1100 Notizen

Darstellung und Kristalldaten der isomorphen Kupferthio(seleno)phosphate Cu₇PS₆ und Cu₇PSe₆

Preparation and Crystal Data of the Isomorphous Copperthio(seleno)phosphates Cu₇PS₆ and Cu₇PSe₆

W. F. Kuhs, M. Schulte-Kellinghaus. V. Krämer und R. Nitsche

Kristallographisches Institut der Universität Freiburg

(Z. Naturforsch. 32b. 1100-1101 [1977]; eingegangen am 20. Juni 1977)

Copper Phosphorus Chalcogenides, Preparation, Crystal Data

The title compounds were prepared by annealing the elements in stoichiometric proportions at 720 °C as well as by thermal decomposition of Cu₃PS₄ or Cu₃PSe₄. They crystallize in the space group P213 with lattice parameters a = 9.671(1) and 10.116(1) Å resp.; X-ray powder diffraction data are listed.

Bei der Untersuchung des Systems Kupfer-Phosphor-Schwefel (Selen) wurde neben dem bekannten Kupferthio(seleno)phosphat Cu₃PS₄ (Cu₃PSe₄) die Bildung der neuen Verbindungen Cu₇PS₆ (Cu₇PSe₆) beobachtet. Die Präparation dieser beiden neuen Verbindungen erfolgte durch Sintersynthesen. In evakuierten Quarzglasampullen (Länge 15 cm, Durchmesser 15 mm) wurden die in stöchiometrischen Mengen eingewogenen Elemente innerhalb 1 Woche auf 720 °C erhitzt und anschließend zwei Tage bei dieser Temperatur getempert. Das gesinterte Reaktionsprodukt war röntgenographisch einphasig und enthielt auf der Oberfläche bis zu 1 mm³ große dunkelrot bzw. schwarz glänzende Ein-Kristalle.

Die beiden neuen Verbindungen treten auch beider Zersetzung von Cu₃PS₄ bzw. Cu₃PSe₄ in Stickstoffatmosphäre auf der Thermowaage als Zwischenprodukte auf¹. Durch Tempern von Cu₃PS₄ (Cu₃PSe₄) bei 575 °C (520 °C) bis zur annähernden Gewichtskonstanz konnte die Bildung von Cu₇PS₆ (Cu₇PSe₆) thermogravimetrisch nachgewiesen werden. Die Zersetzung verläuft jedoch nicht quantitativ, da der Abbau zu Cu₂S (Cu₂Se) ab 570 °C (480 °C) bereits merklich einsetzt.

Versuche, Kristalle dieser Verbindungen durch Halogentransport über die Gasphase zu züchten,

Sonderdruckanforderungen an Dr. Volker Krämer, Kristallographisches Institut der Universität, Hebelstr. 25, D-7800 Freiburg i.Br.

¹ M. Schulte-Kellinghaus und V. Krämer, Ther-

mochim. Acta, in Vorbereitung.

² W. F. Kuhs, R. Nitsche und K. Scheunemann, Mat. Res. Bull. 11, 115 [1976].

³ W. F. Kuhs und R. Nitsche, Acta Crystallogr. B, in Vorbereitung.

schlugen fehl, da sich hierbei thermisch stabile kubische Kupfer-Phosphor-Chalkogenid-Halogenide der Zusammensetzung Cu₆PX₅Hal (X: S, Se; Hal:

Cl. Br. I) bildeten 2.

Cu₇PS₆ und Cu₇PSe₆ sind isomorph und bilden eine lückenlose Mischkristallreihe. Ihre Schmelzpunkte liegen im geschlossenen System bei 1045 °C (780 °C). Sie kristallisieren kubisch; es sind die Formen {111}, {110}, {100} und {311} ausgebildet. Häufig tritt Verzwilligung nach (110) auf. Aus Einkristallaufnahmen erhält man die Lauegruppe m3. Aus der Kristallmorphologie (tetraedrische Einkristalle) und der systematischen Auslöschung h00 mit $h \neq 2 n$, konnte eindeutig die Raumgruppe P2₁3 bestimmt werden.

Die Pulverdaten beider Verbindungen enthält Tab. I. Die Reflexe wurden mit einer Guinier-de-Wolff-Kamera (Enraf-Nonius) und Cu-Ka-Strahlung (λ =1,5418 Å) unter Verwendung von kubischem As₂O₃ (a=11,0810 Å) als innerem Standard aufgenommen. Die Intensitäten wurden mit einem Pulverdiffraktometer (Philips) bestimmt. Mit Hilfe eines Rechenprogramms, basierend auf der Methode der kleinsten Fehlerquadrate, wurden die Reflexe indiziert und die Gitterkonstanten verfeinert (s. Tab. II).

Tab. II. Kristalldaten.

	$\text{Cu}_7 \text{PS}_6$		$\mathrm{Cu_7PSe_6}$	
\overline{a}	=	9,673(1)	10,116(1)	Å
\mathbf{V}	=	905,2(3)	1035,1(4)	$^{ m A}_{ m \AA3}$
Z	==	4	4	
$\mathbf{D}x$	=	4,87	6,09	$\mathrm{g}\cdot\mathrm{cm}^{-3}$
D_{pykn} .	==	4,8	5,9	$g \cdot cm^{-3}$

Bei 235 °C (Cu₇PS₆) und 52 °C (Cu₇PSe₆) erfolgt eine reversible Phasenumwandlung in eine Hochtemperaturmodifikation. Durch Hochtemperatur-Guinieraufnahmen wurde ein kubisches F-Gitter mit den Gitterkonstanten a = 9.71(2) (Cu₇PS₆) und

10,15(2) Å (Cu₇PSe₆) nachgewiesen.

Die Strukturbestimmung von Cu₇PS₆ ist abgeschlossen³. Cu₇PS₆ und Cu₇PSe₆ gehören, ebenso die isotypen Silberverbindungen Ag7PS6, Ag₇AsS₆, Ag₇PSe₆ und Ag₇AsSe₆ einem neuen Strukturtyp mit ikosaedrisch gepackten Anionen an. Verbindungen mit Ikosaederstruktur^{2,4,5} sind – wie erste Leitfähigkeitsmessungen und Strukturbestimmung an Cu₆PS₅Br gezeigt haben⁶ – als potentielle Ionenleiter mit hoher Cu(Ag)-Ionenleitfähigkeit zu betrachten.

Das Rechenzentrum der Universität stellte Rechenzeit zur Verfügung. Der Deutschen Forschungsgemeinschaft sei für die Bereitstellung von Sachbeihilfen gedankt.

⁴ A. Bubenzer, R. Nitsche und E. Grieshaber, Acta Crystallogr. B 32, 2825 [1976].

⁵ E. Grieshaber, R. Nitsche und A. Bubenzer,

Mat. Res. Bull. 11, 1169 [1976]

⁶ W. F. Kuhs, R. Nitsche und K. Scheunemann, Acta Crystallogr. B, in Vorbereitung.

Notizen 1101

Tab. I. Röntgenpulverdaten.

		$\mathrm{Cu}_{7}\mathrm{PS}_{6}$				$\mathrm{Cu_7PSe_6}$		
h k l		$d_{ m beob}$	$d_{\mathtt{ber}}$	I/I_1	d_{beob}	$\mathrm{d}_{\mathtt{ber}}$	I/I_1	
I 1 1		5,588	5,585	18	5,830	5,839	3	
2 2 0		,			3,578	3,576	$\begin{matrix} 3\\8\\5\\2\end{matrix}$	
2 2 1		3,226	3,224	24	3,369	3,371	5	
3 I 0		3,058	3,059	9	3,199	3,198	2	
3 1 1		2,916	2,917	6	3,048	3,049	50	
2 2 2		2,794	2,792	100	2,921	2,919	100	
3 2 0		2,683	2,683	20	2,804	2,805	9	
3 2 1		2,587	2,585	31	2,702	2,703	15	
3 3 0,	4 1 1	2,280	2,280	25	2,384	2,384	8 5 2 6 6	
3 3 1		2,219	2,219	2 7	2,319	2,320	5	
4 2 0		2,163	2,163	7	2,262	2,262	2	
4 2 1		2,111	2,111	13	2,206	$^{-}2,207$	6	
3 3 2		2,063	2,062	9	2,155	2,156	6	
4 2 2		1,9741	1,9746	12	2,064	2,064	28	
4 3 0		1,9348	1,9347	4	2,022	2,023	$\begin{array}{c} 28 \\ 3 \\ 5 \end{array}$	
4 3 1,	5 I O	1,8964	1,8971	10	1,9825	1,9834	5	
3 3 3,	5 1 1	1,8615	1,8616	28	1,9464	1,9464	58 4 2	
4 3 2,	5 2 0	1,7953	1,7963	5	1,8776	1,8780	4	
5 2 1	5 2 5	1,7652	1,7661	5 7	1,8466	1,8465	2	
4 4 0		1,7099	1,7100		1,7884	1,7878	56	
4 4 1,	5 2 2	1,6841	1,6839	3	1,7606	1,7605	2	
4 3 3,	5 3 0	1,6588	1,6590	5	1,7352	1,7345	56 2 5	
5 3 1		1,6347	1,6351	8	1,7091	1,7095	10	
4 4 2,	6 0 0	1,6119	1,6122	42 3 5 8 2 2	1,6862	1,6856	3	
$5 \ 3 \ 2,$	6 1 1	1,5688	1,5692	$\overline{2}$	-,	,		
6 2 0	0 1 1	1,0000	2.,0002	_	1,5998	1,5991	5	
4 4 3,	5 4 0, 6 2 1	1,5108	1,5107	4	,	,		
5 4 1	0 1 0, 0 2 1	1,4931	1,4926	ī				
5 3 3		1,4750	1,4752	1	1,5422	1,5423	8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1,4586	1,4583	8	1,5240	1,5247	16	
$5\ 4\ 2,$	6 3 0	1,4420	1,4420	1	-,			
6 3 1	0 0 0	1,4262	1,4263	5	1,4914	1,4912	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1,3821	1,3819	1	-,	,		
5 4 3,	5 5 0, 7 1 0	1,3675	1,3680	$\hat{2}$			17	
5 + 5, 5 + 5, 5 + 5, 5 + 5, 5 + 1,	7 1 1	1,3544	1,3545	ī	1,4167	1,4162	$\frac{1}{4}$	
$5 \ 5 \ 2,$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3163	1,3164	3	R	-,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 5 5, 7 2 1	1,0100	1,0101	Ü	1,3517	1,3515	4	
$5\ 5\ 3,$	7 3 1				1,3167	1,3167	$1\overline{5}$	
8 0 0	7 0 1				1,2640	1,2642	4	
660,	8 9 9				1,1921	1,1919	$\tilde{4}$	
$5 \ 5 \ 5,$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1,1679	1,1678	11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 9 1				1,1602	1,1601	6	
	9 1 1				1,1103	1,1101	15	
$ 7 5 3, \\ 9 3 1 $	<i>0</i> 1 1				1,0601		§ 5	
9 9 1					1,0321	1,0322	10	