Notizen 1095

Darstellung eines 1-Aza-3.4-dioxa-2.5-diborolidins

Preparation of an 1-Aza-3,4-dioxa-2,5-diborolidin

K. Barlos, D. Nölle und H. Nöth Institut für Anorganische Chemie der Universität München

(Z. Naturforsch. 32b, 1095-1096 [1977]; eingegangen am 27. Juni 1977)

Azadioxadiborolidin, Bis(trimethylsilyl)peroxide, PE Spectra, NMR

Bis(trimethylsilyl)peroxide was used as a reagent to prepare a novel ring system, 1-aza-3,4-dioxa-2,5-diborolidin by reaction with an appropriate diborylamine. No ring systems containing the peroxo group were obtained when oxidation predominates as shown for BBr₃ and CH₃BBr₂.

Ringsysteme mit einer Peroxo-Gruppierung spielen in Form der Ozonide (Trioxolane) zur Festlegung der Doppelbindung in ungesättigten Kohlenwasserstoffen eine große Rolle¹. Darüber hinaus diskutiert man sie als instabile Zwischenstufen bei Chemolumineszenzreaktionen mit Sauerstoff als Oxidans². Auch dienen sie als energiereiche Heterocyclen³ zur Erzeugung elektronisch angeregter Produktmoleküle⁴

Im Gegensatz zu zahlreichen "organischen" Heterocyclen des genannten Typs kennt man nur wenige "anorganische" Vertreter⁵, im Bereich molekularer Bor-Verbindungen nur bei beiden Trioxadiborolane $1\,a^6$ und $1\,b^7$. Sie entstehen bei der kontrollierten Sauerstoffoxidation von B_2H_6 bzw. $(CH_3)_4B_2H_2$ 7. Dabei ist $1\,b$ deutlich stabiler als $1\,a$.

Über gezielte Synthesen von anorganischen 1.2-Dioxaheterocyclen wurde unseres Wissens bisher nicht berichtet. Sie sind jedoch über das gefahrlos handhabbare Bis(trimethylsilyl)peroxid 2⁸ zumindest im Bereich der Borchemie möglich. So reagiert 2 gemäß (1) mit dem Diborylamin (3)⁹ in guten Ausbeuten zu dem 1-Aza-3.4-dioxa-2.5-diborolidin (4), einer öligen Flüssigkeit. Diese ist thermisch bei 130 °C mindestens zwei Stunden stabil und kann bei Raumtemperatur unzersetzt monatelang gelagert werden.

Im Gegensatz zur Reaktion (1) führt die Einwirkung von 2 auf BBr₃ oder CH₃BBr₂ nicht zu den

Sonderdruckanforderungen an Prof. Dr. H. Nöтн, Institut für Anorganische Chemie der Universität, Meiserstr., D-8000 München 2.

$$R_3Si=0=0$$
- $SiR_3 + R_3SiN(BRBr)_2$ + 2 R_3SiBr (1)

2 3 $R = CH_3$

entsprechenden Tetraoxadiboranen, XB(O-O)₂BX, bzw. Trioxadiborolanen 1 (R = Br, CH₃). Es wird Brom frei, d.h. die Oxidationswirkung von 2 dominiert und determiniert die Reaktionsrichtung.

Zum NMR-spektroskopischen Vergleich mit 4 bieten sich 1b⁷ und das Diborylamin 5⁹ an:

Da das Trioxadiborolan 1a planar ist 11 darf man auch für 4 eine planare Ringstruktur erwarten. Aus der identischen Abschirmung der Borkerne in 4 und 5 schließen wir, daß in 5 die Gerüstatome nicht mehr planar angeordnet sind und eine stärkere $\mathrm{BO}\text{-}\pi\text{-}\mathrm{Bindung}$ als in 4 vorliegt. In Übereinstimmung damit steht die bessere Abschirmung der $\mathrm{CH_3B}$ - und $\mathrm{(CH_3)_3Si}$ -Protonen.

Das He(I)-Photoelektronenspektrum von 4 zeigt die Abb. 1. Die mit 1–6 bezeichneten Banden entsprechen Ionisierungsenergien von 10,21, 10,65, 11,65, 12,23, 13,07, 13,54 und 16,78 eV. Von diesen können die beiden ersten Banden Ionisierungen aus dem $a_2(\pi)$ - bzw. dem $b_1(\pi)$ -Orbital des Fünfrings zugeordnet werden, wobei die Koeffizientenbeiträge des Sauerstoffs zum $a_2(\pi)$ -Orbital groß, zum $b_1(\pi)$ -Orbital kleiner sind, zu diesem aber der Stickstoff einen erheblichen Beitrag liefert. Nach Berechnungen von J. Kroner¹² ist die 1. PE-Bande einer

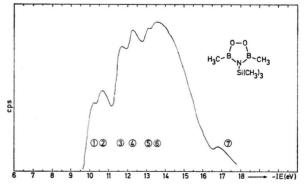


Abb. 1. He(I)-Photoelektronenspektrum des 1-Aza-3.4-dioxa-2.5-diborolidins (4).

1096 Notizen

Ionisierung aus dem $b_1(\pi)$ -Orbital zuzuschreiben, d.h. die bei $B_2X_{3-n}Y_n$ -Fünfringen (X=RN, S; Y 3 RN, S) gefundene Orbitalsequenz für die beiden energiereichsten π -Orbitale kehrt sich um 13 . Verglichen mit Pentamethyltriazadiborolidin 13 bewirkt der Austausch der CH_3NNCH_3 -Gruppierung gegen die Peroxid-Gruppe eine beträchtliche Stabilisierung des $b_1(\pi)$ -Orbitals.

Experimentelles

1-Trimethylsilyl-2.5-dimethyl-1-aza-3.4-dioxa-2.5-diborolidin (4)

5,0 ml (CH₃)₃Si-O-O-Si(CH₃)₃ ⁸ wurden in 10 ml CH₂Cl₂ gelöst und auf —78 °C abgekühlt. Unter

- ¹ R. L. Augustin (Herausg.) in: Oxidation Techniques and Applications in Organic Synthesis 1, 259 [1969]; L. Long, Chem. Rev. 27, 437 [1940]; J. Sutherland, Chem. Ind. London 1961, 1607
- ² K. D. Gundermann, Topics Current Chem. 46, 61 [1974].
- ³ P. LECHTKEN, Z. Naturforsch. 31b, 1436 [1976].
- ⁴ P. LECHTKEN und G. HÖHNE, Angew. Chem. **85**, 822 [1973]; Angew. Chem. Int. Ed. Engl. **12**, 772 [1973];
 T. WILSON und A. P. SCHAAP, J. Am. Chem. Soc. **93**, 4126 [1971].
- ⁵ I. Haiduc, The Chemistry of Inorganic Ring Systems, John Wiley Interscience, New York 1970.
- ⁶ S. H. BAUER und S. WIBERLEY, Adv. Chem. Ser. 32,

Rühren beiLuft- und Feuchtigkeitsausschluß tropfte man langsam 6.6 g $(CH_3)_3SiN[B(CH_3)Br]_2$ in 10 ml CH_2Cl_2 hinzu. Danach entfernte man das Kühlbad und ließ auftauen. Nach 15 min Rühren bei Raumtemperatur wurde 2 h unter Rückfluß gekocht. Gemäß 1H –NMR-Spektrum war danach die Umsetzung beendet. Nach Verjagen von CH_2Cl_2 und $(CH_3)_3SiBr$ i. Vak. destillierten beim Sdp. 74 °C/16 Torr 3.0 g (76%) 4, das sich i. Hochvak. leicht umkondensieren läßt.

 $C_5H_{15}B_2NO_2Si$ (170,9)

Ber. C 35,14 H 8,85 N 8,20, Gef. C 35,20 H 8,74 N 8,10.

115 [1961]; J. F. DITTER und I. SHAPIRO, J. Am. Chem. Soc. 81, 1022 [1959].

⁷ L. Barton und J. M. Gramp, Inorg. Chem. **12**, 2252 [1973].

8 P. G. COOKSON, A. G. DAVIES und N. FAZAL, J. Organomet. Chem. 99, C 31 [1975].

⁹ K. Barlos, H. Christl und H. Nöth, Liebigs Ann. Chem. 1976, 2272.

Standards: BF₃ · O(C₂H₅)₂ extern; NaNO₃ in H₂O extern; TMS, intern. Positives Vorzeichen: Signal bei niedrigerem Feld im Vergleich zum Standard.

¹¹ W. V. F. BROOKS, C. C. CONSTAIN und R. F. PORTER, J. Chem. Phys. 47, 4186 [1967].

12 J. Kroner, Privatmitteilung.

¹³ J. KRONER, D. NÖLLE, H. NÖTH und W. WINTERSTEIN, Chem. Ber. 108, 3807 [1975].