entsprechend der Kationenverteilung

 ${\rm Zn}_x{\rm Fe}_{1-x-\lambda}{}^{2+}{\rm Fe}_{\lambda}{}^{3+}[{\rm Fe}_{\lambda}{}^{2+}{\rm Fe}_{1-x-\lambda}{}^{3+}{\rm V}_{1+x}]{\rm O_4}$. Dennoch ist die Thermokraft annähernd konstant mit einem Mittelwert von $\Theta=-46~\mu{\rm V/K}$. Zur Deutung muß Leitung auf beiden Plätzen des Gitters angenommen werden. Dies ist in Übereinstimmung mit den Mößbauer-Spektren.

Die partiell inverse Ionenverteilung kann als Eigenhalbleitung aufgefaßt werden. Die Ladungsträger entstehen durch Elektronenübergang von den Fe²⁺-Ionen der Tetraederplätze auf die Fe³⁺-Ionen der Oktaederplätze:

$$Fe_{T^{2+}} + Fe_{O^{3+}} \rightarrow Fe_{T^{3+}} + Fe_{O^{2+}}$$
.

Aus dem Shift der Mößbauer-Spektren kann die Kationenverteilung abgeschätzt werden. Für den Abstand zwischen dem Fe_T- und dem Fe_O-Niveau erhält man dann bei x = 0.5 ungefähr $0.15 \,\mathrm{eV}$. Dieser Abstand verringert sich mit abnehmendem x, dadurch ändert sich die Ionenverteilung von nahezu normal nach invers. Das Fermi-Niveau liegt genau zwischen dem Fer- und dem Feo-Niveau, und bei annähernd gleichen Beweglichkeiten der Elektronen auf dem Feo-Niveau und der Defektelektronen auf dem Fer-Niveau folgt für die Thermokraft $\Theta \approx 0$. Dagegen ist für die elektrische Leitfähigkeit eine Zunahme zu erwarten. Von x = 0.5bis x = 0.15 wird auch eine Zunahme um etwa eine Zehnerpotenz gefunden. Die Gitterkonstante und das Mößbauer-Spektrum zeigen, daß beim Fe₂VO₄ bereits eine überwiegend inverse Verteilung vorhanden ist, das Fe_T-Niveau liegt nun über dem Feo-Niveau. Daraus folgt, daß bei $x \approx 0.05$ (vgl. Abb. 3) sich das Fe_T- und das Fe_O-Niveau schneiden. Die Thermokraft dieser Probe ist als Transportglied zu interpretieren.

Der Wechsel von n-Leitung zu p-Leitung und der nachfolgende Anstieg der Thermokraft im Bereich $0.5 \le x \le 1$ der Reihe $\operatorname{Zn}_x \operatorname{Fe}_{1-x} [\operatorname{Fe}_{1-x} V_{1+x}] O_4$ resultiert aus der Abnahme der Eisenkonzentration auf beiden Plätzen; dadurch verlagert sich die Leitung auf die Vanadiumplätze des Gitters. Die p-Leitung beim ZnV₂O₄ entsteht - wie bei anderen Vanadium(III)-Spinellen MeV_2O_4 (Me = Cd, Mg, Mn, Co) [7] - durch die als Defektelektronen fungierenden V4+-Ionen, deren Konzentration von den jeweiligen Präparationsbedingungen abhängt [21].

3.4. Infrarot-Spektren

In der Literatur beschrieben sind bisher die Infrarot-Spektren der Spinelle ZnFe₂O₄ [22] und ZnV₂O₄ [23]. Abb. 9 zeigt zusätzlich die Spektren von Fe₂VO₄ und den Mischkristallen mit x = 0.5und y = 0.5. Das Spektrum des Fe₂VO₄ besteht wie das des Fe₃O₄ [24, 25] im Bereich $\nu \ge 200$ cm⁻¹ aus zwei breiten Banden v1 und v2. Die Bande v3 erscheint im System $Zn_yFe_{1-y}[Fe_{1+y}V_{1-y}]O_4$ ab y=0,75 als Schulter und im System

 $\operatorname{Zn}_x\operatorname{Fe}_{1-x}[\operatorname{Fe}_{1-x}V_{1+x}]O_4$ ab x=0.15 als Schulter und ab x = 0.5 als Bande. Diese fehlt also bei einer inversen oder teilweise inversen Kationenverteilung. Die vierte, gruppentheoretisch zu erwartende Bande v4 liegt wahrscheinlich wie bei ZnFe2O4 und weiteren II-III-Spinellen [22] unterhalb 200 cm⁻¹.

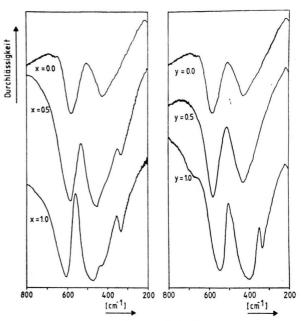


Abb. 9. IR-Spektren in den Spinellsystemen $Z_{n_y}F_{e_{1-y}}[F_{e_{1+y}}V_{1-y}]O_4$ und $Z_{n_x}F_{e_{1-x}}[F_{e_{1-x}}V_{1+x}]O_4$.

4. Zusammenfassung

Die Spinellmischkristallreihen Fe₂VO₄-ZnV₂O₄ und Fe₂VO₄–ZnFe₂O₄ wurden lückenlos hergestellt und untersucht. Aus dem Verlauf der Gitterkonstanten und den Mößbauer-Spektren wurde die in Abb. 10 dargestellte Kationenverteilung ermittelt. Die gestrichelten Linien umschließen Bereiche, in denen keine quantitativen Angaben über das Eisen(II)-Eisen(III)-Verhältnis möglich sind, zweifelsfrei aber ist Fe₂VO₄ ein teilweise inverser Spinell.

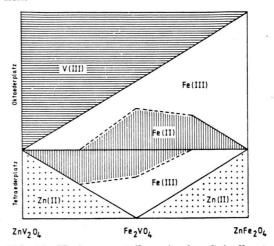


Abb. 10. Kationenverteilung in den Spinellsystemen $ZnV_2O_4-Fe_2VO_4$ und $ZnFeO_4-Fe_2VO_4$.

- [1] D. B. Rogers, R. J. Arnott, A. Wold und B. Goodenough, J. Phys. Chem. Solids 24, 347 (1963).
- [2] M. J. Rossiter, J. Phys. Chem. Solids 26, 775 (1965).
- [3] S. K. Banerjee, W. O'Reilly, T. C. Gibb und N. N. Greenwood, J. Phys. Chem. Solids 28, 1323 (1967).
- [4] J.-C. Bernier und P. Poix, Ann. Chim. 2, 81 (1967).
- [5] M. Wakihara, Y. Shimizu und T. Katsura, J. Solid State Chem. 3, 478 (1971).
- [6] M. Abe, M. Kawachi und S. Nomura, J. Solid State Chem. 10, 351 (1974).
- [7] E. Riedel, Dissertation, TU Berlin 1965.
- [8] B. N. Varskoi, A. N. Il'ina und N. V. Gogareva, Russ. J. Phys. Chem. 40, 447 (1966).
- [9] J. D. Lee und D. Schroeer, J. Phys. Chem. Solids 37, 739 (1967).
 [10] E. Riedel, T. Dützmann und N. Pfeil, I. Teil, Z. Naturforsch. 35 b, 1257 (1980).
- [11] P. Poix, Soc. Chim. 5, 1085 (1965).

- [12] R. D. Shannon und C. T. Prewitt, Acta Crystallogr. B 25, 925 (1969).
- E. Riedel, Habilitationsschrift, TU Berlin 1970.
- [14] B. Reuter und E. Riedel, Z. Anorg. Allg. Chem. 369, 306 (1969).
- N. Pfeil, Dissertation, TU Berlin 1978.
- [16] N. N. Greenwood, Angew. Chem. 83, 746 (1971).
- [17] E. Riedel und R. Karl, J. Solid State Chem., im Druck.
- [18] G. H. Jonker und S. van Houten, Halbleiterprobleme, S. 118, Band VI, Vieweg und Sohn, Braunschweig 1961.
- J. B. Goodenough, Mat. Res. Bull. 5, 621 (1970).
- [20] D. Arndt, Dissertation, TU Berlin 1972.
- [21] A. Günther, Dissertation, TU Berlin 1973.
 [22] J. Preudhomme und P. Tarte, Spectrochim. Acta 27 A, 1817 (1970).
- [23] W. Dahmcke, Dissertation, TU Berlin 1977. [24] J. Preudhomme, Ann. Chim. 9, 31 (1974).
- J. Preudhomme, Ann. Chim. 9, 31 (1974).
- [25] U. Geisler, Dissertation, TU Berlin 1974.