Zur Strukturchemie der Diperoxovanadate(V): Das μ -Hydroxo-bis[oxo-diperoxovanadat(V)]Anion

Studies on Diperoxovanadates: The μ -Hydroxo- bis [oxo-diperoxovanadate(V)] Anion

Karl Wieghardt und Udo Quilitzsch

Institut für Anorganische Chemie der Universität Hannover

Z. Naturforsch. 34b, 242-244 (1979); eingegangen am 27. September 1978

 μ -Hydroxo-bis[oxo-diperoxovanadate(V)], Diperoxovanadates(V)

Depending on the pH and the respective concentrations of solutions containing NH₄+/NH₃/H₂O₂/NH₄VO₃ three yellow ammonium salts can be isolated: (NH₄)₄[O(VO(O₂)₂)₂], NH₄[VO(O₂)₂NH₃]; and the novel (NH₄)₃[HV₂O₁₁] · 2 H₂O. A cesium and potassium salt of the latter anion have been prepared. The infrared spectra of these salts are interpreted assuming a μ -hydroxo-bis[oxo-diperoxovanadate(V)] structure in the solid state.

Über die Strukturchemie der gelben Diperoxovanadate im festen Zustand liegen nur wenige gesicherte Ergebnisse vor [1, 2]. So ist die Existenz des zweikernigen μ -Oxo-bis[oxo-diperoxovanadat(V)]-Anions durch eine Strukturanalyse des Ammoniumsalzes nachgewiesen [3]; das monomere $[VO(O_2)_2(NH_3)]$ --Anion ist ebenfalls als NH_4 -Salz röntgenographisch gesichert [4]. In der recht widersprüchlichen Literatur [2] werden eine ganze Reihe weiterer monomerer und dimerer Oxo-diperoxovanadate(V) beschrieben - jedoch ohne strukturchemische Charakterisierung. Insbesondere ein Salz der Zusammensetzung K₃HV₂O₁₁ wurde angegeben [5]; in Lösung ist darüber hinaus die Existenz eines $[HV_2O_{11}]^{3-}$ -Anions postuliert worden [6]. Wir berichten hier über die Darstellung einiger Salze dieses Anions, und über die Struktur auf der Basis spektroskopischer und analytischer Daten.

Ergebnisse und Diskussion

Aus gelben, stark ammoniakalischen Lösungen von NH₄VO₃ und H₂O₂ kann durch Zugabe von Ethanol das gelbe Salz (NH₄)[VO(O₂)₂(NH₃)] gefällt werden [4]. Das IR-Spektrum dieser Substanz ist in der Abbildung dargestellt (Tab.); es ist nicht in Übereinstimmung mit dem von Baran für dieses Salz angegebenen [7]. Der komplex gebundene NH₃-Ligand besitzt eine charakteristische, symmetrische NH₃-Deformationsschwingung bei 1238 cm⁻¹, sowie eine Bande, ρ(NH₃), bei 708 cm⁻¹, wie sie für komplex gebundene NH₃-Gruppen typisch sind [8, 9]

Sonderdruckanforderungen an Prof. Dr. K. Wieghardt, Institut für Anorganische Chemie der Universität Hannover, Callinstraße 9, *D-3000 Hannover 1*. 0340–5087/79/0200–0242/\$ 01.00/0

(im Spektrum des NH_4^+ -Ions fehlen diese Banden). Im analogen Komplex $[Cr(O_2)_2(NH_3)_3]$ werden diese Banden bei 1275 cm⁻¹ und 730 cm⁻¹ beobachtet [10].

Wäßrige Lösungen von NH₄[VO(O₂)₂(NH₃)] reagieren basisch [13]. Durch Zugabe von HCl (pH 6,8)

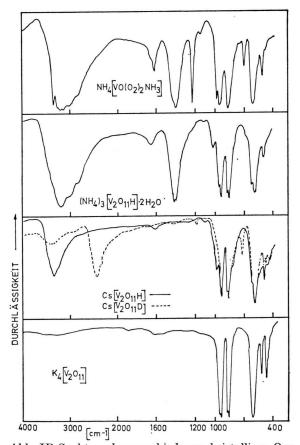


Abb. IR-Spektren der verschiedenen, kristallinen Oxodiperoxo-vanadate(V).

und Ethanol kann ein gelbes Salz gefällt werden, dessen Elementaranalyse die folgenden Atomverhältnisse ergibt: $V:N:(O_2)=2:3:4$. Das IR-Spektrum ist ebenfalls in der Abbildung dargestellt – es entspricht dem von Baran angegebenen Spektrum für $(NH_4)[VO(O_2)_2(NH_3)]$ [7]. Das Fehlen der Banden bei $1238 \, \mathrm{cm}^{-1}$ und $708 \, \mathrm{cm}^{-1}$ zeigt an, daß komplex gebundene NH_3 -Gruppen nicht mehr vorhanden sind. Der gesamte Stickstoff liegt in Form von NH_4 +-Ionen vor: $(NH_4)_3[HV_2O_{11}] \cdot 2 H_2O$. Wäßrige Lösungen dieses Salzes reagieren neutral. Es gelingt auch, das entsprechende Kalium- und Caesium-Salz darzustellen:

$$\begin{array}{l} K_3[HV_2O_{11}] \cdot 2 \; H_2O \; und \; Cs_3[HV_2O_{11}]. \\ 2 \; [VO(O_2)_2(NH_3)]^- \; + \; H_3O^+ \; \rightarrow \\ [HV_2O_{11}]^{3-} \; + \; 2 \; NH_4^+ \end{array}$$

Aus wäßrigen Lösungen des $[HV_2O_{11}]^{3-}$ -Ions kann bei höheren pH-Werten (Zugabe von KOH) das Salz $K_4[V_2O_{11}]$ synthetisiert werden, dessen IR-Spektrum (Abb.) in sehr guter Übereinstimmung mit dem von Griffith [11] berichteten ist. Umgekehrt kann aus Lösungen des $[V_2O_{11}]^{4-}$ -Ions durch Erniedrigung des pH-Wertes (6–7) das gelbe Salz $K_3[HV_2O_{11}] \cdot H_2O$ zurückgewonnen werden. In Lösung liegt also wahrscheinlich ein einfaches Prototysegleichgewicht vor (2):

$$[HV_2O_{11}]^{3-} \rightleftharpoons [V_2O_{11}]^{4-} + H^+$$
 (2)

Die Struktur des [HV₂O₁₁]³⁻ kann mit einiger Sicherheit aus dem IR-Spektrum bestimmt werden. Wenn man den Zuordnungsvorschlägen von Griffith und Wickens [11] für das [V₂O₁₁]⁴--Ion folgt, das als μ -Oxo-bis[oxo-diperoxovanadat(V)]-Anion im festen Zustand bestimmt worden ist [3], so muß das [HV₂O₁₁]³--Anion – wie auch das monomere $[VO(O_2)_2(NH_3)]$ --Anion – das Strukturelement Oxodiperoxovanadat(V) enthalten. Diese Einheit ist in allen IR-Spektren der hier untersuchten Salze (Abb.; Tab.) deutlich zu erkennen: $\nu(V=0) \sim 980 \text{ cm}^{-1}$, $\nu(O-O) \sim 870 \text{ cm}^{-1}$; $\nu_{as}(V-O_2) \sim 620 \text{ cm}^{-1}$; $\nu_{s}(V-O_2)$ ~510 cm⁻¹ (diese Banden sind häufig aufgespalten, weil die Diperoxo-Einheiten in den Dimeren Anionen nicht äquivalent sind). Im IR-Spektrum von Cs₃[HV₂O₁₁], das ohne koordinierten Aquo-liganden und ohne Kristallwasser auskristallisiert (es fehlt deshalb eine $\delta(\text{HOH})$ -Schwingung bei 1600 cm⁻¹), wird eine v(O-H)-Valenzschwingung bei 3320 cm⁻¹ beobachtet. Zusätzlich wird eine neue Bande bei $996~cm^{-1}$ beobachtet ($1045~cm^{-1}$ im K-Salz und $1028 \text{ cm}^{-1} \text{ im } (NH_4)_3[HV_2O_{11}] \cdot 2 \text{ H}_2O), \text{ die einer}$

Deformationsschwingung $\delta(V-O-V)$ einer Hydroxo-

brücke zugeordnet wird [12]. Diese Zuordnung wird durch das IR-Spektrum der deuterierten Verbindung, Cs₃[DV₂O₁₁], bestätigt: ν (O–D) 2460 cm⁻¹ und δ (V–O–V) 730 cm⁻¹; alle anderen Banden bleiben D

lagekonstant. Daraus ergibt sich folgender Strukturvorschlag für das $[HV_2O_{11}]^{3-}$ -Anion:

Experimentelles

 $(NH_4)[VO(O_2)_2(NH_3)]:5$ g NH₄VO₃ wurden in 30 ml 30% H₂O₂ gelöst (25 °C) und mit 30 ml konz. NH₃-Lösung versetzt. Zu dieser Lösung wurden 50 ml Ethanol gegeben. Nach 24 h bei 2 °C wurden hellgelbe Kristalle abfiltriert, mit Ethanol und Ether gewaschen und an der Luft getrocknet.

Analyse:

Ber. N 16,87 H 4,25 V 30,67 $(O_2)/2$ 38,55, Gef. N 16,5 H 4,3 V 30,5 $(O_2)/2$ 38,4.

 $(NH_4)_3[HV_2O_{11}]2H_2O$: a) 2,35 g NH₄VO₃ wurden in 10 ml konz. NH₃ und 80 ml H₂O in der Hitze gelöst. Zu der gekühlten Lösung (5 °C) wurden 10 ml 30% H₂O₂ und 30 ml Ethanol gegeben. Der pH-Wert dieser Lösung sollte zwischen 7 und 8 sein. Nach vier Tagen im Eisschrank wurden große, gelbe Kristalle abgesaugt, mit Ethanol und Ether gewaschen und an der Luft getrocknet.

b) 0.6 g $(\text{NH}_4)[\text{VO}(\text{O}_2)_2(\text{NH}_3)]$ wurden in 20 ml H_2O gelöst (pH=8.6). Durch Zugabe von HCl wurde der pH-Wert dieser Lösung auf 7 eingestellt. Mit Ethanol und Ether wurde ein gelbes Produkt in der Kälte gefällt.

Analyse:

Ber. NH_4 14,66 V 27,60 $(O_2)/2$ 34,68, Gef. NH_4 14,4 V 28,0 $(O_2)/2$ 34,6.

 $Cs_3[HV_2O_{11}]$: 0,9 g V_2O_5 wurden in 30 ml 30% H_2O_2 gelöst (rote Lösung). Zu dieser Lösung wurden bei 25 °C 20 ml einer 0,5 M Cs_2CO_3 -Lösung sowie 10 ml einer 1 M CsCl-Lösung gegeben, worauf die Farbe nach gelb umschlägt (pH ~7). Nach dreitägigem Stehen bei 0 °C wurden gelbe Kristalle abfiltriert (der pH-Wert war auf etwa 8,5 angestiegen), mit Ethanol und Ether gewaschen und 1 Tag über P_2O_5 im Vakuum getrocknet.

Analyse:

Ber. Cs 58,84 V 15,04 (O₂)/2 18,89, Gef. Cs 58,5 V 14,9 (O₂)/2 18,9.

Tabelle. IR-Spektren d	er Oxo-diperoxovanadate	(V) in cm ⁻¹	(KBr-Preßlinge).

Zuordnung	$\mathrm{NH_4[\mathrm{VO}_5(\mathrm{NH_3})]}$	$\rm (NH_4)_3[HV_2O_{11}] \cdot 2 \; H_2O$	$\rm K_{3}[HV_{2}O_{11}] \cdot 2 \; H_{2}O$	$\mathrm{Cs}_3[\mathrm{HV}_2\mathrm{O}_{11}]$	$\mathrm{Cs}_3[\mathrm{DV}_2\mathrm{O}_{11}]$
$\nu({ m N-H})$	3550 (vs) 3300 (vs, b)	3200 (vs) 3000 (sh)			
$\nu(\mathrm{O-H})$	0000 (12, 0)	occo (sii)	3400 (sh) 3200 (vs)	3320 (m)	2460 (m)
$\delta_{as}({\rm NH_3})$ bzw. $\delta({\rm H_2O})$ $\delta_d({\rm NH_4^+})$	1625 (m) 1400 (vs)	1670 (w, b) 1405 (vs)	1630 (w, b)		
$\frac{\delta_{s}(NH_{3})}{\delta(VOV)}$	1238 (s)	1028 (w)	1045 (w)	996 (m)	730 (w)
$_{ ho(\mathrm{NH_3})}^{\mathrm{H}}$	708 (w)		680 (w, b)*	()	()
$\nu(V=O)$	990 (s) 960 (vs)	968 (vs) 950 (vs)	968 (vs) 940 (vs)	968 (vs) 940 (vs)	966 (vs) 950 (vs)
$\nu({ m O-O})$	870 (vs)	880 (vs) 868 (vs)	880 (vs) 862 (vs)	886 (vs) 870 (vs)	890 (vs) 871 (vs)
$\nu_{as}(V(O_2))$	620 (vs)	632 (vs) 600 (vs)	630 (vs) 605 (vs)	630 (sh) 608 (vs)	605 (vs)
$\nu_s(V(O_2))$	521 (m)	510 (m)	510 (m)	505 (w)	510 (w)

Librationsschwingung des Kristallwassers (?).

Die deuterierte Verbindung wurde durch Lösen von 2.5 g Cs₃[HV₂O₁₁] und 0.5 g Cs₂CO₃ bei 50 °C in 25 ml D2O und anschließendem Abkühlen dargestellt

 $K_3 \lceil HV_2O_{11} \rceil \cdot 2 H_2O$: a) 0,9 g V₂O₅ wurden in 30 ml 30% H₂O₂ und 30 ml H₂O gelöst (rote Lösung). Zu dieser Lösung wurden 20 ml 1 M KOH gegeben (pH = 6, gelbe Lösung). Nach zwei Tagen bei 2 °C wurden gelbe Kristalle abgesaugt, mit Ethanol und Ether gewaschen und an der Luft getrocknet. Die Kristallwasser-freie Form des Salzes $kann durch Trocknung "uber P_2O_5" dargestellt werden.$

b) 1,8 g $\rm V_2O_5$ und 4,5 g KOH wurden in 60 ml $\rm H_2O$ gelöst. In der Kälte (5 °C) wurden 10 ml $\rm 30\%$ H_2O_2 zugesetzt (pH ~12.5). Anschließend wurde tropfenweise Eisessig zugegeben bis der pH-Wert der Lösung 6,5 erreichte. Ein gelber Niederschlag fiel aus, der nach einem Tag bei 2 °C abfiltriert wurde.

Analyse:

Ber. K 27,14 V 23,57
$$(O_2)/2$$
 29,61, Gef. K 26,7 V 23,7 $(O_2)/2$ 29,6.

Die IR-Spektren wurden im Bereich 400 bis 4000 cm⁻¹ an KBr-Tabletten vermessen.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Arbeit.

^[1] J. A. Connor und E. A. V. Ebsworth, Adv. Inorg. Chem. Radiochem. 6, 295 (1964).

Gmelin-Handbuch der Chemie: Vanadium, Teil B Lieferung 2, Verlag Chemie, Weinheim 1967.

^[3] I. G. Svensson und R. Stomberg, Acta Chem. Scand. 25, 898 (1971).

^[4] R. E. Drew und F. W. B. Einstein, Inorg. Chem. 11, 1079 (1972).

^[5] J. Beltran Martinez, Anales Real Soc. Espan. Fis. Quim. (Madrid) B 39, 515 (1943).

F. Chauveau, Bull. Soc. Chim. Fr. 1960, 819.

^[7] E. J. Baran, Monatsh. Chem. 108, 989 (1977).
[8] H. Siebert, Anwendungen der Schwingungs-

spektroskopie in der Anorganischen Chemie S. 144,

Springer-Verlag, Berlin-Heidelberg-New York

^[9] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, S. 199, 3. Aufl., J. Wiley & Sons, New York 1978.

 ^[10] E. J. Baran, Monatsh. Chem. 108, 1295 (1977).
 [11] W. P. Griffith und T. D. Wickins, J. Chem. Soc. A

^{1968, 400.}

J. R. Ferraro und W. R. Walker, Inorg. Chem. 4, 1382 (1965).

^[13] Bei dem von Baran [7] als Tl[VO(O₂)₂(NH₃)] bezeichneten Salz (es werden keine Analysendaten angegeben) handelt es sich wahrscheinlich um $Tl_3[HV_2O_{11}].$