Tetraquecksilbermethane

Tetrakis(methylthioquecksilber)-methan $C(HgSCH_3)_4$ und μ -Dithiotetraquecksilbermethan CHg_4S_2 ; Synthesen und Schwingungsspektren

Tetramercurimethanes

Tetrakis(methylthiomercuri)methane $C(HgSCH_3)_4$ and μ -Dithiotetramercurimethane CHg_4S_2 ; Syntheses and Vibrational Spectra

DIETRICH BREITINGER und WILFRED MORELL

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg

(Z. Naturforsch. 32b, 1022-1025 [1977]; eingegangen am 16. Mai 1977)

Tetramercurimethanes, Peripheral Substitution, Metallo Complexes, Vibrational Spectra

Reactions of tetrakis(acetoxymercuri)methanes $C(HgOOCCR_3)_4$ (R=H, or F) in aqueous solutions with methylsulfane CH_3SH , or sulfane H_2S , yield tetrakis(methylthiomercuri)methane $C(HgSCH_3)_4$, and μ -dithiotetramercurimethane CHg_4S_2 , respectively, both insoluble in common solvents and thermally remarkably stable. The central CHg_4 groups of the starting materials have been preserved under the reaction conditions, thus tetrahedral entities $C(HgS-)_4$ are common to both compounds. In the polymeric, amorphous CHg_4S_2 the CHg_4 units are linked by sulfur bridges in a highly disordered manner, as is suggested by vibrational spectra. In other respects close similarities in the vibrational behaviour of these CHg_4 fragments and of the isosteric NHg_4 tetrahedra in tetramercurioammonium complexes have been observed.

1. Einführung

Wegen der Isosteriebeziehungen zu den zentralen, tetraedrischen Baugruppen PnHg₄ in Metallo-Komplex-Kationen des Typs [Pn(HgCH₃)₄]+ (Pn = N, P, As)1-4 befassen wir uns seit einiger Zeit mit den Bindungseigenschaften der Einheit CHg4 in Derivaten des vierfach mercurierten Methans 5,6. Einige wenige Vertreter dieser Tetrametallomethane sind von D. S. Matteson et al.7 und auf anderem Wege von D. Grdenić et al. 8 dargestellt worden. Verbindungen C(HgOOCCH₃)₄ C(HgOOCCF₃)₄ ist durch Röntgen-Strukturanalysen zweifelsfrei gesichert, daß Abkömmlinge des Tetraquecksilbermethans vorliegen 8. Durch doppelte Umsetzungen des Acetats bzw. Trifluoracetats mit Donatoren X- (Halogenide und Pseudohalogenide) kommt man unter Erhalt der offenbar sehr stabilen. tetraedrischen Einheit CHg₄ zu Verbindungen

Sonderdruckanforderungen an Prof. Dr. D. Breitinger, Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstr. 1, *D-8520 Erlangen*.

C(HgX)₄, wie schwingungsspektrometrisch nachgewiesen werden kann^{5,9}. Die Donatoren Methylsulfan CH₃SH und Sulfan H₂S liefern nach Deprotonierung die entsprechenden Verbindungen Tetrakis(methylthioquecksilber)methan C(HgSCH₃)₄ und μ-Dithiotetraquecksilbermethan CHg₄S₂, über die wegen einiger Besonderheiten hier getrennt berichtet wird.

2. Experimentelles

Darstellung der Verbindungen: Man leitet in eine Lösung von typisch 0,24 mmol (0,25 g) Tetrakis- (acetoxyquecksilber)methan $C(HgOOCCH_3)_4$ oder der gleichen Menge (0,30 g) Tetrakis(trifluoracetoxyquecksilber)methan $C(HgOOCCF_3)_4$ (dargestellt nach 8) in 1 N Essigsäure CH_3SH bzw. H_2S ein, bis sich der Niederschlag von $C(HgSCH_3)_4$ (farblos) bzw. CHg_4S_2 (gelb) nicht weiter vermehrt. Nach zweistündigem Erwärmen (60–80 °C) der Niederschläge unter der überstehenden Lösung wird abfiltriert, mit Wasser säurefrei, danach kurz mit Methanol und Ether gewaschen und im Vakuum getrocknet. Die Ausbeuten bewegen sich um 95%, jeweils bezogen auf die Acetoxy-Verbindung $C(HgOOCCR_3)_4$ (R=H oder F).

Analyse: Nach Aufschluß mit $Na_2O_2/Glykol$ wird Schwefel als Sulfat nach Järvinen 10, das dabei elementar anfallende Quecksilber nach Auflösung mit konz. HNO_3 komplexometrisch 11 bestimmt. Kohlenstoff- und Wasserstoffgehalte werden nach den üblichen Verfahren der Mikroelementaranalyse ermittelt.

 $C(HgSCH_3)_4$ (1002,8)

Ber. C 5,99 Hg 80,01 S 12,79 H 1,21, Gef. C 6,14 Hg 79,11 S 12,92 H 1,21.

 CHg_4S_2 (878,5)

Ber. C 1,37 Hg 91,33 S 7,30, Gef. C 1,53 Hg 90,02 S 7,61.

IR- und FIR-Spektren wurden mit dem Gitterspektrometer Perkin-Elmer 621 und dem Fourier-Transform-Spektrometer Polytec FIR 30 (Leihgabe der Deutschen Forschungsgemeinschaft) an KBrund Polyethylen-Preßlingen vermessen. Raman-Spektren wurden mit Kr⁺-Laser (Spectra Physics 164) bei 647,1 nm angeregt und mit dem Spektrometer Cary 82 registriert.

Differentialthermoanalysen wurden mit dem Dupont Differential Thermal Analyzer 900 ausgeführt.

3. Ergebnisse und Diskussion

3.1. Darstellung und Eigenschaften der Verbindungen

Beim Einleiten von CH₃SH bzw. H₂S in wäßrige Lösungen von C(HgOOCCR₃)₄ (R = H oder F) fallen rasch die in allen gängigen Lösungsmitteln unlöslichen Verbindungen C(HgSCH₃)₄ (farblos) bzw. CHg₄S₂ (gelb) aus, letzteres röntgenamorph. Beide Verbindungen, wie auch alle anderen untersuchten Verbindungen C(HgX)₄, zeigen hohe thermische Stabilitäten (endotherme Zersetzung in noch nicht geklärten Reaktionen zwischen 350 °C und 400 °C). Auch unter längerer Laserbestrahlung bei Anregung der Raman-Spektren tritt keine Veränderung ein.

Untersuchungen von Reaktionen dieser Tetraquecksilbermethane an der Peripherie und an der zentralen Einheit CHg₄ sind derzeit im Gang⁶.

Als Kuriosität sei vermerkt, daß CHg₄S₂ unseres Wissens die metallorganische Verbindung mit dem bisher höchsten Metallgehalt ist (91,33 % Hg); eine weitere Steigerung in dieser Richtung erscheint durchaus denkbar.

3.2. Diskussion der Schwingungsspektren

Die Schwingungsspektren von C(HgSCH₃)₄ und CHg₄S₂ (Abbn. 1 und 2, Tabn. I und II) lassen sich aufgrund von Studien an Bis(alkylthio)quecksilber-^{12,13} und Methylquecksilber-Schwefel-Ver-

bindungen ^{14–16} einerseits, an anorganischen Quecksilber-Schwefel-Verbindungen ^{15, 17–19} andererseits, und auf Basis umfangreicher eigener Erfahrungen ^{2–5, 20, 21} ohne wesentliche Probleme verstehen und zuordnen.

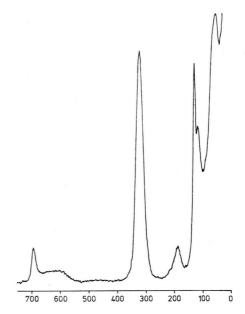


Abb. 1. Raman-Spektrum von C(HgSCH₃)₄ (Ausschnitt).

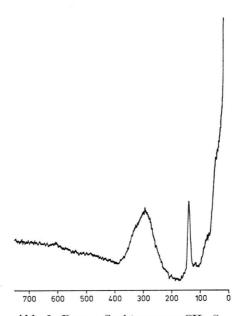


Abb. 2. Raman-Spektrum von CHg₄S₂.

Tab. I. Schwingungsspektren und Zuordnungen für Tetrakis(methylthioquecksilber)-methan C(HgSCH₃)₄.

IR	Raman	Zuordnung
2965 ss	2970 ss, br	$v_{\mathbf{as}}\mathrm{CH}_3$
$2900 \mathrm{\ m}$	$2910 \mathrm{s}$	$v_{ m s}{ m CH_3}$
2820 ss		$2\delta_{ m as}{ m CH_3}$
$1425 \mathrm{m}$	$1420 \mathrm{\ ss,\ br}$	$\delta_{ m as}{ m CH_3}$
$1300 \mathrm{m}$	$1307 \mathrm{\ s}$	$\delta_{ m s}{ m CH_3}$
$950 \mathrm{m}$	$960 \mathrm{ss}, \mathrm{br}$	$ ho\mathrm{CH_3}$
$686~\mathrm{ms}$	$696~\mathrm{ms}$	vS $-$ C
$640~\mathrm{mst}$	$625 \mathrm{s, br}$	v_3 CHg ₄ (T ₂)
322 sst	323 sst	$\nu \mathrm{Hg-S}$
	$189~\mathrm{ms}$	$\delta \mathrm{Hg}\mathrm{-S}\mathrm{-C}$
	$129 \mathrm{\ st}$	$v_1 \widetilde{\mathrm{CHg}}_4(\mathrm{A}_1)$
122 sh)		- 0-, -,
110 m }	$119 \mathrm{s}$	$\delta ext{C-Hg-S}$
$102 \mathrm{m}$		0
$68~\mathrm{ms}$	$63~\mathrm{st}$	$egin{aligned} v_4, v_2 \mathrm{CHg_4} \ (\mathrm{T_2,E}) \end{aligned}$

ss = sehr schwach, s = schwach, ms = mittel bis schwach, m = mittel, mst = mittel bis stark, st = stark, sst = sehr stark, br = breit, sh = Schulter.

Tab. II. Schwingungsspektren und Zuordnungen für Tetrakisquecksilbermethan CHg₄S₂.

IR	Raman	${\bf Z} {\bf u} {\bf o} {\bf r} {\bf d} {\bf n} {\bf u} {\bf n} {\bf g}$
630–620 m, br 310 m, br	610 ss $330 sh$ $295 sst, br$ $140 st$ $120 ss$	$ \nu_3 \text{CHg}_4(\text{T}_2) $ $ \nu \text{Hg-S} $ $ \nu_1 \text{CHg}_4(\text{A}_1) $ $ \delta \text{C-Hg-S} $
$egin{array}{c} 89 \\ 77 \text{ s} \\ 67 \\ 40 \text{ ms} \end{array}$	$80-75 \mathrm{sh}$ $45-40 \mathrm{sh}$	$\delta ext{Hg-S-Hg} \ onumber o$

3.2.1. Tetrakis(methylthioquecksilber)-methan C(HgSCH₃)₄

Auf das bekannte Muster von Schwingungen der peripheren Methylgruppen in Tetrakis(methylthioquecksilber)-methan C(HgSCH₃)₄, wie auch auf die C–S-Valenzschwingungen braucht hier nicht näher eingegangen zu werden (Tab. I). Die Hg–S-Valenzschwingungen treten koinzident in Raman- und IR-Spektren mit hoher Intensität und mäßiger Halbwertsbreite ($\Delta \tilde{v}_{1/2} \simeq 30-40~\text{cm}^{-1}$) auf, wobei die beiden möglichen Schwingungsrassen (A₁ und T₂ unter idealisierter Tetraedersymmetrie des Systems C(HgS)₄) zufällig entartet sind. Beim im Hinblick auf die Massenverhältnisse vergleichbaren C(HgCl)₄ treten die entsprechenden Hg–Cl-Schwingungen

deutlich getrennt im gleichen Frequenzbereich (321 cm⁻¹ und 311 cm⁻¹) auf ^{5,9}. Die Schwingungen der zentralen CHg4-Tetraeder zeigen in Frequenzlagen, Intensitäten und Bandenprofilen weitgehende Analogien zu den Schwingungen der isosteren NHg₄-Gruppen in Tetrakis(methylmercurio)-ammonium-Verbindungen^{2,20}, was besonders deutlich in den Raman-Spektren zu erkennen ist. So werden in der üblichen Bezeichnungsweise der Schwingungen von XY₄-Tetraedern in den Raman-Spektren die entarteten Valenzschwingungen $\nu_3(T_2)$ schwach und mit großer Halbwertsbreite (ca. 100 cm⁻¹) um 600 cm⁻¹ gefunden, die totalsymmetrischen Schwingungen $\nu_1(A_1)$ erscheinen als intensive, schmale Banden $(\Delta \tilde{\nu}_{1/2} \simeq 10 \text{ cm}^{-1})$ unterhalb 150 cm⁻¹, die Deformationen $v_4(T_2)$ und $v_2(E)$ treten mit ähnlichen oder gleichen Frequenzen um 60 cm⁻¹ als Banden mittlerer Intensität und Breite auf. Zwar liegen keine publizierten Daten für tetraedrische Systeme mit vergleichbaren, derart extremen Massenverhältnissen vor, das eigene experimentelle Material und überschlägige Frequenzrechnungen mit plausiblen Potentialkonstantensätzen^{2,22} lassen jedoch die getroffenen Zuordnungen weitgehend gesichert erscheinen.

Gegenüber der in bezug auf Massen- und Koppsehr ähnlichen lungsverhältnisse Verbindung $C(HgCl)_4$ (ν_1 139 cm⁻¹, ν_3 als Mittel aus drei Komponenten 668 cm⁻¹) wird bei C(HgSCH₃)₄ eine deutliche Frequenzerniedrigung der entsprechenden Schwingungen beobachtet. Dieser Effekt muß auf Schwächung der Bindungen und Erniedrigung der Kraftkonstanten f(Hg-C) in der CHg₄-Gruppe als Folge der Elektronegativitätsdifferenz zwischen Chlor und Schwefel zurückgeführt werden. Dieses Argument gilt insbesondere für die Schwingung ν_3 , da hier wegen des großen Frequenzabstands zu gleichrassigen anderen Schwingungen zusätzliche Kopplungseffekte keine Rolle spielen können; die Frequenzänderung von v₃ muß daher fast ausschließlich von Änderungen der Bindungsverhältnisse in der CHg₄-Einheit herrühren.

Schließlich liefern die Deformationen der linearen Gruppierungen → C−Hg−S (Rassen E, T₁ (inaktiv) und T₂) schwache Raman- und mittelstarke FIR-Banden, letztere mit offensichtlicher Aufhebung der Entartung, zwischen 100 cm⁻¹ und 120 cm⁻¹. Als Zuordnungshilfe dient hierbei die charakteristische Massenabhängigkeit der Frequenzen dieser Deformationsschwingungen bei Variation von X in

verschiedenen Verbindungen C(HgX)₄. Damit sind die Angaben der Tab. I soweit erforderlich kommentiert.

3.2.2. μ -Dithiotetraquecksilbermethan CHg_4S_2

Die Verbindung CHg₄S₂ muß als dreidimensional koordinationspolymerer Festkörper aufgefaßt werden, in dem CHg4-Baugruppen über geknickte Brücken Hg S Hg zu einem weiträumigen Gerüst verknüpft vorliegen. Diesen Koordinationsund Verknüpfungsverhältnissen trägt die Formulierung als $^3_{\infty}$ [CHg₄S_{4/2}]Rechnung.Der röntgenamorphe Charakter einerseits und die starke Verbreiterung der Banden der Hg-S-Valenzschwingungen $(\Delta \tilde{v}_{1/2} \simeq 100-110 \text{ cm}^{-1}), \text{der C-Hg-S- und Hg-S-Hg-}$ Deformationsschwingungen andererseits sprechen offenbar für eine hochgradige Fehlordnung beim Aufbau der Schwefelbrücken zwischen den CHg₄-Tetraedern. Für die niedrige Frequenz der Tetraederdeformationen E und T2 muß Kopplung mit den -Hg-S-Hg-Deformationen verantwortlich gemacht werden. Die unverändert geringe Halbwertsbreite der totalsymmetrischen CHg₄-Valenzschwingung (A₁) legt vernachlässigbare Kopplung mit den Hg-S-Valenzschwingungen in der stark gestörten Peripherie der verknüpften C(HgS)₄-Einheiten nahe.

¹ D. Breitinger u. Nguyen Quy Dao, J. Organometal. Chem. 15, P 21 [1968].

² NGUYEN QUY DAO u. D. BREITINGER, Spectrochim. Acta 27A, 905 [1971].

³ D. Breitinger, K. Geske u. W. Beitelschmidt, Angew. Chem. 83, 577 [1971]; Angew. Chem. Int. Ed. Engl. 10, 555 [1971]

⁴ D. Breitinger u. G. P. Arnold, Inorg. Nucl. Chem. Letters 10, 517 [1974].

⁵ W. Morell, Dissertation, Erlangen 1976. ⁶ K. Grabetz, Diplomarbeit, Erlangen 1977.

7 D. S. MATTESON, R. B. CASTLE U. G. L. LARSON,

J. Amer. Chem. Soc. 92, 231 [1970].

- ⁸ D. Grdenić, B. Kamenar, B. Korpar-Čolig, M. SIKIRICA u. G. JOVANOVSKI, J. Chem. Soc. Chem. Commun. 1974, 646.
- 9 D. Breitinger u. W. Morell, Publikation in Vorbereitung.
- ¹⁰ K. K. JÄRVINEN, Z. Anal. Chem. **72**, 84, 89 [1927]. ¹¹ Komplexometrische Bestimmungsmethoden mit Ti-

4. Folgerungen

Die Befunde in den Schwingungsspektren der diskutierten Verbindungen sprechen für ähnliche Bindungsverhältnisse und Potentialkonstanten in den isosteren Baugruppen CHg₄ der Tetraquecksilbermethane C(HgX)₄ und NHg₄ der Tetrakis(methylmercurio)ammonium-Kationen [N(HgCH₃)₄]+ mit Metallo-Komplex-Charakter. In der chemischen Reaktivität ergeben sich allerdings erhebliche Unterschiede insofern, als nukleophiler Angriff durch Donatoren bei den Metallomethanen nach den bisherigen Erfahrungen lediglich zu peripherer Substitution, bei den Metalloammonium-Ionen dagegen zum Abbau des Metallo-Komplexes führt¹.

Es besteht die Absicht, durch verfeinerte präparative Methoden (Gelkristallisation, Hydrothermalverfahren) die zur Diskussion stehenden Verbindungen in kristalliner Form zu synthetisieren, und damit Röntgen-Strukturuntersuchungen zu ermöglichen.

Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie – Fonds der Chemischen Industrie – schulden wir Dank für Unterstützung unserer Arbeiten, ebenso Herrn Prof. Dr. K. Brodersen für Bereitstellung von Institutsmitteln. Frau L. Simon (IR) sowie den Herrn Dipl.-Chem. G. Pajonk (FIR) und Dipl.-Chem. K. D. Schröter (Raman) danken wir für Registrierung von Spektren.

- triplex III, Firmenschrift der Fa. E. Merck, Darmstadt.
- 12 A. J. Downs, E. A. V. Ebsworth u. H. J. Emeléus, J. Chem. Soc. 1961, 3187; ibid. 1962, 1254.
- ¹³ P. BISCARINI, L. FUSINA u. G. NIVELLINI, J. Chem. Soc. Dalton 1974, 2140.
- ¹⁴ J. H. R. Clarke u. L. A. Woodward, Spectrochim. Acta 23 A, 2077 [1967].
- R. P. J. COONEY u. J. R. HALL, Aust. J. Chem. 22, 2117 [1969].
- R. A. NYQUIST u. J. R. MANN, Spectrochim. Acta 28 A, 511 [1972].
- R. P. J. COONEY u. J. R. HALL, Aust. J. Chem. 22, 331 [1969].
- ¹⁸ H. D. RICCIUS u. K. J. SIEMSEN, J. Chem. Phys. **52**, 4090 [1970].
- ¹⁹ P. Dawson, Spectrochim. Acta 28 A, 2305 [1972]. ²⁰ W. Beitelschmidt, Dissertation, Erlangen 1972.
- ²¹ K. Köhler, Dissertation, Erlangen 1973.
- ²² D. Breitinger, unveröffentlichte Ergebnisse.