NOTIZEN

Zur Besetzung von Oktaederund Tetraederpositionen in Bi₂Ga₂Fe₂O₉

About Occupation of Octahedral- and Tetrahedral Positions of Bi₂Ga₂Fe₂O₉

Hk. Müller-Buschbaum und D. Chales de Beaulieu Institut für Anorganische Chemie der Christian-Albrechts-Universität Kiel

Z. Naturforsch. 33b, 669-670 (1978); eingegangen am 17. März 1978

Crystal Structure, Metal Distribution

Single crystals of $Bi_2Ga_4O_9$ and $Bi_2Ga_2Fe_2O_9$ were prepared by CO_2 -Laser technique and analysed by X-ray single crystal methods. $Bi_2Ga_4O_9$ is one of the rare examples containing Ga^3+ in octahedral as well as tetrahedral surrounding of oxygen. In $Bi_2Ga_2Fe_2O_9$ the coordination of oxygen atoms around Ga^3+ is exclusively tetrahedral. Thus this compound represents positive evidence of the preferential occupation of tetrahedral holes by gallium.

Einleitung

Nach früheren Erfahrungen an ternären Oxogallaten [1-4] ist Ga³⁺ stets tetraedrisch koordiniert. Es gibt nur wenige Beispiele, die Ga³⁺-Ionen auch in oktaedrischer Umgebung aufweisen [5-7]. An einer Verbindung vom Brownmillerittyp (Ca₂Fe₂O₅) konnte bisher zum ersten Male nachgewiesen werden, daß die in gleicher Anzahl vorhandenen Oktaeder- und Tetraederpositionen bei der Verbindungsbildung von Ca₂GaFeO₅ [8] durch die Ga³⁺-Ionen geordnet besetzt werden, indem Ga³⁺ ausschließlich die Tetraederlücken einnimmt. Der Bi₂Al₄O₉-Bautyp [9] besitzt ebenfalls die seltene Konstellation, daß Oktaeder- und Tetraederlücken in gleicher Menge vorhanden sind. Die Bildung einer Verbindung des gleichen Bautyps und der Zusammensetzung Bi₂Ga₂Fe₂O₉ ist somit ein gutes Beispiel, um die beobachtete bevorzugte Besetzung von Tetraederlücken durch Ga3+-Ionen zu studieren.

Sonderdruckanforderungen an Prof. Dr. Hk. Müller-Buschbaum, Institut für Anorganische Chemie der Universität Olshausenstraße 40/60 D-2300 Kiel.

Darstellung und Untersuchung von Bi₂Ga₄O₉ und Bi₂Ga₂Fe₂O₉

Um eine tiegelfreie Reaktion von Bi₂O₃ mit Ga₂O₃ bzw. Ga₂O₃/Fe₂O₃ zu erreichen, wurden Preßlinge aus den vorgesinterten Oxidgemischen mit einem CO₂-Hochleistungslaser (Siemens LG 1062) von der Oberfläche her mit relativ großem Brennfleckdurchmesser aufgeschmolzen. Es verbleibt stets ein Rest an unumgesetzten Oxidgemisch, der als Träger für die erschmolzene Oberflächenschicht dient. Die auf etwa 1000 °C erhitzten Proben enthalten nach dem Abkühlen in der durchreagierten Schicht röntgenographisch einwandfreie Einkristalle von Bi₂Ga₄O₉ bzw. Bi₂Ga₂Fe₂O₉. Die schon dargestellte und mit einem unbefriedigenden Gütefaktor beschriebene Verbindung Bi₂Ga₄O₉ [7] wird hier mit Einkristalldiffraktometerdaten erneut untersucht, so daß die Atomparameter einer einheitlich zusammengesetzten Verbindung mit solchen bei geordneter und statistischer Verteilung von Ga³⁺ und Fe³⁺ verglichen werden können.

Weißenberg-, Precession- und Vierkreisdiffraktometerdaten (Philips PW 1100) ergeben die Gitterkonstanten:

Bi₂Ga₄O₉: a=793,4; b=830,1; c=590,3 pm; Bi₂Ga₂Fe₂O₉: a=795,9; b=843,1; c=598,6 pm. und führen mit den systematisch beobachtbaren Reflexen zur charakteristischen Raumgruppe D₈.-Pham.

D_{2h}-Pbam.
Die Verfeinerung der Atomparameter in der Elementarzelle (Methode der kleinsten Fehlerquadrate) erfolgte an 690 bzw. 358 (Bi₂Ga₂Fe₂O₉) symmetrieunabhängigen Werten und ist in Tab. I zusammengestellt.

Tab. I. Parameter für $Bi_2Ga_2Fe_2O_9$. Daten für $Bi_2Ga_4O_9$ in Klammern. In der Raumgruppe D^9_{2h} -Pbam besetzen die Atome folgende Positionen.

	$\begin{array}{c} \mathbf{Punkt-}\\ \mathbf{lage} \end{array}$	\boldsymbol{x}	y	z
Bi	(4g)	0,174(0,174)	0,326(0,329)	0,000(0,000)
\mathbf{Fe}	(4e)	0,000(0,000)	0,000(0,000)	0,256(0,259)
Ga	(4h)	0,357(0,352)	0,161(0,163)	0,500(0,500)
O_{I}	(4g)	0,152(0,144)	0,084(0,073)	0,000(0,000)
O_{II}	(4h)	0,137(0 131)	0 102(0,095)	0,500(0,500)
OIII	(8i)	0,380(0,370)	0,302(0,292)	0,247(0,245)
O_{IV}	(2d)	0,000(0,000)	0,500(0,500)	0,500(0,500)

(Punktlagen 4e und 4h sind für ${\rm Bi_2Ga_4O_9}$ nur mit ${\rm Ga^{3+}}$ besetzt.)

Der Gütefaktor über alle Werte hkl beträgt ohne weitere Korrekturen R = 0.10 für beide Substanzen. Auf eine Wiedergabe der Strukturfaktoren und Abstände wird hier verzichtet, sie können an anderer

Stelle [10] eingesehen werden.

Bi₂Ga₄O₉ Kristallisiert im Strukturtyp von Bi₂Al₄O₉, so daß diese Verbindung einer der seltenen Fälle ist, wo Ga3+ in partiell oktaedrischer Sauerstoffkoordination vorliegt. Tab. I zeigt, daß die Tetraederposition (4h) und die Oktaederposition (4e) geordnet durch Ga³⁺ und Fe³⁺ besetzt werden. Eine inverse oder statistische Verteilung von Ga³⁺ und Fe³⁺ auf Oktaeder- und Tetraederplätze kann anhand isotrop verfeinerter Temperaturfaktoren ausgeschlossen werden.

Die Einkristalldaten zeigen, daß die bisher nur einmal bewiesene bevorzugte Besetzung von Tetraederplätzen durch Ga³⁺ keine zufällige sondern für Ga3+ in Oxoverbindungen charakteristische Erscheinung ist. Ein höherer Gehalt an Ga3+, wie er zum Beispiel in der Verbindung Bi₂Ga₃FeO₉ vorliegt, erzwingt dann eine Mitbesetzung der Oktaederlücken durch Ga³⁺. Dies ist am Ca₂Fe₂O₅-Bautyp nicht realisiert worden, da im Gegensatz zu Bi₂Ga₄O₉ ein reines Oxogallat der Formel Ca₂Ga₂O₅ bisher nicht darstellbar war.

Der Deutschen Forschungsgemeinschaft danken wir für die wertvolle Unterstützung mit Sachmitteln.

^[1] H. J. Deiseroth u. Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 382, 149 (1971).

^[2] H. J. Deiseroth u. Hk. Müller-Buschbaum, Z.

Anorg. Allg. Chem. 396, 157 (1973).
[3] H. J. Deiseroth u. Hk. Müller-Buschbaum, J. In-

org. Nucl. Chem. 35, 3177 (1973).
[4] H. J. Deiseroth u. Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 402, 201 (1973).

^[5] Hk. Müller-Buschbaum u. H.-R. Freund, Z. Naturforsch. 29b, 590 (1974).

^{6]} S. Geller, J. Chem. Phys. 33, 676 (1960).

A. G. Tutov u. V. N. Markin, Izvest. Akad. Nauk SSR, Neorg. Mater. 6, 2014 (1970).

^[8] R. Arpe, R. v. Schenck u. Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 410, 97 (1974)

R. Arpe u. Hk. Müller-Buschbaum, J. Inorg. Nucl. Chem. 39, 233 (1977).

^[10] D. Chales de Beaulieu, Diplomarbeit, Kiel 1978.